Sequential Monte Carlo: An Introduction

Arnaud Doucet
Departments of Statistics & Computer Science
University of British Columbia
Consider a sequence of probability distributions \(\{ \pi_n \}_{n \geq 1} \) defined on a sequence of (measurable) spaces \(\{ (E_n, \mathcal{F}_n) \}_{n \geq 1} \) where \(E_1 = E \), \(\mathcal{F}_1 = \mathcal{F} \) and \(E_n = E_{n-1} \times E \), \(\mathcal{F}_n = \mathcal{F}_{n-1} \times \mathcal{F} \).
Consider a sequence of probability distributions \(\{ \pi_n \}_{n \geq 1} \) defined on a sequence of (measurable) spaces \(\{(E_n, \mathcal{F}_n)\}_{n \geq 1} \) where \(E_1 = E \), \(\mathcal{F}_1 = \mathcal{F} \) and \(E_n = E_{n-1} \times E \), \(\mathcal{F}_n = \mathcal{F}_{n-1} \times \mathcal{F} \).

Each distribution \(\pi_n \left(dx_{1:n} \right) = \pi_n \left(x_{1:n} \right) dx_{1:n} \) is known up to a normalizing constant, i.e.

\[
\pi_n \left(x_{1:n} \right) = \frac{\gamma_n \left(x_{1:n} \right)}{Z_n}
\]
Consider a sequence of probability distributions $\{\pi_n\}_{n\geq 1}$ defined on a sequence of (measurable) spaces $\{(E_n, \mathcal{F}_n)\}_{n\geq 1}$ where $E_1 = E$, $\mathcal{F}_1 = \mathcal{F}$ and $E_n = E_{n-1} \times E$, $\mathcal{F}_n = \mathcal{F}_{n-1} \times \mathcal{F}$.

Each distribution $\pi_n (dx_{1:n}) = \pi_n (x_{1:n}) \, dx_{1:n}$ is known up to a normalizing constant, i.e.

$$
\pi_n (x_{1:n}) = \frac{\gamma_n (x_{1:n})}{Z_n}
$$

We want to estimate expectations of test functions $\varphi_n : E_n \to \mathbb{R}$

$$
\mathbb{E}_{\pi_n} (\varphi_n) = \int \varphi_n (x_{1:n}) \, \pi_n (dx_{1:n})
$$

and/or the normalizing constants Z_n.
Consider a sequence of probability distributions \(\{\pi_n\}_{n \geq 1} \) defined on a sequence of (measurable) spaces \(\{(E_n, \mathcal{F}_n)\}_{n \geq 1} \) where \(E_1 = E \), \(\mathcal{F}_1 = \mathcal{F} \) and \(E_n = E_{n-1} \times E, \mathcal{F}_n = \mathcal{F}_{n-1} \times \mathcal{F} \).

Each distribution \(\pi_n (dx_{1:n}) = \pi_n (x_{1:n}) \, dx_{1:n} \) is known up to a normalizing constant, i.e.

\[
\pi_n (x_{1:n}) = \frac{\gamma_n (x_{1:n})}{Z_n}
\]

We want to estimate expectations of test functions \(\varphi_n : E_n \to \mathbb{R} \)

\[
\mathbb{E}_{\pi_n} (\varphi_n) = \int \varphi_n (x_{1:n}) \, \pi_n (dx_{1:n})
\]

and/or the normalizing constants \(Z_n \).

We want to do this **sequentially**; i.e. first \(\pi_1 \) and/or \(Z_1 \) at time 1 then \(\pi_2 \) and/or \(Z_2 \) at time 2 and so on.
We could use standard MCMC to sample from \(\{\pi_n\}_{n \geq 1} \) but it is slow & it does not provide an estimate of \(\{Z_n\}_{n \geq 1} \).
We could use standard MCMC to sample from \(\{\pi_n\}_{n \geq 1} \) but it is slow & it does not provide an estimate of \(\{Z_n\}_{n \geq 1} \).

SMC is a non-iterative alternative class of algorithms to MCMC.
We could use standard MCMC to sample from \(\{\pi_n\}_{n \geq 1} \) but it is slow & it does not provide an estimate of \(\{Z_n\}_{n \geq 1} \).

SMC is a non-iterative alternative class of algorithms to MCMC.

Key idea: if \(\pi_{n-1} \) does not differ too much from \(\pi_n \) then we should be able to reuse our estimate of \(\pi_{n-1} \) to approximate \(\pi_n \).
Applications

- Optimal estimation in non-linear non-Gaussian dynamic models.
Applications

- Optimal estimation in non-linear non-Gaussian dynamic models.
- Bayesian inference for complex statistical models.
Applications

- Optimal estimation in non-linear non-Gaussian dynamic models.
- Bayesian inference for complex statistical models.
- Global optimization.
Applications

- Optimal estimation in non-linear non-Gaussian dynamic models.
- Bayesian inference for complex statistical models.
- Global optimization.
- Counting problems.
Applications

- Optimal estimation in non-linear non-Gaussian dynamic models.
- Bayesian inference for complex statistical models.
- Global optimization.
- Counting problems.
- Rare events simulation.
State-Space Models

- \(\{X_n\}_{n \geq 1} \) latent/hidden Markov process with

\[
X_1 \sim \mu(\cdot) \quad \text{and} \quad X_n \mid (X_{n-1} = x) \sim f(\cdot \mid x).
\]

