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Abstract. This paper addresses the problem of Bayesian inference in autoregressive
(AR) processes in the case where the correct model order is unknown. Original
hierarchical prior models that allow the stationarity of the model to be enforced are
proposed. Obtaining the quantities of interest, such as parameter estimates, predictions of
future values of the time series, posterior model-order probabilities, etc., requires
integration with respect to the full posterior distribution, an operation which is
analytically intractable. Reversible jumpMarkov chain Monte Carlo (MCMC) algorithms
are developed to perform the required integration implicitly by simulating from the
posterior distribution. The methods developed are evaluated in simulation studies on a
number of synthetic and real data sets.

Keywords. Autoregressive process; Bayesian estimation; Markov chain Monte Carlo;
model selection.

1. INTRODUCTION

As a result of its simplicity and ease of use, the autoregressive (AR) process
remains a popular choice for modelling time series data (Box et al., 1994; West
and Harrison, 1997). However, when fitting an AR process to real data the correct
model order is often unknown, and needs to be estimated from the data alongside
the other unknown quantities. Classical methods to estimate the model order
include Akaike’s information criterion (AIC) (Akaike, 1974) and minimum
description length (MDL) (Rissanen, 1978), which rely on information theoretic
criteria, and Bayes’ information criterion (BIC) (Schwarz, 1985), which is
approximately an asymptotic Bayes factor. These methods often fail, however,
when the data sets are small, and for AR processes AIC is not asymptotically
consistent. They are also not easily modified to accommodate constraints, such as
enforcing the stationarity of the model.

In this paper, the inference problem is posed within a Bayesian framework.
Original hierarchical prior models are proposed that allow the stationarity of
the model to be enforced. The prior models facilitate the design of efficient
estimation strategies, and appear to be robust for a wide range of choices for
their fixed hyperparameters. Similar hierarchical Bayesian models have been
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developed in different contexts in (Richardson and Green, 1997; Robert et al.,
2000).

Obtaining the quantities of interest, such as parameter estimates, predictions
of future values of the time series, posterior model-order probabilities, etc.,
requires integration with respect to the full posterior distribution, an
operation which is analytically intractable. This intractable integration
problem is commonly solved by applying asymptotic approximations (in the
size of the data set). Quite often, however, the approximations obtained in this
way may be poor, leading to incorrect results, especially if the data sets are
small.

An attractive alternative to solve the integration problem is the use of
Markov chain Monte Carlo (MCMC) techniques (Robert and Casella, 1999).
Given the importance of AR modelling, several authors have already proposed
Bayesian models and MCMC-based computations. Fixed-dimensional MCMC
algorithms are proposed in (Barnett et al., 1996; Smith et al., 1998; Huerta and
West, 1999a,b), whereas reversible jump MCMC algorithms can be found in
(Barbieri and O’Hagon, 1996; Troughton and Godsill, 1997). In (Barnett et al.,
1996; Smith et al., 1998), the AR coefficients are reparameterized in terms of
the reflection coefficients, also known as the partial correlation (PARCOR)
coefficients. Model-order selection is performed by associating a binary
indicator variable with each coefficient, and using these to perform subset
selection. In (Huerta and West, 1999a,b), a prior structure is defined directly
on the roots of the AR characteristic polynomial. Model uncertainty is
implicitly accounted for by allowing the roots to have zero moduli. The
reversible jump MCMC strategy in (Barbieri and O’Hagon, 1996) utilizes the
fact that under the parameterization in terms of the reflection coefficients the
AR model can be treated as a nested model, and employs model moves that
increase or decrease the model dimension by one, with the coefficients common
to the current and proposed models remaining unchanged. In contrast with
this, the strategy in (Troughton and Godsill, 1997; Godsill, 2001) allows model
jumps of arbitrary magnitude and proposes the new coefficient values from the
corresponding posterior conditional distribution. Stationarity is, however, not
enforced.

In this paper, reversible jump MCMC (Green, 1995) algorithms are developed
to solve the Bayesian inference problem. The algorithms make the best use of the
statistical structure of the Bayesian models, and are robust and computationally
efficient. They are shown to perform well on a variety of problems using synthetic
and real data sets.

The remainder of the paper is organized as follows. In Section 2 the signal
model is specified and a parameterization in terms of the reflection coefficients is
proposed for the case where stationarity is to be enforced. Section 3 presents the
Bayesian models and estimation objectives. Reversible jump MCMC algorithms
to simulate from the resulting posterior distributions are developed in Section 4.
Section 5 reports the results of simulation studies on synthetic and real data sets.
Finally, in Section 6, some conclusions are reached.
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2. STATISTICAL MODELS

Let x1:T ¼
4 x1; . . . ; xTð Þ denote an observed vector of T real samples. The

elements of x1:T are here assumed to be represented by one of the models Mk,
k 2 K¼4f0; . . . ; kmaxg, with Mk corresponding to a kth order AR process, i.e.

M0 : xt ¼ r0et; k ¼ 0

Mk : xt ¼
Xk
i¼1

ai;kxt�i þ rket; k 2 f1; . . . ; kmaxg;

where ak ¼4ða1;k; . . . ; ak;kÞ are the coefficients of the kth order process, r2k is the
excitation variance, and et �

i:i:d:Nð0; 1Þ. The AR equation above can be rewritten in
vector–matrix form as

rke1:T ¼ x1:T � Xkak ¼ Akx�kþ1:T ;

where the matrices Xk 2 RT·k and Ak 2 RT·(T+k) are defined as

Xk ¼4
x0 x�1 . . . x�kþ1

x1 x0 . . . x�kþ2

..

. ..
. ..

. ..
.

xT�1 xT�2 . . . xT�k

2
6664

3
7775

Ak ¼4

�ak;k . . . �a1;k 1 0 . . . 0

0 �ak;k . . . �a1;k 1 . .
. . .

.

..

. . .
. . .

. . .
. . .

. . .
. . .

.

..

. . .
. . .

