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based methods for Bayesian filtering of nonlinear and non-Gaussian dynamic models.
It includes in a general framework numerous methods proposed independently in
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1. INTRODUCTION

I Many problems in statistical signal processing, automatic control, applied statistics or
econometrics can be stated as follows. A transition equation describes the prior dis-
tribution of the Markovian hidden signal of interest {xj;k € N}, the so-called hidden
state process, and an observation equation describes the likelihood of the observations
{yk;k € N}, k being the discrete time index. The aim is to estimate the hidden state
process using the observations. In the Bayesian framework, all relevant information on
{x0,%1,...,Xx} at time k is included in the posterior distribution
p(X0,X1,--.,Xk|¥0,¥1,---,Yk). In many applications in signal processing, we are inter-
ested in estimating recursively in time this distribution and especially one of its marginals,
the so-called filtering distribution p (xx|¥yo,¥1,...,y%). This problem is known as the
Bayesian filtering problem, also called the optimal filtering or stochastic filtering prob-
lem. Except for a few cases including linear Gaussian state space models (Kalman filter)
and hidden finite-state space Markov chains (Wohnam filter), it is impossible to evaluate
analytically these distributions. From the mid 60’s, a huge number of papers and books
have been devoted to obtaining approximations of these distributions, see [32] for example.
The most popular algorithms, the extended Kalman filter and the Gaussian sum filter,
rely on analytical approximations [5, 6] but early well-known work relying on deterministic
numerical integration methods was also performed by Bucy and co-workers, see [13] for
example. Other interesting work in automatic control was done during the 60’s and 70’s
based on sequential Monte Carlo integration methods, see [1, 2, 4, 25, 26, 47, 61]. Most
likely because of the primitive computers available at the time, these last algorithms were
overlooked and forgotten 2. In the late 80’s, the great increase of computational power
allowed the rebirth of numerical integration methods for Bayesian filtering [33]. Current
research has now focused on MC (Monte Carlo) integration methods which have the great
advantage of not being subject to any linearity or Gaussianity hypotheses on the model.

The main objective of this report is to include in a unified framework many old and
recent algorithms developed independently in various fields of applied science. Some
original developments are also presented. The closest work to this report is the work
of Liu and Chen [41], developed independently, which underlines similarly the central
role of sequential importance sampling (SIS) in sequential simulation-based methods for
Bayesian filtering.

IThis technical report is a translation of chapter 3 of [19] in abbreviated form.
2To the best of my knowledge, these important works are cited neither in any standard article and
book on optimal estimation nor in any current work on the subject.
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This report is organized as follows. In section 2, we briefly review the Bayesian filtering
problem. A classical MC method, Bayesian importance sampling, is proposed to solve
it. We then present a sequential version of this method which allows us to obtain a
general recursive MC filter. This algorithm is based on the introduction of a probability
distribution known as the importance function. Under a given criterion, we obtain the
optimal importance function. Unfortunately, for numerous models, one cannot use this
importance function, which is why we propose several suboptimal distributions of practical
interest and retrieve as particular cases many algorithms presented independently in the
literature. In Section 3, a resampling scheme is used to limit practically the degeneracy
of the algorithm. In Section 4, we apply the Rao-Blackwellisation method to SIS and
obtain efficient hybrid analytical/MC filters. In Section 5, we show how to use the MC
filter to compute the prediction and fixed-interval smoothing distributions as well as the
likelihood. Finally, a few simulations are presented in Section 6.

2. BAYESIAN ESTIMATION FOR HIDDEN MARKOV MODELS USING IMPORTANCE
SAMPLING

The signal {xy;k € N}, x; € R™, is an unobserved (hidden) Markov process of initial
distribution p (xq) and transition equation p(xy|xx—1). The observations {yg;k € N},
vk € R, are conditionally independent given the process {xy;k € N} of marginal dis-
tribution p (yx|xx). To sum up, the model is a hidden Markov model (HMM) described
by

p(x0) and p (xg|xx—1) for k >1 (1)

p(yr|xg) for k>0 (2)
We denote by Xo.n 2 {X0, ..., Xn} and Yo.n = {¥o, ..., ¥n}, respectively, the signal and the

observations up to time n. Our aim is to estimate recursively in time the distribution
D (X0:n| yo:n) and its associated features including p (x| yo:n) and the expectation

I (f'n) = IEp( X0:n |Y0in) (f'rl (XO:n)) = /f'n (XO:n)p (XO:n‘ y(]:n) dx(]:n (3)

for any p(Xo.n| yo:n )-integrable f,, : R"Dxnx R We obtain straightforwardly a
recursive formula for p (xg.n| Yo:n):

p (YO:n+1| Xo:n+1) p (XO:n+1)
P (Yon+1)
P(Yn+1]Xn+1) P (Xnt1][Xn) (4)
P (Yn+1|yomn)

p (Xo:n+1\ YO:n+1) =

= D (XO:n| y0:n) X

This recursion is only academic in the sense that one cannot typically compute the normal-
izing constant p (yg.n+1), the marginals of p (X.n+1| Yo:n+1) (in particular p (xp41| ¥ynt1))
and I (fr+1) because it requires the ability to evaluate complex high-dimensional integrals.
A numerical solution consists of using a Monte Carlo integration method.

Later, we will assume that we know how to sample according to p (xx|xx—1) and that
we can evaluate p (xx| xx—1) and p (yx|xx) pointwise.

2.1. Perfect Monte Carlo sampling. Let us assume that we are able to simulate

N i.i.d. random samples {x((le,z =1, ...,N} according to p(Xo.n|Yo:n). An empirical

estimate of this distribution is given by:

N
~ 1
P (dXO:n| y0:n) = Z 5xé’ (dXO:n) (5)



ON SEQUENTIAL SIMULATION-BASED METHODS FOR BAYESIAN FILTERING 3

and one obtains the following estimate:

N
! (i)
f'n /f'n X(]n den‘yOn :N;fn (XO:n) (6)
From the strong law of large numbers (SLLN)
T (fa) 23 T(fa) @

a.s. . . .
where =5 denotes almost sure convergence. If the posterior variance of f,, (Xq.,,) satisfies

Th, = vary(y,,) [fn (Xom)] (8)

= Ep(lyon) [fi (Xﬂ:n)} - E?;( ¥0im) [fn (X0:n)] < 400

then a central limit theorem holds:

N+oo

where => denotes convergence in distribution. The advantage of this perfect MC method

is clear. From the set of random samples {X((]Z,)n,l =1,..,.N }, one can easily estimate any

quantity By .y,..) [fn (X0:n)] and the speed of convergence of this estimate neither depends
on nx Xn nor on fp (Xg:n) but only on N. Unfortunately, it is usually impossible to sample
efficiently from the posterior distribution p (Xo.n| yo:n) at any time n, p (Xo.n| yo:n) being
multivariate, non standard and only known up to a proportionality constant.