Very wide class of statistical models also known as hidden Markov models with thousands of applications.
State-Space Models

- \(\{X_n\}_{n \geq 1} \) latent/hidden Markov process with
 \[
 X_1 \sim \mu(\cdot) \quad \text{and} \quad X_n| (X_{n-1} = x) \sim f(\cdot|x).
 \]

- \(\{Y_n\}_{n \geq 1} \) observation process such that observations are conditionally independent given \(\{X_n\}_{n \geq 1} \) and
 \[
 Y_n| (X_n = x) \sim g(\cdot|x).
 \]
State-Space Models

- \(\{X_n\}_{n \geq 1} \) latent/hidden Markov process with
 \[X_1 \sim \mu(\cdot) \quad \text{and} \quad X_n | (X_{n-1} = x) \sim f(\cdot | x). \]

- \(\{Y_n\}_{n \geq 1} \) observation process such that observations are conditionally independent given \(\{X_n\}_{n \geq 1} \) and
 \[Y_n | (X_n = x) \sim g(\cdot | x). \]

- Very wide class of statistical models also known as hidden Markov models with thousands of applications.
Examples

- **Linear Gaussian state-space model**

 \[X_1 \sim \mathcal{N}(m_1, \Sigma_1), \quad X_n = AX_{n-1} + BV_n, \]
 \[Y_n = CX_n + DW_n \]

 where \(V_n \overset{i.i.d.}{\sim} \mathcal{N}(0, \Sigma_v) \), \(W_n \overset{i.i.d.}{\sim} \mathcal{N}(0, \Sigma_w) \).
Examples

- **Linear Gaussian state-space model**

\[X_1 \sim \mathcal{N}(m_1, \Sigma_1), \quad X_n = AX_{n-1} + BV_n, \]
\[Y_n = CX_n + DW_n \]

where \(V_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Sigma_v) \), \(W_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Sigma_w) \).

- **Stochastic volatility model**

\[X_1 \sim \mathcal{N}\left(0, \frac{\sigma^2}{1 - \alpha^2}\right), \quad X_n = \alpha X_{n-1} + V_n, \]
\[Y_n = \beta \exp\left(\frac{X_n}{2}\right) W_n \]

where \(|\alpha| < 1\), \(V_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2) \), \(W_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1) \).
At time n, we have access to the observations are interested in computing

$$p(x_{1:n} \mid y_{1:n}) = \frac{p(x_{1:n}, y_{1:n})}{p(y_{1:n})}$$

and the (marginal) likelihood $p(y_{1:n})$ where

$$p(x_{1:n}, y_{1:n}) = \mu(x_1) \prod_{k=2}^{n} f(x_k \mid x_{k-1}) \prod_{k=1}^{n} g(y_k \mid x_k),$$

$$p(y_{1:n}) = \int \cdots \int p(x_{1:n}, y_{1:n}) \, dx_{1:n}.$$
At time n, we have access to the observations and are interested in computing

$$p(x_{1:n} \mid y_{1:n}) = \frac{p(x_{1:n}, y_{1:n})}{p(y_{1:n})}$$

and the (marginal) likelihood $p(y_{1:n})$ where

$$p(x_{1:n}, y_{1:n}) = \mu(x_1) \prod_{k=2}^{n} f(x_k \mid x_{k-1}) \prod_{k=1}^{n} g(y_k \mid x_k),$$

$$p(y_{1:n}) = \int \cdots \int p(x_{1:n}, y_{1:n}) \, dx_{1:n}.$$

In our SMC framework,

$$\pi_n(x_{1:n}) = p(x_{1:n} \mid y_{1:n}), \quad \gamma_n(x_{1:n}) = p(x_{1:n}, y_{1:n}), \quad Z_n = p(y_{1:n}).$$
The Kalman Filter

- For linear Gaussian models, all posteriors are Gaussian and we can compute the likelihood exactly.
The Kalman Filter

- For linear Gaussian models, all posteriors are Gaussian and we can compute the likelihood exactly.
- The marginal distributions \(\{ p(x_n | y_1:n) \}_{n \geq 1} \) and \(\{ p(y_n | y_1:n-1) \}_{n \geq 1} \) can be computed through the celebrated Kalman filter.
For linear Gaussian models, all posteriors are Gaussian and we can compute the likelihood exactly.

The marginal distributions \(\{ p(x_n | y_1:n) \}_{n \geq 1} \) and \(\{ p(y_n | y_1:n-1) \}_{n \geq 1} \) can be computed through the celebrated Kalman filter.

To obtain an estimate of the joint distribution, we have

\[
p(x_{1:n} | y_{1:n}) = p(x_n | y_{1:n}) \prod_{k=1}^{n-1} p(x_k | y_{1:n}, x_{k+1})
\]

\[
= p(x_n | y_{1:n}) \prod_{k=1}^{n-1} p(x_k | y_{1:k}, x_{k+1})
\]

where

\[
p(x_k | y_{1:k}, x_{k+1}) = \frac{f(x_{k+1} | x_k) p(x_k | y_{1:k})}{p(x_{k+1} | y_{1:k})}.
\]
For nonlinear non-Gaussian models, there is \textit{no closed-form expression}.
For nonlinear non-Gaussian models, there is *no closed-form expression*. Standard approximations rely on functional approximations: EKF, UKF, Gaussian quadrature, mixture of Gaussians.
Nonlinear Non-Gaussian Models

- For nonlinear non-Gaussian models, there is *no closed-form expression*.
- Standard approximations rely on functional approximations: EKF, UKF, Gaussian quadrature, mixture of Gaussians.
- These functional approximations can be seriously unreliable and are not widely applicable.
Finding the largest eigenvalue and eigenmeasure of a positive operator
Quantum Monte Carlo

- Finding the largest eigenvalue and eigenmeasure of a positive operator
- Let $K : E \times E \to \mathbb{R}^+$ be a positive kernel.
Finding the largest eigenvalue and eigenmeasure of a positive operator

Let $K : E \times E \to \mathbb{R}^+$ be a positive kernel.