.
�ak;k . . . �a1;k 1

2
666664

3
777775:

In addition the constraint kmax<T is imposed here. If this is not the case, the
columns of Xk are necessarily linearly dependent and in the case of a flat prior the
model parameters are not uniquely determined by the data. The likelihood
function for the AR model parameters follows from a straightforward random
variable transformation from e1:T to x1:T, and is given by

p x1:T jk; ak; r2k ; x0;k
� �

¼ N x1:T ;Xkak; r
2
kIT

� �
; ð1Þ

where x0;k ¼4 x0; . . . ; x�kþ1ð Þ denotes the initial state of the AR process. In many
practical applications, the initial state is known. Even in cases where the initial
state is unknown, practical data sets are often large enough so that their initial
samples can be taken as the initial state of the AR process. However, in a few
important applications, the data sets are too small to sacrifice any of the available
samples in this manner. For optimal performance in these cases the initial state
should be considered as an unknown random quantity to be estimated alongside
the other unknown parameters. This is the approach taken here.
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2.1. Stationarity issues

Stationarity of the AR process is often easier to check and enforce by
reparameterising the AR coefficients in terms of the reflection coefficients,
denoted by qk ¼

4
q1; . . . ; qkð Þ. For the process to be stationary, each of the

reflection coefficients has to lie in ()1, 1). The AR and reflection coefficients
are related through the well-known Levinson recursions (Friedlander, 1982),
denoted by ak ¼ L(qk). These recursions define a non-linear invertible mapping
between the AR and reflection coefficients. This mapping can be expressed in
vector–matrix form as (see Friedlander, 1982, for details)

qk ¼ U�1
k ak; ð2Þ

with Uk an upper triangular matrix, defined as

Uk ¼
4

1 a1;1 . . . ak�1;k�1

0 1 . .
. ..

.

..

. . .
. . .

.
ak�1;1

0 . . . 0 1

2
66664

3
77775:

The matrix Uk diagonalizes the data covariance matrix, i.e.

R�1
k ¼ UkD

2
kU

T
k ;

where Rk is the (symmetric) data covariance matrix for which the entry in the
ith row and jth column is given by E[xt+ixt+j], and D2

k ¼
4
diagðd21;k; . . . ; d

2
k;kÞ is a

diagonal matrix with the ith diagonal entry corresponding to the inverse
prediction error of the (i ) 1)th order predictor (see Friedlander, 1982 for
details). An approximate linearization of the nonlinear mapping defined by (2)
can be obtained by fixing the AR coefficients in the matrix Uk to correspond
to a particular autocorrelation sequence, for example the sample autocorre-
lation sequence of the data itself. Cholesky factorization of the Toeplitz sample
autocorrelation matrix, denoted by R̂xx, yields

R̂
�1

xx ¼ ~Uk
~D2
k
~UT
k :

In this case ~Uk is independent of the model parameters, so that the approximate
mapping

qk � ~U�1
k ak ð3Þ

is linear and invertible. Extensive use is made of this approximation later when
designing an MCMC algorithm for the case where stationarity is to be enforced.
Note that a similar formulation is commonly used in linear prediction coding of
speech signals (Friedlander, 1982).
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3. BAYESIAN MODELS

Denote by hk 2 Hk the parameter vector associated with the model indexed by
k 2 K, here defined as

h0¼
4ðr20;d2;K;f2Þ if k ¼ 0; and hk¼

4
/k;r

2
k ;d

2;K;f2;x0;k
� �

if k 2 1; . . . ;kmaxf g;

where /k ¼ qk if stationarity is to be enforced and /k ¼ ak otherwise, and
(d2, K, f2) are hyperparameters whose meaning will be defined later. In cases
where the initial state is known, the quantities (f2, x0,k) disappear from the
parameter vector. Thus, the Bayesian model is defined in the reflection coefficient
domain if stationarity is to be enforced, and in the standard AR coefficient
domain, if not. This is a choice which must be made from considerations of the
data generating mechanism, for example physically generated data cannot be non-
stationary if finite power considerations are incorporated. In many circumstances
a stationary model is the most realistic choice. The overall parameter space can be
written as a countable union of subspaces, i.e.

H ¼
[kmax

k¼0

kf g �Hk; where H0 ¼4ðRþÞ4 if k ¼ 0;

and

Hk ¼
4
Uk � ðRþÞ4 � Rk; if k 2 f1; . . . ; kmaxg;

with Uk ¼ ()1,1)k for the stationary reflection coefficient model and Uk ¼ Rk

otherwise.
Within a Bayesian framework all the information of interest concerning the

unknown parameters is contained in the posterior distribution p(k, h|x1:T), which
may be expressed as

pðk; hjx1:T Þ ¼
Xkmax

i¼0

pði; hijx1:T ÞIfig�Hi
ðk; hÞ; ð4Þ

where IS(x) is the indicator function that is unity if x 2 S and zero otherwise.
Thus, only one term in (4) is ever non-zero, corresponding to the kth model
subspace. The distributions on the right hand side of (4) follow from Bayes’ rule
as

pðk; hkjx1:T Þ / pðx1:T jk; hkÞpðk; hkÞ; k 2 K:

In the above p(x1:T|k, hk) is the likelihood function, here given by (1), and
p(k, hk) is the prior distribution of the unknown parameters of the kth model. A
hierarchical prior structure of the form

p k; hkð Þ¼4 p x0;kjk; r2k ; f
2

� �
p /k; r

2
k

��k; d2� �
p kjKð Þp d2

� �
p Kð Þp f2

� �
; ð5Þ

is adopted here, where
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pðx0;kjk; r2k ; f
2Þ¼4 N ðx0;k; 0k�1; f

2r2kRx0;k Þ

pð/k; r
2
k jk; d

2Þ¼4 pð/kjk; r2k ; d
2Þpðr2kÞ

¼4 ckNð/k; 0k�1; d
2r2kR/k

ÞIUk ð/kÞIGðr2k ; a0; b0Þ

pðkjKÞ / Kk

k!
IKðkÞ; pðd2Þ¼4 IGðd2; ad2 ; bd2Þ

pðKÞ¼4 GaðK; aK; bKÞ; pðf2Þ¼4 IGðf2; af2 ; bf2Þ:

In the above N(Æ; l, R) denotes the multivariate Gaussian distribution with
mean l and covariance R, and the gamma and inverted-gamma distributions are
defined as Gaðx; a; bÞ¼4 cxa�1 expð�bxÞ and IGðx; a; bÞ¼4 cx�ðaþ1Þ expð�b=xÞ,
respectively, where the normalizing constant is given by c ¼ ba/C(a), with C(Æ)
denoting the gamma function.

The covariance of the prior on the AR parameters /k is set to R/k
¼ Ik, resulting

in an isotropic prior for these parameters. The degree of uncertainty is controlled by
the hyperparameter d2, which is assumed to follow an inverted-gamma prior. If
stationarity is ignored, the normalizing constant ck becomes unity. However, if
stationarity is to be enforced, this normalizing constant follows straightforwardly as

c�1
k ¼

Yk
i¼1

erf
1ffiffiffiffiffiffiffiffiffiffiffiffi
2d2r2k

q
0
B@

1
CA;

since the covariance matrix of the prior distribution is diagonal. In the above, the
Gaussian error function is defined as

erfðxÞ¼4 2p�1=2

Z x

0

exp �s2
� �

ds:

When stationarity is assumed, the prior distribution on the initial state is
normally taken to be the initial state likelihood (see e.g. Box et al., 1994). To
obtain this distribution, the hyperparameter f2 is set to one, and the matrix Rx0,k

is
taken to be the covariance matrix of k samples drawn from an AR process with
coefficients ak and unity excitation variance. The elements of Rx0,k

are then
complex nonlinear functions of the AR coefficients. Realising that the initial state
can be quite arbitrary in practice, i.e. it cannot be assumed that the data is drawn
from a steady-state regime, no such structure is imposed here. Instead, Rx0,k

is
taken to be the identity matrix, i.e. Rx0,k

¼ Ik, and the hyperparameter controlling
the variance of the prior on the initial state f2 is considered an inverted-gamma
distributed random variable to be estimated alongside the other parameters.