2.2. Bayesian Importance Sampling. An alternative solution consists of using the
importance sampling (IS) method. The basic idea of this method is the following. We
choose a so-called importance function, that is a probability distribution 7 (Xg.n| Yo:n)
(which depends here on the observations until time n) from which one can easily sample.
The IS method is based on the following simple remark. If p(xg.n|yo:n) > O implies
7 (Xo:n| Yo:n) > 0 then one can write:

o % X0n|y0n)ﬂ_ % -
T = [ Gton) BRI (0 o) da (10)
= IE7r(-|y0:n [fn (XO:n) (XO:n)] (]-]-)
where
w” (XO:n) =p (XO:n‘ YO:n) /7T (XO:n‘ y0:n) (12)

Thus if one can simulate N i.i.d. samples {X¢.,,,% = 1, ..., N} according to 7 (X0.n|yo:n),
a possible estimate of I (f,,) is:

1* f éii (X(l)) (1) (13)
n N ~ 0:n | Wn

where the importance weights {w;}(z),i 1

A N} are equal to:

Yon)  p(you| 0 )p(x{))

y(]n) - P(Youn)T (x((f)n yO:n)

(@
. . p(x
wi® =t () =~ (14)
Xo:

n - (
The estimate (13) is unbiased and converges a.s. according to the SLLN toward I (f,)
when N — 4o00.

)
)
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In a Bayesian framework, this estimate cannot generally be used as it requires the
knowledge of the normalizing constant p (yo.n):

D (y(]:n) = /p (y0:n| xO:n)p (XO:n) de:n (15)
Typically p (yo.n) cannot be expressed in closed form. However, one can observe that

_ E“('b’o:n) [fn (XO:n) w (XO:n)}
I(fa) = Er 1y [© (<om)] (16)

where
w (XOITL) =p (y(]:'rl‘ XO:n) p (XO:n) /7r (XO:n| yﬁzn) (17)

Thus an estimate of I (f,) is given by the ratio of the estimates of the numerator and
denominator obtained using the “classical” importance sampling method:

1 () ()
7 (g - X2 (x6) Y (i) @ (18)
=1

% Zjvzl w?(lj)

where the unnormalised importance weights {wsf),i =1,..,.N } are equal to

wl = w (xih) =p (voulx6) p (x60) /7 (%60 you) (19)
o wi® (20)

(x means proportional to) and the normalised importance weights are equal to

()

~(i) _ Wn
Zj:l w'SlJ)
The “true” importance weights w,’;(i) have been replaced by the following estimate:
@@ = Ng® (22)

This method is well-known in the statistical literature as Bayesian IS, see for example
[22, 51]. We recall here some classical results on this MC method.
Assumption 1

— {x((]le; 1=1,.., N} is a set of i.i.d. vectors distributed according to 7 (Xg.n| Yo:n)-

— The support @ = {Xg;n € R >/ (x0.0 | Voun ) > 0} of m(Xo:n|yon) in-
cludes the support p = {XO:n € Rm= ><(n+1)/p (XO:'rl| yo:n) > 0} Ofp (XO:n| YO:'n)'
— I(fyn) exists and is finite.

Assumption 2
- Ep( Jyoin) [w (X0:)] < 400 and IEp( Jyon) [f% (%X0:n) W (X0:n)] < +00.
A sufficient condition to verify assumption 2 is [22]:

VaTp( Jyo.n) [fn (X0:n)] < +00 and w (Xo:n) < Cp < 400 for any xg., €7 (23)
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Proposition 1. For N finite, In (fn) is biased but asymptotically, under assumption 1,
the SLLN yields:

In(fa) (=5 T(fn) (24)

Under assumption 1, the previous proposition implies a convergence of the empirical
distribution Z . wn s X (dx0.n) towards P (dXq.| yo:n) in the sense of a.s. convergence

of Ty ~N (fn) for any functlon fn such that I (f,,) exists and is finite. This result is important
as it means that we can interpret the IS method as a simulation method to sample from
P (dx0.n| yo:n) rather than as an integration method, see [22] for a similar interpretation.
Using the delta method, we also obtain the following proposition.

Proposition 2. (Geweke 1989 [22]) Under assumptions 1 and 2,

VNN (fa) = T (fa)] = N (0.0%,) (25)

where

73, =B tyom) ((Fn (K0m) ~ Bp(_iya) (f (X)) 0 (R0n)) (26)

We show in the following subsection how it is possible to obtain easily a recursive MC
filter using Bayesian IS.

2.3. Monte Carlo filter using sequential importance sampling. One can always
rewrite the importance function as follows:

n

(X(]'n‘y(]'n)*7r xO‘yOn H Xk‘x(]:kflayﬁ:n) (27)

where 7 (Xx| X0:k—1, Y0:n) is the probability density function of x; conditional upon xg.x—1
and yg.p.

Our aim is to obtain at time k& an estimate of the distribution p (xg.x| yo:x) and to be
able to propagate this estimate in time without modifying subsequently the past simulated

(@) .

trajectories {xo wi=1.,N } This means that the importance function at time k£ + 1

admits as a marginal distribution at time k the importance function 7 (xo:x|yo:x). This
is possible if we restrict ourselves to importance functions of the following form:

m <X0:n‘ y0:n) =TT (XO:n—l | y0:n—1) Qo (Xn‘ X0:n—1, YO:n) <28)

Tterating, it yields:
n
T (X0:n| Yo:n) = 7 (X0 ¥o) H (Xk| X0:k—1, Yo:k) (29)

This importance function allows to evaluate recursively in time the importance weights
(19) and (21).

Remark 1. This assumption could be weakened. For example, one can consider the case
where one is interested in an estimate of the fixed-lag distribution p (Xo:k| Yo:k+p), P € N
being fixed. In this case, one can choose:

n

(XO n|y0 n+p) =T x0|y0p H xk:|x0:k:71ay0:k+p)
k=1
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Under the assumption (29), we obtain straightforwardly the following MC filter.
Algorithm : Sequential Importance Sampling (SIS)

1. At time £ =0,
(@)

e For i=1,...,N, sample X,  ~ 7(Xo|Yo)-

e For 7=1,..., N, evaluate the importance weights up to a normalizing
constant:
p (yolx@) p (x1)
(i %0 )P \*0
Wo™ = - (30)
~(x"[)
0 | Yo
e For 1 =1,..., N, normalise the importance weights:
(9)
=) Wo
Wy = =N (31)
Z_] 1 wéj)

2. For times k > 1,

e For i=1,...,N, sample x,(:) ~T <xk\x((]f3€_1,y0:k) and x((]l}g = <x((]f3€_1,x,(j)) .

e For i =1,..., N, evaluate the importance weights up to a normalizing

constant: _
() _ p(yex”) v (6] x%)
w,’ =w , (32)
k k=1 (D] (@)
m(X" | Xg.5—1: Yo:k)
e For i =1,...,N, normalise the importance weights:
(@
~(1) Wy
Wy = (33)
Z_] 1 wl(cj)

Numerous algorithms proposed in the literature are special cases of this general (and
simple) algorithm. A particular case of this algorithm was introduced in 1969 by Hand-
schin and Mayne [25, 26] !