Find the largest eigenvalue λ ($\lambda > 0$) and associated eigenmeasure μ ($\int \mu\,dx = 1$) of K

$$\int \mu(x) K(y|x)\,dx = \lambda \mu(y).$$
Finding the largest eigenvalue and eigenmeasure of a positive operator

Let $K : E \times E \rightarrow \mathbb{R}^+$ be a positive kernel.

Find the largest eigenvalue λ ($\lambda > 0$) and associated eigenmeasure μ ($\int \mu (dx) = 1$) of K

$$\int \mu (x) K (y| x) dx = \lambda \mu (y).$$

Basic Idea: the good old power method.
Power method: A $p \times p$ matrix with p linearly independent eigenvectors $\{V_i\}$ associated to eigenvalues $\{\lambda_i\}$ such that $|\lambda_1| > |\lambda_2| > ... > |\lambda_p|$

\[
U_1 = \sum_{i=1}^{p} \alpha_i V_i,
\]

\[
U_n = A^{n-1} U_1 = \sum_{i=1}^{p} \alpha_i \lambda_i^{n-1} V_i
\]
Power method: A $p \times p$ matrix with p linearly independent eigenvectors $\{V_i\}$ associated to eigenvalues $\{\lambda_i\}$ such that $|\lambda_1| > |\lambda_2| > ... > |\lambda_p|$

\[
U_1 = \sum_{i=1}^{p} \alpha_i V_i,
\]

\[
\vdots
\]

\[
U_n = A^{n-1} U_1 = \sum_{i=1}^{p} \alpha_i \lambda_i^{n-1} V_i
\]

- We have

\[
\frac{U_n}{\lambda_1^{n-1}} = \alpha_1 V_1 + \sum_{i=2}^{p} \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^{n-1} V_i \rightarrow \alpha_1 V_1 \text{ and } \frac{U_n^T Y}{U_{n-1}^T Y} \rightarrow \lambda_1.
\]
Consider the following artificial sequence of distributions defined through

\[\gamma_n(x_{1:n}) = \nu(x_1) \prod_{k=2}^{n} K(x_k|x_{k-1}) \]

As \(n \) increases, we have

\[\gamma_n(x_{1:n}) = Z_{\gamma_n(x_{1:n})} dx_1: \]

and

\[\pi_n(x_{1:n}) = \mu(x_{1:n}) Z_{n+1} Z_{n} \lambda. \]

SMC methods are widely used to solve this problem.
Consider the following artificial sequence of distributions defined through

\[\gamma_n (x_{1:n}) = \nu (x_1) \prod_{k=2}^{n} K (x_k | x_{k-1}) \]

As \(n \) increases, we have

\[\gamma_n (x_n) = \int \gamma_n (x_{1:n}) \, dx_{1:n-1} \propto \lambda^{n-1} \mu (x_n) , \]

and

\[\pi_n (x_n) \rightarrow \mu (x_n) \quad \text{and} \quad \frac{Z_{n+1}}{Z_n} \rightarrow \lambda. \]
Consider the following artificial sequence of distributions defined through

\[\gamma_n(x_{1:n}) = \nu(x_1) \prod_{k=2}^{n} K(x_k|x_{k-1}) \]

As \(n \) increases, we have

\[\gamma_n(x_n) = \int \gamma_n(x_{1:n}) \, dx_{1:n-1} \propto \lambda^{n-1} \mu(x_n), \]

and

\[\pi_n(x_n) \rightarrow \mu(x_n) \text{ and } \frac{Z_{n+1}}{Z_n} \rightarrow \lambda. \]

SMC methods are widely used to solve this problem.
A 2D Self Avoiding Random Walk (SAW). Polymer of size \(n \) is characterized by a sequence \(x_1:n \) on a finite lattice such that \(x_i \neq x_j \) for \(i \neq j \).
Self-Avoiding Random Walk (SAW)

- A 2D Self Avoiding Random Walk (SAW). Polymer of size n is characterized by a sequence $x_{1:n}$ on a finite lattice such that $x_i \neq x_j$ for $i \neq j$.
- One is interested in the uniform distribution

$$\pi_n (x_{1:n}) = Z_n^{-1} 1_{D_n} (x_{1:n})$$

where

$$D_n = \{ x_{1:n} \in E_n \setminus x_k \sim x_{k+1} \text{ and } x_k \neq x_i \text{ for } k \neq i \},$$

$$Z_n = \text{cardinal of } D_n.$$
Self-Avoiding Random Walk (SAW)

- A 2D Self Avoiding Random Walk (SAW). Polymer of size n is characterized by a sequence $x_{1:n}$ on a finite lattice such that $x_i \neq x_j$ for $i \neq j$.