Remark 1. The structure of the initial state covariance matrix can be retained if
the exact likelihood is required. However, in this case, marginalization of the AR
coefficients is not possible, so that a conditional sampling strategy is required.
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Alternatively, the Markov transition kernel implied by the sampling strategy
developed in Section 4 can be used as a proposal distribution for a Metropolis–
Hastings (MH) sampler to simulate from the posterior formed by combining the
prior with the exact likelihood.

The prior on the model-order is a truncated Poisson distribution whose
hyperparameter K can be interpreted as the mean expected model order. This
hyperparameter is assumed to follow a gamma prior, thus facilitating a wide
range of prior beliefs about the model-order. Other model-order priors, such as
those associated with AIC and BIC (Poskitt and Tremayne, 1983), can be
straightforwardly incorporated in the framework presented here.

The structure and form of the prior distribution in (5) leads to conjugacy with
the likelihood for several parameters. This allows these variables to be
marginalized, leading to efficient sampling strategies. Similar hierarchical prior
models were developed before in (Richardson and Green, 1997; Robert, 2000). In
the prior specification, the quantities (a0, b0, ad2, bd2, aK, bK, af2, bf2) are assumed
to be fixed and known, and can be set to reflect vague or informative prior
information concerning the corresponding unknown parameters. The effects of
different settings for these parameters are investigated in Section 5.1.

Prior distributions reflecting different beliefs, e.g. nearly non-stationary models,
can also be accommodated within the MCMC framework. However, not all such
priors facilitate analytical marginalization, leading to less efficient conditional
samplers (see e.g. Troughton and Godsill, 1997). The hierarchical prior adopted
here provides a trade-off between modelling accuracy and estimation efficiency. It
is flexible enough to capture a wide range of prior beliefs, while still facilitating
efficient sampling strategies (see e.g. Section 5.3 for the estimation of a nearly non-
stationary model).

Remark 2. In cases where the prior beliefs cannot be compromised, the
Markov transition kernels implied by the sampling strategies developed in Section
4 can still be used, but now in the capacity of an efficient proposal distribution in a
MH sampler for the posterior resulting from the true prior. A similar strategy is
employed in Section 4.3 where the MCMC kernel to sample from the approximate
posterior distribution based on the linear approximation for the reflection
coefficients in (3) is used as a proposal for the intractable true posterior
distribution in the case where stationarity is enforced. Another alternative is to
post-process the samples from the Markov chain using importance sampling to
obtain estimates under different prior distributions.

Within a Bayesian framework, all inference is with respect to the posterior
distribution in (4). Typical quantities of interest are, for example,

k̂MMAP ¼4 argmax
k2K

p kjx1:Tð Þf g ð6Þ

for model selection purposes,
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ĥMMSE
k� ¼4 Ep hk jk¼k�;x1:Tð Þ½hk�

for minimum mean square error (MMSE) parameter estimation of the model
indexed by k ¼ k*, and

x̂MMSE
Tþ1:TþK ¼4 Ep xTþ1:TþK jx1:Tð Þ½xTþ1:TþK �

for the MMSE prediction of the K future values of the time series, based on the
observed values x1:T. For the models under investigation here, the integrations to
compute the above quantities are analytically intractable. Section 4 develops
reversible jump MCMC algorithms to solve this problem.

4. MCMC COMPUTATION FOR BAYESIAN INFERENCE

If it is possible to simulate from the full posterior distribution in (4) the required
estimates can be obtained by Monte Carlo integration. For the model presented
here direct sampling from the posterior distribution is impossible. This section
develops reversible jump MCMC (Green, 1995) algorithms to sample from this
distribution.

The reversible jump MCMC algorithm is a generalization of the MH
sampler for distributions defined over a union of spaces of (possibly) different
dimensions, such as those encountered in model selection problems. It achieves
model space moves by employing a proposal distribution and acceptance
probability designed to preserve detailed balance, and hence ensure
convergence to the correct invariant distribution. For a move from model k
with parameters hk to model k¢ with parameters h0k0 , proposed from
qðk0; h0k0 jk; hkÞ, the acceptance probability to preserve detailed balance is given
by

a k0; h0k0 jk; hk
� �

¼4 min 1;
p k0; h0k0 jx1:T
� �

q k; hkjk0; h0k0
� �

p k; hkjx1:Tð Þq k0; h0k0 jk; hk
� �

( )
:

Note that this form for the acceptance probability is slightly different from that
in (Green, 1995) in that it explicitly includes the probability of proposing the
move from k to k¢, and the proposal for the new parameters is made directly in the
associated model space.

4.1. An MCMC algorithm

A general MCMC algorithm employing Gibbs-like steps to sample from the
posterior distribution p(k, h|x1:T) proceeds as follows.

792 J. VERMAAK, C. ANDRIEU, A. DOUCET AND S. J. GODSILL

� Blackwell Publishing Ltd 2004



Algorithm 1: MCMC Algorithm to Simulate from p(k, h|x1:T)

1. Initialize ðkð0Þ;/ð0Þ
kð0Þ ; r

2ð0Þ

kð0Þ ; d
2ð0Þ;Kð0Þ; f2

ð0Þ
;x

ð0Þ
0;kð0Þ Þ 2 H randomly or determin-

istically.
2. Iteration i >¼ 1:
(a) Simulate the AR model parameters:

• ðkðiÞ;/ðiÞ
kðiÞ ; r

2ðiÞ

kðiÞ ; x
ðiÞ
0;kðiÞ Þ � pðk;/k; r

2
k ; x0;kjd2

ði�1Þ
;Kði�1Þ; f2

ði�1Þ
; x1:T Þ

(b) Simulate the hyperparameters:

• d2
ðiÞ � pðd2jkðiÞ;/ðiÞ

kðiÞ ; r
2ðiÞ

kðiÞ Þ

• K(i)�p(K|k(i))

• f2
ðiÞ � pðf2jkðiÞ; r2ðiÞkðiÞ ; x

ðiÞ
0;kðiÞ Þ

In what follows, the superscript (i) is dropped from all variables when there is no
danger of any ambiguity. Simulating from pðk; /k; r

2
k ; x0;kjd2; K; f2; x1:T Þ

proceeds differently for the two cases where stationarity is ignored or explicitly
enforced. The next section considers the case where stationarity is not enforced.
Following this, the case where stationarity is explicitly enforced is considered.
Finally, sampling strategies are proposed for the hyperparameters, and some
convergence results are given.