The numerical complexity of this algorithm is O (N). This is important as we take
N > 1 in practice but it has the great advantage of being parallelizable. In the gen-
eral case, the memory requirements are O ((k + 1) N) as it is necessary to keep all the

N simulated trajectories from time 0 to time k. However, if 7 (Xk‘X((]gcil,yO:k) =

s (Xk|X§21,yk) and if one is only interested in the filtering distribution p (xx|yo:x)s

the memory requirements are O (N).
In the general case, one obtains at time k the following estimate of the joint posterior
distribution:

P (dxo| youx) = Zw 0, (dxo:r) (34)

and an estimate of I (fx):

L\v(fk) = /fk X0:k) dX0k|YOk) (35)

- Z 5 e (<5
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Assumption 1 which ensures the asymptotic convergence of these estimates is quite weak.
In practice, one obtains however poor performance of these estimates when the importance
function is not well-chosen. The choice of the importance function is the topic of the
following sections.

2.4. Degeneracy of the algorithm. When interpreting IS as a MC sampling method
rather than as a MC integration method, the best possible choice would consist of select-
ing the posterior distribution of interest p (Xq.x| ¥o:x) as importance function 7 (xo:| Yo )-
Then we would obtain for the importance weights Er(.y,,)(w* (x0x)) = 1 and
VAT (- |yo.) (W* (X0:x)) = 0. We would like to be close to this case. But for impor-
tance functions of the form (29), the variance of the importance weights can only increase
(stochastically) over time.

Proposition 3. The unconditional variance of the importance weights, i.e. with the
observations yg., being interpreted as random variables, increases over time.

The proof of this proposition is a straightforward extension of a Kong-Liu-Wong [37,
p. 285] theorem to the case of an importance function of the form (29). Thus, it is
impossible to avoid a degeneracy phenomenon. Practically, after a few iterations of the
algorithm, all but one of the normalised importance weights are very close to zero, a large
computational burden is devoted to updating trajectories whose contribution to the final
estimate is almost zero.

2.5. Selection of the importance function. Practically, at time k£ — 1, the impor-
tance weights w,:(f)l, i =1,...,N are fixed. To limit degeneracy of the algorithm, a natural
strategy consists of selecting the importance function which minimizes the variance of the
importance weights conditional upon the simulated trajectory x((]?g_l and the observations

Yo:k-

Proposition 4. p (xk| x,(:ll,yk) is the importance function which minimizes the vari-

ance of the importance weight w,’:(i) conditional upon x((]i_l and yo.k.

The proof is straightforward [19]. First we present how to implement the optimal

importance function p <xk| X,(:ll, Yk)-

Optimal importance function. The optimal importance function p (Xk| x,(:zl, yk)

has been introduced by Zaritskii et al. [61] then by Akashi et al. for a particular case [4].
More recently, this importance function has been used in [14, 15, 16, 30, 37, 38, 40]. For
this distribution, we obtain using (32) the following expression for the importance weight:

9 = (1) (]2, 1 (3] 1)
= wl(:llp<yk‘xgll) (36)

Remark 2. In this case, the importance weight w,(:) does not depend on XS). This is

interesting in practice as it allows parallelization of the simulation of {xg);i =1,...N }
and the evaluation of {w,(f);i =1,.., N}.
Remark 3. To verify Proposition 2, a sufficient condition which ensures that the impor-

tance weights are bounded consists of assuming that the likelihood is bounded. Unfortu-
nately, this bound is time-dependent.
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The optimal importance function suffers from two major drawbacks. It requires the

ability to sample from p (Xk| X}Ql, yk) and to evaluate, up to a proportionality constant,

P (yk\ Xgﬁl) where

p(wilx2)) = [pOulxp (%2, ) (37)

It requires the evaluation of an integral which does not admit an analytical expression
in the general case. Nevertheless, this evaluation is possible for the important class of
models presented below.

Example 5. Partial Gaussian State Space Models. Let us consider the following model:
Xp = [ (Xk-1) + Vi, Vi ~ N (0,2y) (38)

i = Cxi + wg, wi ~ N (0,2y) (39)

where f : R"> — R™x, C is a real ny, X nx matrix, vy, and wy, are two mutually independent
i.i.d. Gaussian sequences with ¥, > 0 et X, > 0. Denoting

> = » oz lc (40)
my, = X (E;lf (xk—1) + Ctz‘;lyk) (41)

one obtains
X | Xp—1, Yk ~ N (my, ) (42)

and
1 t t—1
POl xen) e (5 0 OF (i) (B C2C) v CF b)) (49

For many other models, such evaluations are impossible. We now present subopti-
mal methods which allow approximation of the optimal importance function. The first
proposed method is based on a second MC step.

MC approximation of the optimal importance function. We assume here that
P (yk\ X}ﬁl) cannot be evaluated analytically and that it is not possible to sample from
(9)
P xk|x” 1, ¥k )
If the likelihood p (yx| xx) < My is bounded then the ratio p (Xk\ X;:Zl, yk) /D (xk| x,(:zl)

is bounded. It is possible to sample from p <xk| x,(:zl, yk) using the accept/reject proce-

dure.
Accept/Reject procedure

1. Sample X ~ p (XMXEQI) and u ~ U -

2. Accept x,(:) =Xy if u < p(yg|Xk)/My; otherwise return to 1.

Unfortunately, this procedure requires a random number of iterations before obtaining
a random sample distributed according to p (xk| x,(ﬁl,yk). In the framework of on-
line applications, this strategy must be avoided. Another more severe problem is that

P (yk\ Xgﬁl) is not evaluated.
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A naive approach consists of using a second MC step based on Bayesian IS to sample
from p (xk| x,(:zl,yk) and/or to evaluate p (yk\ XS) 1) For each x( 9 , (i=1,..,N), one

can sample N’ i.i.d. random variables { (2),(3), ij=1,...,N’ } distributed according to

x,(:)’(j) ~Dp <xk| x,(:zl). We obtain the following approximation of p <xk| x,(:zl, yk):

P(dxk|xk 1,yk) sz) @) (dx) (44)
where
(”) ’p(y’“‘XZ) ]))
Pl = — 5 (45)
p (yk\ Xk—l)
ﬁ(yk\ xfjll) being an estimate of p (y| Xx—1):
. 1 X N
ﬁ(yklxgll) =¥ Zp<yk|xg)’(])) (46)
j=1

This approximation is theoretically valid only if N’ — +4o00. Moreover, this solution,
although simple, is computationally very expensive. Other MC methods based on MCMC

methods have been proposed to simulate approximately from p <xk| xk 1 yk) and/or to

evaluate p ( yx| xk 1), see [12, 18, 41]. These iterative algorithms appear to be of limited

interest in an on-line framework and there is a lack of theoretical convergence results.