- One is interested in the uniform distribution

$$
\pi_n(x_{1:n}) = Z_n^{-1} 1_{D_n}(x_{1:n})
$$

where

$$
D_n = \{x_{1:n} \in E_n \setminus x_k \sim x_{k+1} \text{ and } x_k \neq x_i \text{ for } k \neq i \},
$$

$$
Z_n = \text{cardinal of } D_n.
$$

- SMC allow us to simulate from the uniform distribution of SAW of length n and to compute their number.
A Markovian particle $\{X_n\}_{n \geq 1}$ evolves in a random medium

$$X_1 \sim \mu(\cdot), \ X_{n+1}|X_n = x \sim f(\cdot|x).$$
A Markovian particle $\{X_n\}_{n \geq 1}$ evolves in a random medium

$$X_1 \sim \mu(\cdot), \ X_{n+1} \mid X_n = x \sim f(\cdot \mid x).$$

At time n, its probability to get killed is $1 - g(X_n)$ where $0 \leq g(x) \leq 1$ for any $x \in E$.

Particle Motion in Random Medium

- A Markovian particle $\{X_n\}_{n \geq 1}$ evolves in a random medium

 $$X_1 \sim \mu(\cdot), \ X_{n+1} \mid X_n = x \sim f(\cdot \mid x).$$

- At time n, its probability to get killed is $1 - g(X_n)$ where $0 \leq g(x) \leq 1$ for any $x \in E$.

A.D. ()
A Markovian particle \(\{X_n\}_{n \geq 1} \) evolves in a random medium

\[
X_1 \sim \mu(\cdot), \quad X_{n+1} | X_n = x \sim f(\cdot | x).
\]

At time \(n \), its probability to get killed is \(1 - g(X_n) \) where \(0 \leq g(x) \leq 1 \) for any \(x \in E \).

One wants to approximate \(\Pr(T > n) \) where \(T \) = Random time at which the particle is killed.
One has

\[
\Pr(T > n) = \mathbb{E}_\mu [\text{Proba. of not being killed at } n \text{ given } X_{1:n}]
\]

\[
= \int \cdots \int \mu(x_1) \prod_{k=2}^{n} f(x_k | x_{k-1}) \prod_{k=1}^{n} g(x_k) \, dx_{1:n}.
\]

Probability to survive at \(n\)
One has

\[
\Pr(T > n) = \mathbb{E}_\mu \left[\text{Proba. of not being killed at } n \text{ given } X_{1:n} \right] = \int \cdots \int \mu(x_1) \prod_{k=2}^{n} f(x_k \mid x_{k-1}) \prod_{k=1}^{n} g(x_k) \, dx_{1:n}.
\]

Probability to survive at \(n \)

Consider

\[
\gamma_n(x_{1:n}) = \mu(x_1) \prod_{k=2}^{n} f(x_k \mid x_{k-1}) \prod_{k=1}^{n} g(x_k),
\]

\[
\pi_n(x_{1:n}) = \frac{\gamma_n(x_{1:n})}{Z_n} \text{ where } Z_n = \Pr(T > n).
\]
One has

\[
\Pr (T > n) = \mathbb{E}_\mu [\text{Proba. of not being killed at } n \text{ given } X_{1:n}] = \int \cdots \int \mu (x_1) \prod_{k=2}^{n} f (x_k | x_{k-1}) \prod_{k=1}^{n} g (x_k) \ dx_{1:n}.
\]

Probability to survive at \(n \)

Consider

\[
\gamma_n (x_{1:n}) = \mu (x_1) \prod_{k=2}^{n} f (x_k | x_{k-1}) \prod_{k=1}^{n} g (x_k),
\]

\[
\pi_n (x_{1:n}) = \frac{\gamma_n (x_{1:n})}{Z_n} \text{ where } Z_n = \Pr (T > n).
\]

SMC methods to compute \(Z_n \), the probability of not being killed at time \(n \), and to approximate the distribution of the paths having survived at time \(n \).
Consider the case where all the target distributions \(\{ \pi_n \}_{n \geq 1} \) are defined on \(E_n = E \).

\[\pi_n(x) \propto \left[\pi(x) \right]^\gamma_n \text{ where } \gamma_n! \to \infty \text{ (global optimization)} \]

SMC do not apply to this problem as it requires \(E_n = E \).
Consider the case where all the target distributions \(\{\pi_n\}_{n \geq 1} \) are defined on \(E_n = E \).

Examples
Consider the case where all the target distributions \(\{\pi_n\}_{n \geq 1} \) are defined on \(E_n = E \).

Examples

- \(\pi_n = \pi \) (e.g. Bayesian inference, rare events etc.)
Consider the case where all the target distributions $\{\pi_n\}_{n \geq 1}$ are defined on $E_n = E$.

Examples

- $\pi_n = \pi$ (e.g. Bayesian inference, rare events etc.)
- $\pi_n(x) \propto [\pi(x)]^{\gamma_n}$ where $\gamma_n \to \infty$ (global optimization)
Consider the case where all the target distributions \(\{\pi_n\}_{n \geq 1} \) are defined on \(E_n = E \).

Examples

- \(\pi_n = \pi \) (e.g. Bayesian inference, rare events etc.)
- \(\pi_n (x) \propto [\pi (x)]^{\gamma_n} \) where \(\gamma_n \to \infty \) (global optimization)
- \(\pi_n (x) = p (x | y_{1:n}) \) (sequential Bayesian estimation)
Consider the case where all the target distributions $\{\pi_n\}_{n \geq 1}$ are defined on $E_n = E$.