4.2. Stationarity not enforced

Reversible jump MCMC algorithms for the case where stationarity is not
enforced have been previously developed (Troughton and Godsill, 1997; Godsill,
2001). The algorithm described here adopts a more sophisticated Bayesian model
which allows for exact marginalization of both the AR coefficients and excitation
variance. The reversible jump strategy then operates in the marginal space,
allowing a more efficient exploration of the state space than the earlier methods.
Moreover, Godsill (2001) and Troughton and Godsill (1997) do not consider the
case where the initial state is unknown and random.

Recall that for the case where stationarity is not enforced, /k ¼ ak and Uk ¼
Rk. The posterior conditional for the AR parameters can be factorized as

p k; ak; r2k ; x0;kjd
2;K; f2; x1:T

� �
¼ p akjk; r2k ; d

2; x0;k; x1:T
� �

� p r2k jk; d
2; f2; x0;k; x1:T

� �
p k; x0;kjd2;K; f2; x1:T
� �

;

ð7Þ

where the distributions on the right-hand side are given by

p akjk; r2k ; d2; x0;k; x1:T
� �

¼ Nðak; âk; r2kMkÞ ð8Þ
p r2k jk; d

2; f2; x0;k; x1:T
� �

¼ IGðr2k ; ak; bkÞ ð9Þ
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p k; x0;kjd2;K; f2; x1:T
� �

/ C akð ÞKkb�ak
k IKðkÞ

2pd2f2
� �k=2

k!

Mkj j
Rakj j Rx0;k

�� j

 !1=2

; ð10Þ

with

Mk ¼
4

XT
kXk þ

1

d2
R�1
ak

� ��1

; âk ¼
4
MkX

T
k x1:T

Pk ¼4 IT � XkMkX
T
k ; ak ¼4 a0 þ

1

2
T þ kð Þ

bk ¼
4
b0 þ

1

2
xT1:TPkx1:T þ 1

f2
xT0;kR

�1
x0;k

x0;k

� �
:

Simulating from the posterior distribution in (7) requires simulation from each
of the distributions on the right-hand side. This is straightforward for the
posterior conditionals of the AR coefficients and excitation variance. Because of
the difficulty associated with constructing efficient proposal distributions for the
initial state for arbitrary model moves, the joint posterior conditional for the
model order and initial state is here sampled from using a reversible jump MCMC
step employing only three model moves, viz.

1 A birth move, selected with probability bk, in which the dimension is
increased from k to k+1.

2 A death move, selected with probability dk, in which the dimension is
decreased from k to k ) 1.

3 An update move, selected with probability uk, in which the dimension re-
mains fixed to k.

Thus, the reversible jump MCMC step is a mixture of the moves described above,
i.e. at each iteration one of the candidate moves, viz. birth, death and update, is
randomly attempted with corresponding probabilities bk, dk and uk, such that
bk + dk + uk ¼ 1, for all k 2 K. For k ¼ 0 the death move is impossible, so that
d0 ¼ 0, whereas for k ¼ kmax the birth move is impossible, so that bkmax

¼ 0. For
all other values of k the birth and death probabilities are taken to be

bk ¼
4 cmin 1;

p k þ 1jKð Þ
p kjKð Þ

� �
dkþ1 ¼

4 c min 1;
p kjKð Þ

p k þ 1jKð Þ

� �
;

where c is a constant which tunes the proportion of dimension change moves vs.
update moves. As pointed out by Green (1995), this choice ensures that

bkp kjKð Þ
dkþ1p k þ 1jKð Þ ¼ 1;

which means that an MH algorithm on the dimension alone would have a unity
acceptance probability. The outcome of a move is subjected to the appropriate
MH acceptance probability. Each of the moves is now considered in more detail.
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4.2.1. Update move
For the update move, the model-order remains fixed, so that the posterior
conditional in (10) simplifies to

p x0;kjk; d2;K; f2; x1:T
� �

/ b�ak
k

jMkj
jRak jjRx0;k j

� �1=2

: ð11Þ

Assuming the model-order to be fixed to k, a valid strategy to simulate from
this distribution at iteration i is summarized below.

Algorithm 2: Update Move

1. Set �x
ð0Þ
0;k ¼ x

ði�1Þ
0;k .

2. For j ¼ 1,…,k:

If (u � U[0,1]) £ ku:

• Simulate �x
ðjÞ
0;k in a MH step with (11) as invariant distribution and

q1;jðx0;kj�xðj�1Þ
0;k Þ as proposal distribution.

Else:

• Simulate �x
ðjÞ
0;k in a MH step with (11) as invariant distribution and

q2;jðx0;kj�xðj�1Þ
0;k Þ as proposal distribution.

3. Set x
ðiÞ
0;k ¼ �x

ðkÞ
0;k.

The proposal distributions in the above algorithm are defined as

q1;j x00;kjx0;k
	 


¼4 dxj;0;k ðdx0j;0;kÞq1 x0�jþ1jx0j;0;k
	 


ð12Þ

q2;j x00;kjx0;k
	 


¼4 dxj;0;k ðdx0j;0;kÞq2 x0�jþ1jx�jþ1

	 

; ð13Þ

where xj,0,k is x0,k with x)j+1 removed. Thus, each element of the initial state is
sampled individually using a mixture of two MH steps with proposal
distributions as defined above, and mixture weights ku and 1 ) ku, 0 £ ku £ 1,
respectively.

The proposal distribution for the first MH step in (12) is constructed by making
use of the reversible character of the AR process, meaning that the initial state
values can be simulated according to

xt ¼
Xk
i¼1

ai;kxtþi þ rket; et �i:i:d:Nð0; 1Þ; t ¼ 0;�1; . . . ;�k þ 1;

should the AR coefficients and excitation variance be known. As this is not the
case, these parameters are substituted with their maximum likelihood (ML)
estimates, obtained by assuming the initial state to be zero, i.e.
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~aML
k ¼4 ~XT

k
~Xk

� ��1 ~XT
k x1:T ; ~r2

ML

k ¼4 1

T
xT1:T

~Pkx1:T ; ð14Þ

with ~Pk ¼
4
IT � ~Xk

~XT
k
~Xk

� ��1 ~XT
k . The matrix ~Xk is identical to Xk, but with the

initial state values set to zero. The implied joint proposal distribution for all the
elements of the initial state now follows as

q1ðx00;kÞ¼
4 N ðx00;k;m0;k; ~r

2ML

k M0;kÞ; ð15Þ

with

M0;k ¼
4 ~AT

0;k
~A0;k

	 
�1

; m0;k ¼
4 �M0;k

~AT
0;k

~A1;kxk:1;

where ~Ak ¼4 ~A1;k
~A0;k

� �
2 Rk�2k is of the same form as Ak, but constructed with the

ML estimate of the AR coefficients in (14). The matrices ~A1;k and ~A0;k are the first
k and final k columns of ~Ak, respectively. The required conditional proposal
distributions q1ðx0�jþ1jx0j;0;kÞ, j ¼ 1,…,k, are easily obtained from (16), as it is
Gaussian.