In fact, the general framework of SIS allows us to consider other importance functions
built so as to approximate analytically the optimal importance function. The advantages
of this alternative approach are that it is computationally less expensive that MC methods
and that the previous given convergence results on Bayesian IS are still valid. There is
no general method to build suboptimal importance functions and it is necessary to build
these on a case by case basis, dependent on the model studied. To this end, it is possible
to base these developments on previous work on standard suboptimal filtering methods
[6, 60].

Importance distribution obtained by local linearisation. A simple choice con-
sists of selecting as the importance function 7 (xx|xx_1,yx) a parametric distribution
7 (xk| 0 (Xk—1,¥k)), of finite-dimensional parameter 8 (8 € ® CR" ) determined by x_1
and yg, 0 :R™ xR* — O being a deterministic mapping. Many strategies are possible.
To illustrate such methods, we present here two original methods that result in a Gaussian
importance function whose parameters are evaluated using local linearisations, i.e. which
are dependent on the simulated trajectory i = 1,..., N.

Local linearisation of the Markov state space model. We propose to linearise
the model locally as in the Extended Kalman Filter. However, in our case, this lineari-
sation is performed with the aim of obtaining an importance function and the algorithm
obtained still converges asymptotically towards the optimal solution under the assump-
tions given previously.

Example 6. Let us consider the following model

X = f(xXk=1)+ Ve, Vi ~ N (0pyx1,2,,) (47)
Vi = gXi)+ Wi, Wi ~N (Op, <1, 2y) (48)
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where f : R™ — R™, g : R"™ — R"™ is differentiable, v and wy, are two mutually
independent i.i.d. sequences with 3, > 0 and Xy, > 0. Performing an approximation up
to the first order of the observation equation [6], we get

Ye = 9(Xk)+wi
(xk — f (Xk—1)) + Wy (49)

xp=f(Xp—1)

We have now defined a new model with a similar evolution equation to (47) but with
a linear Gaussian observation equation (49), obtained by linearising g (x) in f (Xx—1)-
This model is not Markovian as (49) depends on x,_1. However, it is of the form (38)-
(39) and one can perform similar calculations to obtain a Gaussian importance function
(XK Xk_1,yk) ~ N (mg,Xg) with mean my and covariance Xy evaluated for each
trajectory i = 1, ..., N using the following formula:

t
2—1 . 271 4 ag (Xk) 271 ag (xk?) (50)
k v w
Oxk xp=f(Xr—1) %k xp=f(Xp—1)
0
m, = S| 27U (1) + %(T’:“) »olx (51)
xp=f(Xr—1)
dg (x
X <Yk —g(f (xk=1)) + %ic:) ( )f(Xk—1)>> (52)
xp=f(Xk—1

The associated importance weight is evaluated using (32).

Local linearisation of the optimal importance function. We assume here that
I (xx) & Inp (xg|xk—1,yx) is twice differentiable wrt x; on R™<. We define:

U (x) =

CEE (53)

821 <Xk)
" (x) 2 54
(x) 0x, 0, e (54)

Using a second order Taylor expansion in x, we get :

1

L) = 160) [ ()" ek =) 5 (i — )" 1" () (k%) (55)

The point x where we perform the expansion is arbitrary (but determined by a determin-
istic mapping of x;_1 and yx). Under the additional assumption that I” (x) is negative
definite, which is true if [ (x;) is concave, then setting

Bx) = ") (56)
m(x) = T(x)!'(x) (57)

yields

16 G =) + 3 (= %)" 17 (3) (31— %)

_ C—%(xk —x—m (%) (%) (xp — x — m () (58)
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This suggests to adopt as importance function:
7 (%6 Xit,ye) = N (m (%) + %, E () (59)

If p (x| Xk—1,¥%) is unimodal, it is judicious to adopt x as the mode of p (xx| Xx—1,¥%),

thus m (x) = 0,, . ;. The associated importance weight is evaluated using (32).

Example 7. Linear Gaussian Dynamic/Observations according to a distribution from
the exponential family. We assume that the evolution equation satisfies:

Xp = AXp_1 + v where v ~ N (0py x1, 2y) (60)

where ¥, > 0 and the observations are distributed according to a distribution from the
exponential family, i.e.

p(yr|xx) = exp (v, Cxr — b(Cxx) + ¢ (yr)) (61)

where C is a real ny X ny matrix, b : R"™ — R and ¢ : R"™ — R. These models have
numerous applications and allow consideration of Poisson or binomial observations, see
for example [60]. We have

1
l(x3) = C +ytCxp — b(Cxy) — 5 (xx — Axp_1) 251 (x — Axp_q) (62)

This yields

9% (Cxp)

_»-1
Ox, 0%, v

l// (X)

X=X

= V(%) -%7 (63)

but b (x) is the covariance matrix of y, for x = x, thus l” (x) is definite negative. One
can determine the mode x = x* of this distribution by applying an iterative Newton-
Raphson method initialised with x(g)y = Xx—1, which satisfies at iteration j:

x(4n) = () — [ (%)) U (x) (64)
Remark 4. This last method is close to the one developed independently by Shephard
and Pitt [48] in a different framework. They propose a MCMC algorithm for off-line
estimation of non-Gaussian measurements time series based on the Metropolis-Hastings
algorithms. The proposal distribution of this algorithm is build in the case where [ (xy,)
is concave using a similar method 3.

We now present two simpler methods.

Prior importance function. A simple choice consists of selecting as importance
function the prior distribution of the hidden Markov model. This is the choice made by
Handschin et Mayne [25, 26] in their seminal work. This distribution has been recently
adopted by Tanizaki et al. [56, 57]. In this case, we have

T (Xk| Xo:k—1,Yo:k) = D (Xk| Xp—1) (65)
and . . ,
o9~ o2, (0l o5

This method is often inefficient in simulations as the state space is explored without any
knowledge of the observations. It is especially sensitive to outliers.

3In fact, all the methods developed in the literature to build “clever” proposal distributions for the
Metropolis-Hastings (M-H) algorithms can be applied in a sequential framework and vice versa. But, while
convergence of the M-H algorithm is ensured (under weak assumptions) when the number of iterations
of the simulated Markov chain tends towards infinity, in the sequential framework, convergence of the
algorithm is ensured (under weak assumptions) when the number N of simulated trajectories tends
towards infinity.