Examples

- $\pi_n = \pi$ (e.g. Bayesian inference, rare events etc.)
- $\pi_n(x) \propto [\pi(x)]^{\gamma_n}$ where $\gamma_n \to \infty$ (global optimization)
- $\pi_n(x) = p(x | y_{1:n})$ (sequential Bayesian estimation)

SMC do not apply to this problem as it requires $E_n = E^n$.
Consider a new sequence of artificial distributions \{\tilde{\pi}_n\}_{n \geq 1} defined on \(E_n = E^n\) such that

\[
\int \tilde{\pi}_n (x_{1:n-1}, x_n) \, dx_{1:n-1} = \pi_n (x_n)
\]

and apply standard SMC.
Consider a new sequence of *artificial* distributions \(\{ \tilde{\pi}_n \}_{n \geq 1} \) defined on \(E_n = E^n \) such that

\[
\int \tilde{\pi}_n (x_{1:n-1}, x_n) \, dx_{1:n-1} = \pi_n (x_n)
\]

and apply standard SMC.

Example:

\[
\tilde{\pi}_n (x_{1:n-1}, x_n) = \pi_n (x_n) \tilde{\pi}_n (x_{1:n-1} \mid x_n)
\]

where \(\tilde{\pi}_n (x_{1:n-1} \mid x_n) \) is *any* conditional distribution on \(E^{n-1} \).

How to design \(\tilde{\pi}_n \) optimally will be discussed later.
Consider a new sequence of artificial distributions \(\{ \tilde{\pi}_n \}_{n \geq 1} \) defined on \(E_n = E^n \) such that

\[
\int \tilde{\pi}_n (x_{1:n-1}, x_n) \, dx_{1:n-1} = \pi_n (x_n)
\]

and apply standard SMC.

Example:

\[
\tilde{\pi}_n (x_{1:n-1}, x_n) = \pi_n (x_n) \tilde{\pi}_n (x_{1:n-1} | x_n)
\]

where \(\tilde{\pi}_n (x_{1:n-1} | x_n) \) is any conditional distribution on \(E^{n-1} \).

How to design \(\tilde{\pi}_n \) optimally will be discussed later.
Except in trivial cases, one can neither compute \(\int \varphi_n(x_{1:n}) \pi_n(dx_{1:n}) \) nor \(Z_n \).
The Need for Monte Carlo Methods

- Except in trivial cases, one can neither compute \(\int \varphi_n(x_{1:n}) \pi_n(dx_{1:n}) \) nor \(Z_n \).
- Deterministic numerical integration methods typically inefficient for high-dimensional spaces.
The Need for Monte Carlo Methods

- Except in trivial cases, one can neither compute \(\int \varphi_n(x_{1:n}) \pi_n(dx_{1:n}) \) nor \(Z_n \).
- Deterministic numerical integration methods typically inefficient for high-dimensional spaces.
- Monte Carlo methods: simple and flexible.
Except in trivial cases, one can neither compute $\int \varphi_n(x_{1:n}) \pi_n(dx_{1:n})$ nor Z_n.

Deterministic numerical integration methods typically inefficient for high-dimensional spaces.

Monte Carlo methods: simple and flexible.

Using Monte Carlo, it is very easy to make "rigourous" your intuition.
Monte Carlo Methods

- For the time being, just concentrate on estimating

\[\mathbb{E}_\pi [\varphi] = \int \varphi(x) \pi(dx) \]

where

\[\pi(x) = \frac{\gamma(x)}{Z} \text{ with } \gamma \text{ known pointwise/} Z = \int \gamma(x) dx \text{ unknown.} \]
Monte Carlo Methods

- For the time being, just concentrate on estimating

\[E_\pi [\varphi] = \int \varphi (x) \pi (dx) \]

where

\[\pi (x) = \frac{\gamma (x)}{Z} \]

with \(\gamma \) known pointwise/\(Z = \int \gamma (x) dx \) unknown.

- Draw a large number samples \(X^{(i)} \overset{\text{i.i.d.}}{\sim} \pi \) and build empirical measure

\[\hat{\pi} (dx) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}} (dx). \]
Marginalization is straightforward. If \(x = (x_1, \ldots, x_k) \)

\[
\hat{\pi}(dx_p) = \int \hat{\pi}(dx_{1:p-1}, dx_{p+1:k}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_p^{(i)}}(dx).
\]
• **Marginalization is straightforward.** If $x = (x_1, \ldots, x_k)$

$$\hat{\pi} (dx_p) = \int \hat{\pi} (dx_{1:p-1}, dx_{p+1:k}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}} (dx).$$

• **Integration is straightforward.** Monte Carlo estimates of $\mathbb{E}_\pi (\varphi)$

$$\mathbb{E}_{\hat{\pi}} (\varphi) = \int \varphi (x) \hat{\pi} (dx) = \frac{1}{N} \sum_{i=1}^{N} \varphi (X^{(i)}).$$

Samples concentrate themselves automatically in regions of high probability mass whatever being the dimension of the space; e.g. $\mathbb{E} = \mathbb{R}^{10^6}$.