The proposal distribution for the second MH step in (13) is taken to be a
Gaussian random walk, i.e.

q2 x0�jþ1jx�jþ1

	 

¼4 Nðx0�jþ1; x�jþ1; r

2
RWÞ;

where r2RW is the variance of the random walk. This proposal distribution is
introduced to perform local exploration of the posterior distribution.

For both MH steps, the corresponding acceptance probability becomes

ai;j x00;kjx0;k
	 


¼ min 1; ri;j x00;kjx0;k
	 
n o

; i ¼ 1; 2;

with the acceptance ratio given by

ri;j x00;kjx0;k
	 


¼ bk
b0k

� �ak M0
k

�� j RAkj j Rx0;k

�� j
Mkj j R0

Ak

�� j R0
x0;k

��� j

0
B@

1
CA

1=2

qi;j x0;kjx00;k
	 


qi;j x00;kjx0;k
	 
 ;

where b0k, M
0
k, R

0
Ak

and R0
x0;k

are similar to bk, Mk, RAk
and Rx0,k

, respectively, with
x0,k replaced by x00;k. Several other proposal distributions may be constructed, but
the combination presented here proved to be very efficient in simulations.

4.2.2. Birth and death moves
Numerous sampling strategies can be devised for the birth and death moves. The
one presented below makes use of the proposal distributions developed for the
update move, and was found to work well in practice. Assuming the current state
of the Markov chain to be in {k} · Hk, the birth move at iteration i is summarized
below.
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Algorithm 3: Birth Move

1. Set xkþ1;0;kþ1 ¼ ðxði�1Þ
0 ; . . . ; xði�1Þ

�kþ1Þ.
2. Propose a value for the new element of the initial state x)k � q1

(x)k|xk+1,0,k+1) [see (12)] and set x0,k+1 ¼ (xk+1,0,k+1,x)k).

3. If ðu � U½0; 1�Þ � abirth k þ 1; x0;kþ1jk;xði�1Þ
0;k

	 

[see (16)]:

• Set k(i) ¼ k + 1, x
ðiÞ
0;kþ1 ¼ x0;kþ1.

Else:

• Set k(i) ¼ k, x
ðiÞ
0;k ¼ x

ði�1Þ
0;k .

Similarly, assuming the current state of the Markov chain to be in {k+1} · Hk+1,
the death move at iteration i is summarized below.

Algorithm 4: Death Move

1. Set x0;k ¼ ðxði�1Þ
0 ; . . . ; xði�1Þ

�kþ1Þ.
2. If u � U 0; 1½ �ð Þ � adeathðk; x0;kjk þ 1; x

ði�1Þ
0;kþ1Þ [see (17)]:

• Set k(i) ¼ k, x
ðiÞ
0;k ¼ x0;k.

Else :

• Set k(i) ¼ k+1, x
ðiÞ
0;kþ1 ¼ x

ði�1Þ
0;kþ1.

For both the birth and death moves, the model-order and initial state are
sampled in a MH step that admits (10) as invariant distribution. For the birth
move, a candidate for the initial state is obtained by setting the first k
elements to the corresponding elements of the current initial state, and
proposing a candidate for the additional element from q1(x)k|xk+1,0,k+1),
conditional on the current values of the other elements. Similarly, a candidate
for the initial state for the death move is obtained as the first k elements of the
current initial state. The corresponding MH acceptance probabilities are given
by

abirth k þ 1; x0;kþ1jk; x0;k
� �

¼ min 1; rbirth k þ 1; x0;kþ1jk; x0;k
� �
 �

ð16Þ
adeath k; x0;kjk þ 1; x0;kþ1

� �
¼ min 1; r�1

birth k þ 1; x0;kþ1jk; x0;k
� �
 �

; ð17Þ

with the acceptance ratio given by

rbirth k þ 1; x0;kþ1jk; x0;k
� �
¼ C akþ1ð Þbakk

2pd2f2
� �1=2

C akð Þbakþ1

kþ1

Mkþ1j j Rakj j Rx0;k

�� ��
Mkj j Rakþ1

�� �� Rx0;kþ1

�� ��
 !1=2

1

q1 x�kjxkþ1;0;kþ1

� � :
To summarize, the sampling step for the AR parameters at iteration i is

presented below.
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Algorithm 5: Sampling the AR Parameters – Stationarity not Enforced

1. If (u � U[0,1]) £ bk(i)1):

• Perform birth move (see Algorithm 3).

Else if u £ bk(i)1) + dk(i)1):

• Perform death move (see Algorithm 4).

Else:

• Perform update move (see Algorithm 2).

2. Simulate r2
ðiÞ

kðiÞ � pðr2k jkðiÞ; d2
ði�1Þ

; f2
ði�1Þ

; x
ðiÞ
0;kðiÞ ; x1:T Þ [see (9)].

3. Simulate a
ðiÞ
kðiÞ � pðakjkðiÞ; r2

ðiÞ

kðiÞ ; d
2ði�1Þ

; x
ðiÞ
0;kðiÞ ; x1:T Þ [see (8)].

4.3. Stationarity enforced

Many MCMC strategies have been developed for the case where stationarity is
explicitly enforced [see e.g. (Barnett et al., 1996; Huerta and West, 1999b; Barbieri
and O’Hagan, 1996)]. The approach developed here is novel in that all the
reflection coefficients are simulated jointly, and not conditional on each other, as
in most other strategies. This leads to an algorithm that converges rapidly. For the
sake of brevity the initial state is assumed to be fixed and known in what follows.
A strategy similar to the one described in Section 4.2 can be adopted if the initial
state should be considered as unknown and random.