ON SEQUENTIAL SIMULATION-BASED METHODS FOR BAYESIAN FILTERING 12

Fixed importance function. A simpler choice consists of fixing an importance
function independently of the simulated trajectories and from the observations. In this
case, we have

T (Xk| Xo:k—1, Yo:k) = 7 (Xk) (67)

and (32) :
al? =y (w17 p (52, )/ (<47) )
This is the choice adopted by Tanizaki et al. [54, 55] who presents this method as a
stochastic alternative to the numerical integration method of Kitagawa [33]. The results

obtained are rather poor as neither the dynamic of the model nor the observations are
taken into account. It leads in most cases to unbounded importance weights.

3. RESAMPLING
As it has been previously illustrated, the degeneracy of the algorithm based on SIS can
not be avoided. In [15], a forgetting factor on the weights associated with the optimal
importance function is introduced and, under stability and regularity assumptions on the
Markov model, an interesting time-uniform convergence result is obtained as N — 4oc.
Practically, N < +oc and this regularization slows down but does not avoid degeneracy
of the algorithm [16]. It is necessary to introduce another procedures.

The basic idea of resampling methods consists of eliminating the trajectories which
have weak normalised importance weights and to multiply trajectories with strong im-
portance weights. We adopt as a measure of degeneracy of the algorithm the effective
sample size. This criterion, introduced by Liu [37, 39], is defined using the variances of
the estimates of I (fx) respectively obtained using (imaginary) i.i.d. samples according
to 7 (X0:k| Yo:x) and an importance sampling method based on i.i.d. samples distributed
according to p (Xo.x| yo:x). For functions f (x0.x) which vary slowly with x¢.x, Liu shows
that:

VAT x (-[yo.0) {ITV (fk)}

VaATp( |yo.x) [E (fk)]
The effective sample size N¢sy is thus defined as:

N
N, _ 70
I 1+ var(.jye.,) (w* (Xo:k)) 0

N
ErClyon | (0" (<o)’

~ (14 varc( |y, (W (xo:x))] (69)

<N

One can not evaluate exactly Neys but, owing to (22), an estimate ]@ of Neysy is given
by:

Ness = = (71)

Pyl (59)° sr, (8

When ]@ is below a fixed threshold Nypyes, we use a resampling procedure. The most
popular resampling scheme is the SIR algorithm (Sampling Importance Resampling) in-
troduced by Rubin [46, 50]. This scheme is based on two steps: a first step is an IS step,
the second step is a sampling step based on the obtained discrete distribution.

3.1. SIS/Resampling Monte Carlo filter. At time k — 1, we have the following
approximation (34) :

N
P (dxo:k-1|yok—1) = ﬁ,(ﬁﬁxéfiil (dxo:x—1) (72)

=1
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At time k, the modified Monte Carlo filter proceeds as follows.
Algorithm : SIS/Resampling Monte Carlo filter

1. Importance sampling

e For i=1,..., N, sample i,(:) ~ (x| X((chflaY&k) and i((fi = (X((chfl’il(:)) .

e For 7=1,..., N, evaluate the importance weights up to a normalizing
constant:
(@) M ONE0)
. o P yel X7 ) p (X7 X2,
(& _, (@) (73)
Yk = Wk <) 20
T(X} | Xo:p—1, Yo:k)
e For i =1,...,N, normalise the importance weights:
(@
S0 Wk
L O] (74)
Zj:l wk
e Evaluate ]@ using (71).
2. Resampling
If Neff > Nthres
. x((fgC = i((fi for i=1,...,N.
otherwise
e For ¢ = 1,..,N, sample an index j (i) distributed according to the

discrete distribution with N elements satisfying Pr{j(i) =1} = ﬁ,(cl)
forl=1,..,N.
e For i=1,...,.N, XOI;L = )ch](,? and w,(j) = %
If JV;; > Ninres, the algorithm presented in section 2 is thus not modified. If ]Vef\f <
Ninres the SIR algorithm is applied and we obtain the following approximation of the joint

distribution:

N
P (dxo.x| yor) = N Z 5xég1‘ (dxo:x) (75)

=1

Remark 5. In [41], other more interesting resampling schemes are presented which re-
duce the MC variation of the SIR.

3.2. Implementation of the resampling procedure. If ]ch’\f < Ninres, it is nec-
essary to implement the algorithm to sample IV random variates according to a discrete
distribution with N elements. A straightforward application of the SIR procedure has a
complexity in O (N In N) [23]. This complexity is very important and, so as to reduce it,
Beadle et al. [10] have recently proposed several ad hoc methods. In fact, it is possible to
implement exactly the SIR procedure in O (V) operations by noticing that it is possible to
sample in O (V) operations N i.i.d. variables distributed according to U ; and ordered,
i.e. up <ug < --- < upy, using a classical algorithm [45, pp. 96].
Algorithm ([45, pp. 96])

e For i=1,..,N, sample u; ~ U -
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o uy = [un]"Y.

e For i=N-1,..,1, u; = [171]1/1 Ujt1-

We deduce straightforwardly the algorithm to sample N i.i.d. samples according to
the discrete distribution in O (N) operations.

Remark 6. This algorithm is also presented in [49] which attributed the idea of using
this algorithm to Carpenter, Clifford and Fearnhead.

3.3. Limitations of the resampling scheme. The resampling procedure decreases
algorithmically the degeneracy problem but introduces practical and theoretical problems.
From a practical point of view, the resampling scheme seriously limits the parallelisabil-
ity of the algorithm. From a theoretical point of view, after one resampling step, the
simulated trajectories are no longer statistically independent and so we lose the simple

convergence results given previously. Moreover the trajectories {it(f;c,z =1,..,N } which

have high importance weights QE,(:)

ous trajectories x((f:}ﬂ) and x((]fi) are in fact equal for i; # i5 € [1,..., N]. There is a loss
of “diversity”. Recently, Berzuini et al. [12] have however established a central limit
theorem for the estimate of I (fj) which is obtained when the SIR procedure is applied
at each iteration.

Despite its drawbacks, the SIR algorithm is the basis of numerous works. The pop-
ular bootstrap filter of Gordon, Salmond et Smith [9, 10, 12, 23, 31], simultaneously

developed by Kitagawa [29, 34, 35, 36], applies at each iteration a resampling step us-

are statistically selected many times. In (75), numer-

ing <xk\ XSZI, yk) =p <xk| X;(Ql), see also [52] for a similar method developed in the
closely related field of Bayesian networks. To limit the loss of “diversity”, many ad hoc
procedures have been proposed. In [23], the trajectories are artificially perturbed after
the resampling step. Another simple solution consists of building a semi-parametric ap-
proximation of P (dx) = vazl piK (x — x(i)) before resampling [18, 24] but the choice of
a “good” kernel K (-) is difficult. Higuchi [27, 28] proposes various heuristic procedures
taken from the genetic algorithms literature to introduce such a diversity among samples.
One can notice that, in fact, the SIR procedure has a similar mathematical structure to
the selection step of genetic algorithms. Interesting extensions of the SIR algorithm have
been recently developed by Shephard and Pitt [49].