A.D. () 20 / 26
Marginalization is straightforward. If \(x = (x_1, \ldots, x_k) \)

\[
\hat{\pi} (dx_p) = \int \hat{\pi} (dx_1:p-1, dx_{p+1:k}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}} (dx).
\]

Integration is straightforward. Monte Carlo estimates of \(\mathbb{E}_{\pi} (\varphi) \)

\[
\mathbb{E}_{\hat{\pi}} (\varphi) = \int \varphi (x) \hat{\pi} (dx) = \frac{1}{N} \sum_{i=1}^{N} \varphi (X^{(i)}).
\]

Samples concentrate themselves automatically in regions of high probability mass whatever being the dimension of the space; e.g. \(E = \mathbb{R}^{10^6} \).
Basic results

\[\mathbb{E} [\mathbb{E}_{\tilde{\pi}} (\varphi)] = \mathbb{E}_{\pi} (\varphi) \text{ unbiased}, \]
\[\mathbb{V} [\mathbb{E}_{\tilde{\pi}} (\varphi)] = \frac{1}{N} \mathbb{E}_{\pi} \left((\varphi - \mathbb{E}_{\pi} (\varphi))^2 \right) \]
Basic results

\[E[\hat{E}_\pi(\phi)] = E\pi(\phi) \text{ unbiased}, \]
\[\text{Var}[\hat{E}_\pi(\phi)] = \frac{1}{N} E\pi((\phi - E\pi(\phi))^2) \]

Rate of convergence to zero \textbf{INDEPENDENT} of space \(E \)! It breaks the curse of dimensionality... sometimes.
Basic results

\[\mathbb{E} [\mathbb{E}_{\hat{\pi}} (\varphi)] = \mathbb{E}_{\pi} (\varphi) \text{ unbiased}, \]

\[\mathbb{V} [\mathbb{E}_{\hat{\pi}} (\varphi)] = \frac{1}{N} \mathbb{E}_{\pi} \left((\varphi - \mathbb{E}_{\pi} (\varphi))^2 \right) \]

Rate of convergence to zero **INDEPENDENT** of space \(E \)! It breaks the curse of dimensionality... sometimes.

Central limit theorem

\[\sqrt{N} (\mathbb{E}_{\hat{\pi}} (\varphi) - \mathbb{E}_{\pi} (\varphi)) \Rightarrow \mathcal{N} \left(0, \mathbb{E}_{\pi} \left((\varphi - \mathbb{E}_{\pi} (\varphi))^2 \right) \right) \]
Basic results

\[E \left[E_{\tilde{\pi}} (\phi) \right] = E_{\pi} (\phi) \text{ unbiased}, \]

\[\nabla \left[E_{\tilde{\pi}} (\phi) \right] = \frac{1}{N} E_{\pi} \left((\phi - E_{\pi} (\phi))^2 \right) \]

Rate of convergence to zero \textbf{INDEPENDENT} of space \(E \)! It breaks the curse of dimensionality... sometimes.

Central limit theorem

\[\sqrt{N} \left(E_{\tilde{\pi}} (\phi) - E_{\pi} (\phi) \right) \Rightarrow \mathcal{N} \left(0, E_{\pi} \left((\phi - E_{\pi} (\phi))^2 \right) \right) \]

Problem: how do you obtain samples from an arbitrary high dimensional distribution???
Basic results

\[
\mathbb{E} [\mathbb{E}_{\hat{\pi}} (\varphi)] = \mathbb{E}_{\pi} (\varphi) \text{ unbiased},
\]

\[
\mathbb{V} [\mathbb{E}_{\hat{\pi}} (\varphi)] = \frac{1}{N} \mathbb{E}_{\pi} \left((\varphi - \mathbb{E}_{\pi} (\varphi))^2 \right)
\]

Rate of convergence to zero **INDEPENDENT** of space \(E\)! It breaks the curse of dimensionality... sometimes.

Central limit theorem

\[
\sqrt{N} \left(\mathbb{E}_{\hat{\pi}} (\varphi) - \mathbb{E}_{\pi} (\varphi) \right) \Rightarrow \mathcal{N} \left(0, \mathbb{E}_{\pi} \left((\varphi - \mathbb{E}_{\pi} (\varphi))^2 \right) \right)
\]

Problem: how do you obtain samples from an arbitrary high dimensional distribution???

Answer: No general answer, typically approximation required.
Standard Monte Carlo Methods

- Sampling from standard distributions (Gaussian, Gamma, Poisson...) can be done exactly (see articles by Germans) using inverse method, accept/reject etc.

- Sampling approximately from non-standard high-dimensional distributions typically done by Markov chain Monte Carlo (e.g., Metropolis-Hastings).

 Basic (bright) idea: Build an ergodic Markov chain whose stationary distribution is the distribution of interest; i.e.

 \[Z \pi(x) K(y|x) \, dx = \pi(y) \]

 Iterative algorithm to sample from one distribution, not adapted to our problems.

 Alternative (not that bright) idea: Importance sampling. Non-iterative, can be understood in one minute.
Sampling from standard distributions (Gaussian, Gamma, Poisson...) can be done exactly (see articles by Germans) using inverse methods, accept/reject etc.

Sampling approximately from non-standard high-dimensional distributions typically done by Markov chain Monte Carlo (e.g. Metropolis-Hastings).

Basic (bright) idea: Build an ergodic Markov chain whose stationary distribution is the distribution of interest; i.e.

$$\pi(x) = \int \pi(y) \text{d}x = \pi(y).$$

Iterative algorithm to sample from one distribution, not adapted to our problems.

Alternative (not that bright) idea: Importance sampling.