Recall that for the case where stationarity is enforced, /k ¼ qk and Uk ¼
()1,1)k. The posterior conditional for the AR parameters follows from Bayes’ rule
as

p k; qk;r
2
k jd

2;K; x1:T
� �

/ p x1:T jk; ak ¼ L qkð Þ; r2k
� �

p qk; r
2
k jk; d

2
� �

p kjKð Þ : ð18Þ

Sampling from this distribution using a reversible jump MCMC step similar to
the one developed for the case where stationarity is not enforced is made difficult
by the nonlinear nature of the transformation between the AR and reflection
coefficients. However, if the true AR coefficients ak ¼ L(qkt) are replaced by the
linear approximation ak ¼ ~Ukqk, a reversible jump MCMC strategy can be
developed for the resulting approximate posterior distribution. The Markov chain
transition kernel for this step can then be used as a proposal for the true posterior
distribution in (18). The details of this approach are now presented.

The approximate posterior distribution, defined as

p0 k; qk;r
2
k jd

2;K; x1:T
� �

/ p x1:T jk; ak ¼ ~Ukqk; r
2
k

� �
p qk; r

2
k jk; d

2
� �

p kjKð Þ:

can be marginalized over the reflection coefficients, and can thus be factorized
analytically as

p0 k; qk; r
2
k jd

2;K; x1:T
� �

¼ p0 qkjk; r2k ; d
2; x1:T

� �
p0 k; r2k jd

2;K; x1:T
� �

; ð19Þ
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where the distributions on the right-hand side are given by

p0 qkjk; r2k ; d2; x1:T
� �

¼ �ckNðqk; q̂k; r2kQkÞI �1;1ð Þk ðqkÞ ð20Þ

p0 k; r2k jd
2;K; x1:T

� �
/ ckK

kb� a0þT=2ð Þ
k IKðkÞ

�ck d2
� �k=2

k!

jQkj
jRqk j

� �1=2

IGðr2k ; a0 þ T=2;bkÞ; ð21Þ

with

Qk ¼
4

D�2
k þ 1

d2
R�1
qk

� ��1

¼4 diagðq21;k; . . . ; q2k;kÞ

q̂k ¼
4
Qk

~UT
kX

T
k x1:T ¼

4
q̂1; . . . ; q̂kð Þ

bk ¼
4
b0 þ

1

2
xT1:TPkx1:T

Pk ¼4 IT � Xk ~UkQk
~UT
kX

T
k

�c�1
k ¼4 2�k

Yk
i¼1

erf
1� q̂iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2kq

2
i;k

q
0
B@

1
CAþ erf

1þ q̂iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2kq

2
i;k

q
0
B@

1
CA

0
B@

1
CA

Note that the normalizing constants ck and �ck are complex non-linear functions
of r2k and d2, making further integration of (21) over the excitation variance
impossible.

Samples can be generated from the approximate posterior distribution in (19)
by using a reversible jump MH step with a proposal distribution of the form

q0 k0; q0k0 ; r
20

k0 jk; qk; r2k
	 


¼4 q0 k0jkð Þq0 r2
0

k0 jk0
	 


q0 q0k0 jk0; r2
0

k0

	 

; ð22Þ

where the component proposal distributions are given by

q0 k0jkð Þ¼4 sk exp �k k0 � kj jð ÞIKðk0Þ ð23Þ

q0 r2k jk
� �

¼4 IGðr2k ; a0 þ T=2; bkÞ ð24Þ

q0 qkjk; r2k
� �

¼4 p0 qkjk; r2k ; d
2; x1:T

� �
: ð25Þ

In the proposal for the model move k > 0 is a scale parameter, and the
normalizing constant is given by

s�1
k ¼

X
k02K

exp �k k0 � kj jð Þ:

Such a proposal was used before by e.g. Troughton and Godsill (1998), and
ensures that most of the proposed model moves are small, without eliminating the
possibility of the occasional large one. This proposal can be substituted by any
other convenient model move proposal distribution.
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The proposal distribution for the reflection coefficients is a truncated Gaussian
distribution, and can be sampled from using an accept/reject procedure that
simulates from the untruncated distribution until a sample that falls within the
stable region is obtained. Note that as the matrix Qk is diagonal, this sampling
step can be performed for each reflection coefficient independently, utilising the
corresponding marginal distributions of (20). For the proposal distribution in (22)
the corresponding MH acceptance probability becomes

a0c k0; r2
0

k0 jk
	 


¼ min 1; r0c k0; r2
0

k0 jk
	 
n o

; ð26Þ

with the acceptance ratio given by

r0c k0; r2
0

k0 jk
	 


¼ ck0�ckK
k0�kð Þk!

ck�ck0 d
2

� � k0�kð Þ=2
k0!

bk
bk0

� �a0þT=2
Qk0j jjRqk j
Qkj jjRqk0 j

� �1=2q0 kjk0ð Þ
q0 k0jkð Þ

Note that this expression is independent of the reflection coefficients, so that
these quantities only need to be sampled once a proposed model move is accepted.

The sampling step for the approximate posterior distribution described above
defines a Markov chain transition kernel K0 k0; dq0k0 ; dr

20
k0 jk; qk; r2k

� �
that has

p0 k; qk; r
2
k jd

2;K; x1:T
� �

in (19) as invariant distribution, and is reversible, i.e.Z
p0 k; dqk; dr

2
k jd

2;K; x1:T
� �

K0 k0; dq0k0 ; dr
20

k0 jk; qk; r2k
	 


¼
Z

p0 k0; dq0k0 ; dr
20

k0 jd
2;K; x1:T

	 

K0 k; dqk;dr

2
k jk0; q0k0 ; r2

0

k0

	 

:

This kernel can be used as a proposal to sample from the true posterior
distribution in (18) in a MH step, i.e.

q k0; dq0k0 ; dr
20

k0 jk; qk; r2k
	 


¼ K0 k0; dq0k0 ; dr
20

k0 jk; qk; r2k
	 


:

The corresponding acceptance probability for this MH step becomes

ac k0; q0k0 ; r
20

k0 jk; qk; r2k
	 


¼ min 1;
LLR k0; q0k0 ; r

20
k0

� �
LLR k; qk; r

2
k

� �
( )

; ð27Þ

where LLR k; qk; r
2
k

� �
is the ratio of the true and approximate likelihood

functions, i.e.

LLR k; qk; r
2
k

� �
¼4
p x1:T jk; ak ¼ L qkð Þ; r2k
� �
p x1:T jk; ak ¼ ~Ukqk; r

2
k

� � :

Remark 3. The method described above uses the Markov chain transition
kernel for the approximate distribution in (19) as a proposal to sample from the
true distribution in (18) in an MH step. Using this methodology many different
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choices are possible for the approximate distribution and the corresponding
sampling strategy, as long as the resulting Markov chain transition kernel is
reversible, and the acceptance probability is correctly specified. For example,
alternative formulations of ~Uk may be considered, based on e.g. the current
estimate of the reflection coefficients. The choices adopted here were found to give
good results in practice.

To summarize, the sampling step for the AR parameters at iteration i is
presented below.