4. RAO-BLACKWELLISATION FOR SEQUENTIAL IMPORTANCE SAMPLING

We propose here to improve SIS using variance reduction methods designed to make the
most of the model studied. Numerous methods have been developed so as to reduce the
variance of MC estimates including antithetic sampling [25, 26] and control variates [2, 26].
We apply here the Rao-Blackwellisation method [4]. We show how it is possible to apply
this method successfully to an important class of HMM and obtain hybrid filters where a
part of the calculations is realized analytically and the other part using MC methods.

Let us assume that we can partition the state xj as (xj,x}) and denote xJ,, =

<xg, .. .,xgl). We have:
In (X0:n) P (Y0:n| X0:n) P (X0:1) dX0:n
1) = f }p (30:: XO:n|) p (X)O:n() dxﬂ)m o
f [f fn (X(I):n’ X(Z):n) p (YO:n| X(I):n’ X(Z):n) p (Xg:n‘ X(I):n) dxiz):n] p (X(I):n) dxil):n
S 12 (Yoin| X4 X3i) P (X6 X0110) XG0, | P (Xb) A5
[ ) ()
fp (Yo:n! X(ll:n)p (X(I):n) dx(ll:n
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where

g(x(l)n)é / fn (X(l]:n’ Xg:n) p (yo:n‘ X(l]:n’ Xg:n) p (x(Q):n‘ X(ll:n) dxg:n <77)

Under the assumption that, conditional upon a realization of x{.,,, 9(x§.,) and p (Yo:n| %X§.r,)

can be evaluated analytically, two estimates of I (f,,) based on IS are possible. The first

“classical” one is obtained using as importance distribution 7 (x(l]m, x%m‘ ygm):

2 M) T b (o) (s i)
~ (fn) E\N(fn) Zi\ilw*< 11(3)’ 2(1))

(78)

where )
(b9 538

w* (xoznl » Xo:n ) - ( 1,(4) ()

XOn’

% (79)
The second “Rao-Blackwellised” estimate va (fn) is obtained by integrating out analyti-
cally x2.,, and using as importance distribution

T (x(l):n‘ yO:n) = /7r (x(l):nv X(QJ:n‘ yO:n) dxg:n (80)

The estimate is given by:

TR A C R ) (- <xfi)’xg:")) )
Dy (fn) Zi=1 w* <X0nZ )

where ( Lo )
2 P (Xan | Yo
w™ (th);sz)) = 7r< 07(2) -

o)

(82)

The following proposition shows that if one can integrate analytically one of the com-
ponents then the variance of the obtained estimate is weaker than the one of the crude
estimate.

Proposition 8. The variances of the importance weights, the numerator and the denom-
inator, obtained by Rao-Blackwellisation, are smaller than those obtained using a crude
Monte Carlo method:

VT lvon) [0 (50)] S 00Ty [0 O X)) (89)
and

varw(xém|y0m) (ﬁ; <fn)) < varﬂ(xon’xonbo ) <ﬁ; (fn)) (84)

VAT, [youm) (/B\z; <fn)> < war (XX |Youn) (1/); (fn)) (85)

The proof is straightforward [19]. We can use this simple result to estimate the
marginal distribution p (xtl)m| Yon) but also:
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° If fn (Xé:n’ Xg:n) = fn (X(l]:n) then g(x(l]n) = fn (X(l]:n) p (y0:n‘ X(ll:n) and

I S fn (%o ) w (%00
IN (fa) = lzgll (23353)()0 ) (86)

o If fn (X(ll:n’ Xg:n) = fn (Xg:n) then g(x(l]n) = Ep( xg:n|y0:"7x(1]:n) (fn (Xgn)) p (y0:n| Xé:n)
and

_ YV E 0 (fn (3.)) w (o)

—~ i=1 p( xgm|y0:mx(1):
I n) = '
N (fn) Ziz\il w <X(1)§£Z))

In all cases, it is possible to use the MC methods developed in the previous sections
to x3.,,- Nevertheless, even if the observations yq., are independent conditional upon
(x(l)m, xgm), they are generally no longer independent conditional upon the single process
Xg.,- The modifications are straightforward. We obtain for the optimal importance
function p (x,lg‘ yg;k,x(l]:k_l) and its associated importance weight p (yk\ yg;k,l,x(l):k_l).
We now present two important applications of this general method.

(87)

Example 9. Conditionally linear Gaussian state space model

Let us consider the following model

P (x| xi—1) (88)
= AL()RE B (v )
ye = Cg (X,lc) xi + Dy (x,lc) W (90)

where x,lC is a Markov process, vi ~ N (0, x1,1,,) and wi ~ N (0,,x1,1n, ). One

wants to estimate p (xtl)m‘ yon), E(f (xh) ‘ yomn), E( x%‘ Yon) and E (xfl (x%)t‘ yg:n).
It is possible to use a MC filter based on Rao-Blackwellisation. Indeed, conditional upon
Xp.ns Xe.n is a linear Gaussian state space model and the integrations required by the
Rao-Blackwellisation method can be realized using the Kalman filter.

Akashi and Kumamoto [1, 4, 58] introduced this algorithm under the name of RSA
(Random Sampling Algorithm) in the particular case where x,lc is a homogeneous finite
state-space Markov chain 4. In this case, they adopted the optimal importance function
P (X,ﬂ yO:k,X(l): k_l). Indeed, it is possible to sample from this discrete distribution and
to evaluate the importance weight p (yk| yg;k,x}): kil) using the Kalman filter [4]. Sim-
ilar developments have been proposed by Svetnik et al. [53]. The algorithm for blind
deconvolution recently proposed by Liu et al. [38] is also a particular case of this method
where x; = h is a time-invariant channel of Gaussian prior distribution ®. Using the
Rao-Blackwellisation method in this framework is particularly attractive as, while x; has
some continuous components, we restrict ourselves to the exploration of a discrete state
space.

Example 10. Finite State-Space HMM
Let us consider the following model
p(x}/ k1)
P (xk| Xk X3_1)

p (vl x4, x3)

4 Akashi and Kumamoto made the connections with the work of Handschin and Mayne in [2].
5In this framework, the extension to a time-varying channel h;, modeled by a linear Gaussian state-
space model is straightforward.
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where X,lg is a Markov process and Xi is a finite state-space Markov chain whose param-
eters at time k depend on x}. We want to estimate p (X(l]:n‘ ygm), E(f (x,ll) ‘ ygm) and
IE( f (x%) ‘ yg:n). It is possible to use a “Rao-Blackwellised” MC filter. Indeed, condi-
tional upon xg.,,, Xg.,, is a finite state-space Markov chain of known parameters and thus
the integrations require by the Rao-Blackwellisation method can be done analytically [6].