Non-iterative, can be understood in one minute.
Standard Monte Carlo Methods

- Sampling from standard distributions (Gaussian, Gamma, Poisson...) can be done exactly (see articles by germans) using inverse method, accept/reject etc.

- Sampling approximately from non standard high dimensional distributions typically done by Markov chain Monte Carlo (e.g. Metropolis-Hastings).

- **Basic (bright) idea**: Build an ergodic Markov chain whose stationary distribution is the distribution of interest; i.e.

\[
\int \pi(x) K(y|x) \, dx = \pi(y).
\]
Standard Monte Carlo Methods

- Sampling from standard distributions (Gaussian, Gamma, Poisson...) can be done exactly (see articles by germans) using inverse method, accept/reject etc.

- Sampling approximately from non standard high dimensional distributions typically done by Markov chain Monte Carlo (e.g. Metropolis-Hastings).

- **Basic (bright) idea**: Build an ergodic Markov chain whose stationary distribution is the distribution of interest; i.e.

\[\int \pi(x) K(y|x) dx = \pi(y). \]

- Iterative algorithm to sample from one distribution, not adapted to our problems.
Standard Monte Carlo Methods

- Sampling from standard distributions (Gaussian, Gamma, Poisson...) can be done exactly (see articles by Germans) using inverse method, accept/reject etc.

- Sampling approximately from non standard high dimensional distributions typically done by Markov chain Monte Carlo (e.g. Metropolis-Hastings).

- **Basic (bright) idea**: Build an ergodic Markov chain whose stationary distribution is the distribution of interest; i.e.

 \[\int \pi(x) K(y|x) \, dx = \pi(y). \]

- Iterative algorithm to sample from one distribution, not adapted to our problems.

- **Alternative (not that bright) idea**: Importance sampling ⇒ Non iterative, can be understood in one minute.
Importance Sampling (IS) identity. For any distribution \(q \) such that \(\pi(x) > 0 \Rightarrow q(x) > 0 \)

\[
\pi(x) = \frac{w(x)q(x)}{\int w(x)q(x) \, dx} \text{ where } w(x) = \frac{\gamma(x)}{q(x)}.
\]

\(q \) is called *importance distribution* and \(w \) *importance weight*.
Importance Sampling (IS) identity. For any distribution q such that $\pi(x) > 0 \Rightarrow q(x) > 0$

$$\pi(x) = \frac{w(x)q(x)}{\int w(x)q(x)\,dx} \quad \text{where} \quad w(x) = \frac{\gamma(x)}{q(x)}.$$

q is called importance distribution and w importance weight.

q can be chosen arbitrarily, in particular easy to sample from

$$X^{(i)} \overset{\text{i.i.d.}}{\sim} q(\cdot) \Rightarrow \hat{q}(dx) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}}(dx)$$
Plugging this expression in IS identity

\[
\hat{\pi}(dx) = \frac{w(x) \hat{q}(dx)}{\int w(x) \hat{q}(dx)} = \frac{N^{-1} \sum_{i=1}^{N} w(X^{(i)}) \delta_{X^{(i)}}(dx)}{N^{-1} \sum_{i=1}^{N} w(X^{(i)})} = \sum_{i=1}^{N} W^{(i)} \delta_{X^{(i)}}(dx)
\]

where

\[W^{(i)} \propto w(X^{(i)}) \text{ and } \sum_{i=1}^{N} W^{(i)} = 1.\]
Plugging this expression in IS identity

\[
\hat{\pi}(dx) = \frac{w(x) \hat{q}(dx)}{\int w(x) \hat{q}(dx)} = \frac{N^{-1} \sum_{i=1}^{N} w(X^{(i)}) \delta_{X^{(i)}}(dx)}{N^{-1} \sum_{i=1}^{N} w(X^{(i)})} \\
= \sum_{i=1}^{N} W^{(i)} \delta_{X^{(i)}}(dx)
\]

where

\[
W^{(i)} \propto w(X^{(i)}) \quad \text{and} \quad \sum_{i=1}^{N} W^{(i)} = 1.
\]

\(\pi(x)\) now approximated by weighted sum of delta-masses \(\Rightarrow\) Weights compensate for discrepancy between \(\pi\) and \(q\).
Now we can approximate $\mathbb{E}_{\pi} [\varphi]$ by

$$
\mathbb{E}_{\widehat{\pi}} [\varphi] = \int \varphi(x) \, \widehat{\pi}(dx) = \sum_{i=1}^{N} W^{(i)} \varphi \left(X^{(i)} \right).
$$
Now we can approximate $\mathbb{E}_\pi [\varphi]$ by

$$
\mathbb{E}_{\hat{\pi}} [\varphi] = \int \varphi (x) \, \hat{\pi} (dx) = \sum_{i=1}^{N} W^{(i)} \varphi (X^{(i)}).
$$

Statistics for $N \gg 1$

$$
\mathbb{E} [\mathbb{E}_{\hat{\pi}} [\varphi]] = \mathbb{E}_\pi [\varphi] - N^{-1}_\pi \mathbb{E} \left[W (X) (\varphi (X) - \mathbb{E}_\pi [\varphi]) \right],
$$

with negligible bias.