Algorithm 6: Sampling the AR Parameters – Stationarity Enforced

1. Propose a new value for the model-order k¢ � q¢(k|k(i�1)).
2. Propose a new value for the excitation variance r2

0
k0 � q0 r2k jk0

� �
[see (24)].

3. If u � U 0; 1½ �ð Þ � a0c k0; r2
0

k0 jkði�1Þ� �
[see (26)]:

• Simulate q0k0 � q0 qkjk0; r2
0

k0
� �

[see (25)].

Else:

• Set k¢ ¼ k(i�1), r2
0

k0 ¼ r2
ði�1Þ

kði�1Þ , q0k0 ¼ qði�1Þ
kði�1Þ .

4. If u � U 0; 1½ �ð Þ � acðk0; q0k0 ; r2
0

k0 jkði�1Þ; r2
ði�1Þ

kði�1Þ ; q
ði�1Þ
kði�1Þ Þ [see (27)]:

• Set k(i) ¼ k¢, r2ðiÞkðiÞ ¼ r2
0

k0 , q
ðiÞ
kðiÞ ¼ q0k0 .

Else:

• Set k(i) ¼ k(i�1), r2
ðiÞ

kðiÞ ¼ r2
ði�1Þ

kði�1Þ , q
ðiÞ
kðiÞ ¼ qði�1Þ

kði�1Þ .

Remark 4. In experimental evaluations, the rejection rate for the second MH
step, given that the proposal for the first MH step is accepted (the second MH step
is always accepted if the first is rejected), ranged between 30% and 50%,
depending on the data and the values chosen for the fixed parameters of the
algorithm, showing this to be an efficient sampling strategy.

4.4. Sampling the hyperparameters

The posterior conditionals for the hyperparameters (d2, K, f2) follow
straightforwardly from Bayes’ rule, and are given by

p d2jk;/k; r
2
k

� �
/ ckIG d2; ad2 þ k=2; bd2 þ

1

2r2k
/T
k R

�1
/k
/k

� �
ð28Þ

p Kjkð Þ / cKGaðK; aK þ k; bKÞ ð29Þ

p f2jk; r2k ; x0;k
� �

¼ IG f2; af2 þ k=2; bf2 þ
1

2r2k
xT0;kR

�1
x0;k

x0;k

� �
; ð30Þ
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where cK is the normalizing constant of the truncated Poisson prior on the model
order. If stationarity is not enforced, ck ¼ 1, and the proportionality in (28)
becomes an equality. Sampling for d2 is then by standard procedures. If
stationarity is enforced, however, ck is a complex non-linear function of d2.
Sampling for d2 can then be performed in a MH step with proposal distribution

q d2
� �

¼4 IG d2; ad2 þ k=2; bd2 þ
1

2r2k
/T
kR

�1
/k
/k

� �

and corresponding MH acceptance probability

ad2 d2
0jd2

	 

¼ min 1;

c0k
ck

� �
;

where c0k is similar to ck, with d2 replaced by d2¢.
For large values of kmax, the posterior conditional for K becomes

approximately p(K|k) � Ga(K; aK + k, bK + 1). Thus, K is here sampled using
a mixture of two MH steps with proposal distributions q1ðKjkÞ¼

4 GaðK; aK þ k;bKÞ
and q2ðKjkÞ¼

4 GaðK; aK þ k; bK þ 1Þ, and mixture weights kK and 1 ) kK,
0 < kK < 1, respectively. The first proposal ensures the geometric ergodicity of
the Markov chain, whereas the second provides a good approximation to the true
posterior conditional in (30). For both these proposals, the corresponding MH
acceptance probability becomes

aK;i K
0jKð Þ ¼ min 1;

p K0jkð Þqi Kð Þ
p Kjkð Þqi K0ð Þ

� �
; i ¼ 1; 2:

Finally, the posterior conditional for f2 is an inverted-gamma distribution,
sampling from which is by standard procedures.

4.5. Convergence results

It is straightforward to prove that the algorithm converges, i.e. that the Markov
chain is ergodic, by proving its irreducibility and aperiodicity. However, a
stronger result can be proved, showing that the Markov chain converges
geometrically to the required posterior distribution. The proof is suppressed due
to space constraints, but can be found in (Vermaak et al., 2000).

5. SIMULATION STUDIES

5.1. Effect of the fixed parameters of the prior distributions

Recall from Section 3 that the Bayesian models are specified by the fixed
parameters (a0, b0, ad2, bd2, aK, bK, af2, bf2). The purpose of this experiment is to
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determine suitable values for these parameters and to investigate the sensitivity of
the estimation results to changes in their values. Recall that the mean and
variance for a gamma distribution Ga(a,b) are given by ab)1 and ab)2,
respectively, and those for an inverted-gamma distribution IG(a, b), by
(a)1))1b and (a)1))2(a)2))1b2, respectively.

In all the experiments, the parameters of the inverted-gamma prior on the
excitation variance are set to a0 ¼ b0 ¼ 0, so that pðr2kÞ / 1=r2k is the
uninformative Jeffreys’ prior. An uninformative prior is also assigned to K by
setting aK ¼ e1 þ 1

2, bK ¼ e2, with e1, e2 � 1. More specifically, for the results
reported here these values were set to e1 ¼ 0.001, e2 ¼ 0.0001.

As d2 and f2 are scale parameters, they are assigned slightly informative priors
by setting ad2 ¼ af2 ¼ 2 and choosing bd2, bf2 > 0. This choice for ad2 and af2
ensures an infinite variance, so that the crucial parameters affecting the priors are
bd2 and bf2. Here the weak influence of these parameters on the marginal posterior
distributions p(d2|x1:T), p(f

2|x1:T) and p(k|x1:T) is experimentally demonstrated.
For the data T ¼ 100 samples were simulated from a sixth order AR process

with roots at 0.99— ± 0.1p, 0.9— ± 0.3p and 0.85— ± 0.7p, and excitation
variance r26 ¼ 10. The sampler was run without enforcing stationarity for a total
of Nb + Ns ¼ 500 + 5000 iterations, with the fixed parameters of the algorithm
set to kmax ¼ 30, k ¼ 0.25, kK ¼ 0.1, c ¼ 0.5, ku ¼ 0.5 and r2RW ¼ 0:1. Nb is the
burn-in period of the Markov chain, and samples generated during this period
were discarded in subsequent posterior analyses. The algorithm was initialized
with a zero model-order and random values for the other parameters. The
estimates of p(d2|x1:T) and p(k|x1:T) for bd2¼1,10,100 are depicted in Figure 1, and
show that the estimation results are stable over a wide range of choices for bd2.
Similar results were obtained for f2 in the case where the initial state is assumed to
be unknown.