5. PREDICTION, SMOOTHING AND LIKELTHOOD

The estimate of the joint distribution p (xg.x|yo:x) based on SIS, in practice coupled with
a resampling procedure to limit the degeneracy, is at any time k of the following form:

N
P (dxo:x| youx) = Z@,(f)(sngl (dxo:k) (91)
i=1 '

We show here how it is possible to obtain based on this distribution some approximations
of the prediction and smoothing distributions as well as the likelihood.

5.1. Prediction. Based on the approximation of the filtering distribution P (dxk| yo:x),
we want to estimate the p step-ahead prediction distribution, p > 2 € N*| given by:

k+p

p(Xk+p\yO:k)=/p(Xk|yO:k) I »(xil%-0) | dkersp— (92)
j=k+1

Replacing p (xx| yo:x) in (92) by its approximation obtained from (91), we obtain:

N _ _ k+p
> /P (Xk+1|xg)) I »(xil%m1) dxksrnipa (93)
i=1 j=k+2

To evaluate these integrals, it is sufficient to extend the trajectories X((]ZL using the evolution

equation.
Algorithm. p step-ahead prediction

e For j=1 top

e For i=1,...,N, sample x,(:j_j ~p (xkﬂ\xfg_j_l) and x(()gﬂ_] = (x((faﬂ_] l,x,(jj_J)

We obtain random samples {x((]gﬂ_i_p;i =1,.., N}. An estimate of P (dX0:k+p| Yo:i) 18
given by
N .
P (dxo.k+p| Yo:k) = Za/(cl)éngiﬂ (dx0:k+p)
Thus

P (dxpyp| yor) = Zw O (dxp1p) (94)

5.2. Fixed-Lag smoothing. We want to estimate the fixed-lag smoothing distribu-
tion p (Xk| Yo:k+p), P € N* being the length of the lag. At time k + p, the MC filter yields
the following approximation of p (Xo.x+p| Yo:k+p) :

N
P (dxoihp Yoke) = D 0,000 (dXouks) (95)
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By marginalising, we obtain an estimate of the fixed-lag smoothing distribution:

N

P (dxi| Yourp) = D B0, (dxi) (96)
=1

When p is high, such an approximation will generally perform poorly.

Remark 7. To estimate p (Xk|Yo:k+p), it would be better to use an importance function
of the form 7 (X| X0:k—1, Yo:k+p); Se€ Remark 1. Under a straightforward modification of
the criterion proposed previously, the optimal importance function and the associated im-
portance weight are respectively equal to p (Xg| Xo:k—1, Yo:k+p) a0d D (Yitp| X0:k—1: Yi:ktp—1)-
Usually, it is difficult to sample from p (Xg|Xo:xk—1,Yo:k+p) and impossible to evaluate an-
alytically p (¥k+p| X0:k—1, Yk:k+p—1)- It Is possible to build suboptimal importance func-
tions based for example on extended Kalman smoother techniques but it remains to eval-
uate the term p (Yi+p| Xo:k, Yk:k+p—1) Which occurs in the expression of the importance
weight. It is possible to evaluate this term using MC integration.

5.3. Fixed-interval smoothing. Given yq.,, we want to estimate p (x| yo.n) for
any k = 0,...,n. At time n, the filtering algorithm yields the following approximation of

p (XO:n| YO:n) :

N
P (dXO:n‘ y(]:n) = Z QT)S) 6x((]’21 (dx(]:n) (97)

i=1
Thus one can theoretically obtain p (x| yo.n) for any & by marginalising this distribution.
Practically, this method cannot be used as soon as (n — k) is significant as the degeneracy
problem requires use of a resampling algorithm. At time n, the simulated trajectories

{x((f)n, i=1,... N } have been usually resampled many times: there are thus only a few

distinct traJectories at times k for £ < n and the above approximation of p (x| yo.n) is
bad. This problem is even more severe for the bootstrap filter where one resamples at
each time instant.

It is necessary to develop an alternative algorithm. We propose an original algorithm
to solve this problem. This algorithm is based on the following formula [8, 33]:

X, n X X
p(xk|y0;n) :p(xk|y0k)/p( k-‘rl‘yg. )p( k+1‘ k)kaJ,_l (98)
P (Xk+1] Youk)

We seek here an approximation of the fixed-interval smoothing distribution with the
following form:

P (dxk| yon) £ Zwkln(s o (dx) (99)

i.e. ﬁ(dxk|y0m) has the same support {xfj);i = 1,...,N} as the filtering distribu-
tion P (dxy|yo:x) but the weights are different. An algorithm to obtain these weights

{Qﬂ(kzl)n,i =1,. N} is the following.

Algorlthm. Fixed-interval smoothing.
1. Initialisation at time k =n.
eFori=1,...,.N,w 78 = ~£f).

’ n|n

2. For k=n—-1,...,0.
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e For 1 =1,..., N, evaluate the importance weight

N
(i w ‘
w(kl)n - Z (kJJ)rnn [Zz @ <X2:(£1 jk))} v

j=1
This algorithm is obtained by the following argument. Replacing p (Xx+1| Yo.n) by its
approximation (99) yields

N (4) ‘
/p(Xk+1\yO:n)P(Xk+1\Xk Z (X’““ xk) (101)
p (1] yor) g ’“*”"p (k1] vou)

where, owing to (91), p <Xk+1‘ Yo: k) can be approximated by
p (Xﬁl‘ YO:k) = /p (XkJrl‘ Xk) (Xk| yo:r) dxp (102)
Z w(]) (Xk+1‘ xl(cj))

An approximation P (dxg|yo:n) of p(xk|yo:n) is thus

1R

P (dxi| youn) (103)

i=1
vl p(x,?ll\xi))

— ~(2) ~(J) K} i(d )
;wk j;wk+1|n [Zl @ ( I(lel‘xg))} xfc) Xk

(>

Z N(kl|)n6 () dxk)

The algorithm follows. R

This algorithm requires storage of the marginal distributions P (dxj|yo.x) (weights
and supports) for any k = 0, ...,n. The memory requirement is O (nN). Its complexity is
(0] (nN 2), which is quite important as NV > 1. However this complexity is a little lower
than the one of the previous developed algorithms of Kitagawa [35, 36] and Tanizaki
[56, 57] as it does not require any new simulation step.