$$
\text{Var} [\mathbb{E}_{\hat{\pi}} [\varphi]] = N^{-1}_\pi \mathbb{E} \left[W (X) (\varphi (X) - \mathbb{E}_\pi [\varphi])^2 \right].
$$
• Now we can approximate $\mathbb{E}_\pi [\varphi]$ by

$$
\mathbb{E}_\hat{\pi} [\varphi] = \int \varphi(x) \hat{\pi}(dx) = \sum_{i=1}^{N} W^{(i)} \varphi(X^{(i)}).
$$

• Statistics for $N \gg 1$

$$
\mathbb{E} [\mathbb{E}_\hat{\pi} [\varphi]] = \mathbb{E}_\pi [\varphi] - \frac{1}{N_{\pi}} \mathbb{E} [W(X)(\varphi(X) - \mathbb{E}_\pi [\varphi])] \text{, negligible bias},
$$

$$
\mathbb{V} [\mathbb{E}_\hat{\pi} [\varphi]] = N_{\pi}^{-1} \mathbb{E} [W(X)(\varphi(X) - \mathbb{E}_\pi [\varphi])^2].
$$

• Estimate of normalizing constant

$$
\hat{Z} = \int \gamma(x) \hat{q}(dx) = \frac{1}{N} \sum_{i=1}^{N} \gamma(X^{(i)}) \frac{1}{q(X^{(i)})}
$$

and $\mathbb{E} [\hat{Z}] = Z$, $\mathbb{V} [\hat{Z}] = N^{-1} \left(\mathbb{E}_q \left[\left(\frac{\gamma(X)}{q(X)} - Z \right)^2 \right] \right)$.
For a given φ, importance distribution minimizing $\mathbb{V} [\mathbb{E}_\pi [\varphi]]$ is

$$q^{\text{opt}} (x) = \frac{\left| \varphi (x) - \mathbb{E}_\pi [\varphi] \right| \pi (x)}{\int \left| \varphi (x) - \mathbb{E}_\pi [\varphi] \right| \pi (x) \, dx}.$$
For a given φ, importance distribution minimizing $\nabla \left[\mathbb{E}_{\pi} \left[\varphi \right] \right]$ is

$$q^{\text{opt}}(x) = \frac{|\varphi(x) - \mathbb{E}_{\pi} [\varphi]| \pi(x)}{\int |\varphi(x) - \mathbb{E}_{\pi} [\varphi]| \pi(x) \, dx}.$$

Useless as sampling from q^{opt} as complex as solving the original problem.

Useless as sampling from q^{opt} as complex as solving the original problem.
For a given ϕ, importance distribution minimizing $V[\mathbb{E}_{\pi}[\phi]]$ is

$$q^{\text{opt}}(x) = \frac{|\phi(x) - \mathbb{E}_{\pi}[\phi]| \pi(x)}{\int |\phi(x) - \mathbb{E}_{\pi}[\phi]| \pi(x) \, dx}.$$

- Useless as sampling from q^{opt} as complex as solving the original problem.
- In applications we are interested in, there is typically no specific ϕ of interest.
For a given φ, importance distribution minimizing $V[\mathbb{E}_\pi[\varphi]]$ is

$$q^{\text{opt}}(x) = \frac{|\varphi(x) - \mathbb{E}_\pi[\varphi]| \pi(x)}{\int |\varphi(x) - \mathbb{E}_\pi[\varphi]| \pi(x) \, dx}.$$

- Useless as sampling from q^{opt} as complex as solving the original problem.
- In applications we are interested in, there is typically no specific φ of interest.
- Practical recommendations
For a given φ, importance distribution minimizing $V[\mathbb{E}_{\tilde{\pi}}[\varphi]]$ is

$$q^{\text{opt}}(x) = \frac{| \varphi(x) - \mathbb{E}_{\pi}[\varphi] | \pi(x)}{\int | \varphi(x) - \mathbb{E}_{\pi}[\varphi] | \pi(x) \, dx}.$$

Useless as sampling from q^{opt} as complex as solving the original problem.

In applications we are interested in, there is typically no specific φ of interest.

Practical recommendations

- Select q as close to π as possible.
For a given φ, importance distribution minimizing $V [\mathbb{E}_\pi [\varphi]]$ is

$$q^{opt} (x) = \frac{|\varphi (x) - \mathbb{E}_\pi [\varphi]| \pi (x)}{\int |\varphi (x) - \mathbb{E}_\pi [\varphi]| \pi (x) \, dx}.$$

Useless as sampling from q^{opt} as complex as solving the original problem.

In applications we are interested in, there is typically no specific φ of interest.

Practical recommendations

- Select q as close to π as possible.
- Ensure

$$w (x) = \frac{\pi (x)}{q (x)} < \infty.$$
For a given \(\varphi \), importance distribution minimizing \(\nabla \mathbb{E}_\pi [\varphi] \) is

\[
q^{\text{opt}} (x) = \frac{\varphi (x) - \mathbb{E}_\pi [\varphi]}{\int \varphi (x) - \mathbb{E}_\pi [\varphi] \pi (x) \, dx} \pi (x).
\]

Useless as sampling from \(q^{\text{opt}} \) as complex as solving the original problem.

In applications we are interested in, there is typically no specific \(\varphi \) of interest.

Practical recommendations

- Select \(q \) as close to \(\pi \) as possible.
- Ensure

\[
\omega (x) = \frac{\pi (x)}{q (x)} < \infty.
\]

IS methods typically used for problems of limited dimension; say \(E = \mathbb{R}^{25} \Rightarrow \) For more complex problems, MCMC are favoured.