5.2. Detection

In this experiment, the model-order detection performance of the methods
developed in this paper is compared with that of standard criteria, such as AIC,
BIC and MDL. The model selection rule for the standard criteria is of the form

k̂ ¼ argmax
k2K

� log p x1:T jk; ĥML
k

	 

þ P k; Tð Þ

n o
;

where ĥML
k is the ML estimate of the parameters, and P(k, T) is a penalty term

that increases with the model-order. For an AR process with a fixed and known
initial state and for which stationarity is not enforced, the model selection rules
corresponding to AIC, BIC and MDL can be evaluated analytically. BIC and
MDL yield the same rule, which is asymptotically consistent. However, AIC is not
asymptotically consistent (see Gustafsson and Hjalmarsson, 1995, for details).

For the comparison, 100 realizations of T samples each were simulated from a
third-order AR process with roots at 0.9 and 0.5— ± 0.85p, and excitation
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variance r23 ¼ 10. For each realization, k̂AIC, k̂BIC and k̂MMAP were evaluated.
Stationarity was not enforced, and the MCMC sampler to compute k̂MMAP was
run for a total number of Nb + Ns ¼ 500 + 5000 iterations, using values for the
fixed parameters of the algorithm and the prior distribution similar to those in
Section 5.1.

To investigate the effect of the size of the data set, the experiment was
performed for a wide range of values for T. The results are summarized in Table I,
and show that the Bayesian method consistently outperforms the standard
criteria. The detection accuracy for the Bayesian method and BIC/MDL

TABLE 1

Detection Performance Results (in Accuracy Percentage)

T: 35 50 75 100 200 300

AIC 20 31 49 59 74 76
BIC/MDL 19 30 46 57 76 94
MMAP 23 33 49 64 78 95
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Figure 1. Estimates of p(d2|x1:T) (left) and p(k|x1:T) (right) for various values of bd2.
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approaches 100% as the data sets become large, confirming that these strategies
are indeed asymptotically consistent. This is not the case for AIC, for which the
detection accuracy stabilizes at around 75%. The Bayesian method also gives
more information than the classical techniques in the sense that the samples from
the Markov chain can be used to construct empirical approximations to
p(k, hk|x1:T) and its marginals for all k 2 K.

5.3. Enforcing stationarity

This experiment compares the two estimation strategies where stationarity is
either ignored or explicitly enforced. For the results reported here the fixed
parameters of the algorithm and prior distributions were set to values similar to
those in Section 5.1. For the data a realization of T ¼ 100 samples was simulated
from the AR process specified in Section 5.1, such that the ML estimates of the
poles for this realization lie at 1.0026— ± 0.1004p, 0.9046— ± 0.2965p and
0.8431— ± 0.6972p. The sampler was run on this realization for a total number
of Nb + Ns ¼ 500 + 5000 iterations for both cases.
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Figure 2. Estimates of p(k|x1:T) when ignoring (left) and enforcing (right) stationarity.
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The estimates of p(k|x1:T) for both cases are depicted inFigure 2, and indicate that
both algorithms correctly estimated the true model-order (note that the histograms
are quite different, though). Approximations to the MMSE estimates of the poles
were also computed for both cases, and are given by 0.9881— ± 0.10059p,
0.8642— ± 0.3063p and 0.7822— ± 0.6846p when enforcing stationarity, and
1.0057— ± 0.1002p, 0.8956— ± 0.3039p and 0.8471— ± 0.6906p when not.

5.4. Southern oscillation index data

In this experiment the southern oscillation index (SOI) data is analysed. The El
Niño–Southern Oscillation (SOI) is a climatological phenomenon that has been of
some interest in climate change studies in recent decades. The SOI series, depicted
in the top graph of Figure 3, has 540 observations, computed as the difference of
the departure from the long-term monthly mean sea level pressures at Tahiti in the
South Pacific and Darwin in Northern Australia. The monthly index spans the
period from 1950 to 1995, and is related to sea surface temperatures.
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Figure 3. The SOI series (top) and its decomposition into two latent components (middle and
bottom).
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This data set was analysed using AR processes within a Bayesian setting before
in (Huerta and West, 1999b). The Bayesian model adopted there specifies a prior
structure directly on the roots of the AR characteristic polynomial. This prior
structure places upper bounds on the maximum number of real roots and complex
conjugate root pairs, and explicitly allows for zero and unit roots. Stationarity is
enforced by setting the prior to be zero for roots with moduli greater than one.
Model uncertainty is implicitly accounted for as a consequence of allowing the
roots to have zero moduli.

The analysis performed here is based on a different Bayesian model that yielded
an interesting and more parsimonious interpretation of the SOI data than by
Huerta and West (1999b). One of the main differences between the strategy
developed here and that reported by Huerta and West (1999b) is the fact that the
prior distribution in (5) allows for arbitrary combinations of real roots and
complex conjugate root pairs. The model developed here does not, however,
explicitly allow for unit roots as the model by Huerta and West (1999b) does. The
form of the Bayesian model adopted here also facilitates block parameter
sampling strategies that lead to fast convergence.
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Figure 4. An estimates of p(k|x1:T) for the SOI series.
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The results presented by Huerta and West, (1999b) favour model-orders
ranging from 8 to 17 with 3 to 5 complex components. The mode of the posterior
distribution of the model-order is at 11. However, in the decomposition of the
time series only one latent component was found to be clearly dominant,
suggesting that the data may be described by a more parsimonious model. This is
indeed confirmed by the results of the analysis performed here, which favour a
model-order of 3 (the order chosen by BIC is 2), as depicted by the estimate of
p(k|x1:T) in Figure 4. These results were obtained by running the sampler for a
total number of Nb + Ns ¼ 500 + 5000 iterations. The initial state was assumed
to be unknown, and stationarity was not enforced. Values similar to those in
Section 5.1 were used for the fixed parameters of the algorithm and the prior
distribution, except for kmax, which was set to 40, as is the case of Huerta and
West (1999b). Similar results were obtained when explicitly enforcing stationarity.

The approximate MMSE roots for the model with k ¼ 3 were calculated, and
yielded one real root with modulus 0.8361 and one complex conjugate root pair at
0.3622— ± 0.6838p. The corresponding latent components are depicted in the
bottom and middle graphs of Figure 3, and confirm the fact that there is only one
clearly dominant latent component.

6. CONCLUSIONS

In this paper, the Bayesian inference problem for AR processes was addressed.
Original hierarchical prior models were proposed that allow the stationarity of the
model to be enforced. These models were shown to be robust over a wide range of
values for their fixed hyperparameters. Reversible jump MCMC algorithms were
developed to perform the analytically intractable Bayesian computations. The
simulation results presented in Section 5 indicate that the algorithms are accurate
and computationally efficient.

NOTES
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