5.4. Likelihood. Insome applications, in particular for model choice [33, 36], we may
wish to estimate the likelihood of the data p (yo.,). A simple estimate of the likelihood is
given, using to (15) and (18), by

P(yon) = Nzw“ (104)

In practice, the introduction of resampling steps makes this approach impossible. We will
use an alternative decomposition of the likelihood:

n

p(Yon) = H (Yl yor—1) (105)
k=1
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where:

(Y| Yok—1) = /p(Yk\Xk)p(XklyO:kq)ka (106)

/ P (k| %k1) D (X6_1] Yor—1) dxp_s (107)

Using (106), an estimate of this quantity is given by
P (vkl o 1) Zp(yklx“))wk . (108)

where the samples {;c;:);i =1,...,N } are obtained using a one-step ahead prediction

based on the approximation P (dxk—1|yo0:k—1) of p (Xk—1| Yo.k—1). Using expression (107),
it is possible to avoid a MC integration if we know analytically p (yk| x,(:zl):

N
P(yrlyor-1)=>_p (yk\ Xﬁl) @, (109)
i=1

6. SIMULATIONS

In this section, we apply the methods developed previously to a linear Gaussian state
space model and to a classical nonlinear model. We make for these two models M = 100
simulations of length n = 500 and we evaluate the empirical standard deviation for the
filtering estimates x|, = E[Xx|yo.x] obtained by the MC methods:

1/2

i : i( Xkl Xk)2

k=1 _7:1

\/VAR Xk|l

3I>—‘

where:
) xi is the simulated state for the j** simulation, j = 1, ..., M.

. Xjk:|l ZN (kl)lxi( 9 is the MC estimate of E[xk|yo.] for the j* test signal and

J @) is the i** simulated trajectory, i = 1,..., N, associated with the signal j. (We

~(@) s ~(1))

denote Wyl =

These calculations have been realized for N = 100, 250, 500, 1000, 2500 and 5000.
The implemented filtering algorithms are the bootstrap filter, the SIS with the prior
importance function and the SIS with the optimal or a suboptimal importance function.
The fixed-interval smoothers associated with these SIS filters are then computed.

For the SIS-based algorithms, the SIR procedure has been used when ]vd\f < Nipres =
N/3. We state the percentage of iterations where the SIR step is used for each importance
function.

6.1. Linear Gaussian model. Let us consider the following model

T = Tgp—1+ Uk (110)
Ye = T+ Wk (111)
where zg ~ N (0,1), v and wy are white Gaussian noises mutually independent, vy, ~

N (0,02) and wy, ~ N (0,02) with o7 = o2, = 1. For this model, the optimal filter is the
Kalman filter [6].
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Optimal importance function. The optimal importance function is

Tk Tho1, Yk ~ N (M, 07)

where
-2 —2 —2
[Uk] = 0, +o,
o [ Tk-1 Yk
me = Uk( 2 +_2>
OU O—’LU

and the associated importance weight is equal to:

P (Yr| Tr—1) X exp (—1M>

2 (0f+0%)

21

(112)

(113)
(114)

(115)

Results. For the Kalman filter, we obtain vV AR (x k| k) = 0.79. For the different

MC filters, the results are presented in Tab. 1 and Tab. 2.

VVAR (Xk|k) bootstrap | prior dist. | optimal dist.
N =100 0.80 0.86 0.83
N =250 0.81 0.81 0.80
N =500 0.79 0.80 0.79
N = 1000 0.79 0.79 0.79
N = 2500 0.79 0.79 0.79
N = 5000 0.79 0.79 0.79

Table 1: MC filters: linear Gaussian model

Percentage SIR | prior dist. | optimal dist.
N =100 40 16
N =250 23 10
N =500 20 8
N = 1000 15 6
N = 2500 13 5
N = 5000 11 4

Table 2: Percentage of SIR steps: linear Gaussian model

With N = 500 trajectories, the estimates obtained using MC methods are similar to
those obtained by Kalman. The SIS algorithms have similar performances to the bootstrap
filter for a smaller computational cost. The most interesting algorithm is based on the

optimal importance function which limits seriously the number of resampling steps.

6.2. Nonlinear series. We consider here the following nonlinear reference model [7,

23, 35, 50):
vy = f(wp—1)+ ok
1 _
= —zp_1+ 25xk712 + 8cos (1.2k) + vg
2 14 (-1
Yo = g(zk)+wk
(zx)

- o0 M

(116)

(117)
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where zg ~ N (0,5), vx and wy are mutually independent white Gaussian noises, vy, ~
N (0,02) and wy, ~ N (0,02) with 02 =10 and o2 = 1. In this case, it is not possible to
evaluate analytically p (yx|zr_1) or to sample simply from p (zx|zr—1,yx). We propose
to apply the method described in 2.5 which consists of linearising locally the observation
equation.

Importance function obtained by local linearisation. We get

wox o)+ G @ S b
2
_ f (;‘(1)671) + f(l]‘_]:{l) <xk _f(xk—l)) T wy
2
_ ! (5371) +f(ﬂilafl)ggﬁwk (118)

Then we obtain the linearised importance function 7 (zg| zg_1,y%) = N <xk; my, (ok)Q)
where

2 o[ (zR—1)
(Uk) =0y 2 + 0w2 100 (119)
and )
mi = (o)? |07 (zk-1) + 0;2%’5‘1) <yk + %g‘l)ﬂ (120)

Results. In this case, it is not possible to estimate the optimal filter. For the MC
filters, the results are displayed in Tab. 3. The average percentages of SIR steps are
presented in Tab. 4.

VVAR (X k| k) bootstrap | prior dist. | linearised dist.
N =100 5.67 6.01 5.54
N =250 5.32 5.65 5.46
N =500 5.27 5.59 5.23
N = 1000 5.11 5.36 5.05
N = 2500 5.09 5.14 5.02
N = 5000 5.04 5.07 5.01

Table 3: MC filters: nonlinear time series

Percentage SIR | prior dist. | linearised dist.
N =100 22.4 8.9
N =250 19.6 7.5
N =500 17.7 6.5
N = 1000 15.6 5.9
N = 2500 13.9 5.2
N = 5000 12.3 5.3

Table 4: Percentage of SIR steps: nonlinear time series

This model requires simulation of more samples than the preceding one. In fact, the
variance of the dynamic noise is more important and more trajectories are necessary to
explore the space. The most interesting algorithm is the SIS with a suboptimal importance
function which greatly limits the number of resampling steps over the prior importance
function while avoiding a MC integration step needed to evaluate the optimal importance
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function. This can be roughly explained by the fact that the observation noise is rather
small so that yy is highly informative and allows a limitation of the regions explored.

7.  CONCLUSION
In this report, we have presented an overview of sequential simulation-based methods for
Bayesian filtering of general hidden Markov models. This overview includes in the general
framework of SIS numerous approaches that have been previously proposed independently
in the literature for nearly 30 years. Several original extensions have also been presented.
In this re-emerging area, there are numerous ways of improvement including among many
others new variance reduction methods [20, 21] or efficient hybrid IS/MCMC methods.
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