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Iterative Algorithms for State Estimation of Jump
Markov Linear Systems

Arnaud Doucet and Christophe Andrieu

Abstract—Jump Markov linear systems (JMLSs) are linear sys-
tems whose parameters evolve with time according to a finite state
Markov chain. Given a set of observations, our aim is to estimate
the states of the finite state Markov chain and the continuous (in
space) states of the linear system.

In this paper, we present original deterministic and stochastic it-
erative algorithms for optimal state estimation of JMLSs. The first
stochastic algorithm yields minimum mean square error (MMSE)
estimates of the finite state space Markov chain and of the contin-
uous state of the JMLS. A deterministic and a stochastic algorithm
are given to obtain the marginal maximum a posteriori (MMAP)
sequence estimate of the finite state Markov chain. Finally, a de-
terministic and a stochastic algorithm are derived to obtain the
MMAP sequence estimate of the continuous state of the JMLS.

Computer simulations are carried out to evaluate the perfor-
mance of the proposed algorithms. The problem of deconvolution
of Bernoulli-Gaussian (BG) processes and the problem of tracking
a maneuvering target are addressed.

Index Terms—Jump Markov linear systems, MCMC, simulated
annealing, switching state-space models.

I. INTRODUCTION

J UMP Markov linear systems are linear systems whose pa-
rameters evolve with time according to a finite state Markov

chain. These models are widely used in several fields of signal
processing and include as particular cases common models in
impulsive deconvolution [7], [10], [16], [19], [21], [26], [30],
digital communications [20], [23], and target tracking [2], [27].
Given a set of observations, our aim in this paper is to estimate
the states of the finite state Markov chain and the continuous (in
space) states of the linear system. More precisely, our aim is to
estimate, respectively, the MMSE estimates of the states and the
MMAP sequence estimates of the finite state Markov chain and
of the continuous state of the JMLS.

Under assumptions detailed later on, it is well known that
exact computation of these three estimates for JMLS involves
a prohibitive computational cost exponential in the number, say

, of observations [32]. Thus, it is necessary to consider in prac-
tice suboptimal estimation algorithms. A variety of such subop-
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timal algorithms has already been proposed in the literature to
solve these estimation problems [2], [11], [15], [23], [31], [32].

In this paper, we present original iterative stochastic and
deterministic algorithms to perform MMSE and MMAP
estimation of JMLS. The stochastic algorithms developed to es-
timate the MMSE and MMAP estimates are based, respectively,
on homogeneous and nonhomogeneous Markov chain Monte
Carlo (MCMC) methods [29]. The developed nonhomogeneous
MCMC methods correspond to simulated annealing (SA) algo-
rithms. The deterministic algorithms developed to estimate the
MMAP estimates are based on coordinate ascent optimization
methods. These latter algorithms are easily deduced from their
stochastic counterparts andvice versa. The key point of our
algorithms is that they have a computational cost per
iteration. They have also several other advantages compared
with current methods.

• They neither require the state covariance matrix to be
strictly positive nor the transition matrix of the state-space
model to be regular, contrary to [6], [15], and [18].

• Contrary to [11], [21], [23], and [30], they avoid the intro-
duction of any missing data set. Consequently, they can
deal, for example, with a dynamic noise modeled as a BG
process when inference on the finite Markov chain is re-
quired. This is of major interest in impulsive deconvolu-
tion [26].

• They allow us to consider autoregressive moving-average
(ARMA) models, whereas [4], [7], and [16] are restricted
to MA models.

Moreover, it can be theoretically established that they are more
efficient in various aspects. We discuss in detail these issues in
Section VI.

We now list the main results and the organization of this
paper. Section II formally presents the signal model and esti-
mation objectives. In Section III, an MCMC algorithm based
on the Gibbs sampler is proposed to compute the MMSE es-
timates. In Section IV, a deterministic coordinate ascent opti-
mization method and a SA version of the Gibbs sampler devel-
oped in Section III are presented to obtain the MMAP estimate
of the finite state Markov chain of the JMLS. In Section V, a
deterministic coordinate ascent optimization method and a SA
algorithm are presented to obtain the MMAP estimate of contin-
uous states of the JMLS. In Section VI, a discussion of the pre-
vious work on related problems and on the algorithms developed
here is given. The computational and theoretical advantages of
our algorithms over previous algorithms are explained. In Sec-
tion VII, we demonstrate the performance of the proposed algo-
rithms for deconvolution of BG processes on simulated and real
data. We also address the problem of tracking of a maneuvering
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target. Appendix B contains all the notation used in the paper.
Finally, the proofs of lemmas and propositions are grouped in
Appendix C.

II. PROBLEM FORMULATION

A. Signal Model

Let denote a discrete-time, time-homogeneous,-state,

first-order Markov chain with transition probabilities

for any , where
. The transition probability matrix is, thus,

an matrix, with elements satisfying and
, for each . Denote the initial proba-

bility distribution as for such that
and . Consider the following

JMLS:

(1)

(2)

where
system state;
observation at time;

known deterministic input;
zero-mean white Gaussian noise sequence
with covariance;
zero-mean white Gaussian noise sequence
with covariance and

.

The matrices and
are functions of the Markov chain state , i.e.,

. They evolve according to the
realization of the finite state Markov chain . We assume
that and let and be mutually
independent for all . The model parameters are assumed

known, where
. Finally, let denote the set of paths of the

finite Markov chain of non-null prior probability.

B. Estimation Objectives

Given , assuming that the model parametersare ex-
actly known, all Bayesian inference for JMLS relies on the joint
posterior distribution . In this paper, we con-
sider the three following optimal estimation problems:

1) MMSE estimates of and : Compute optimal (in
a mean square sense) estimates of and given by

and .
2) MMAP sequence estimate of : Compute optimal (in

a MAP sense) state estimates of by maximizing

, i.e., .
3) MMAP sequence estimate of : Compute optimal (in

a MAP sense) state estimates of by maximizing

, i.e., .

III. M INIMUM MEAN SQUARE ERRORESTIMATION

The MMSE estimates and
are obtained by integration with respect to the joint pos-
terior distribution. If we were able to obtain (for large

) independent and identically distributed (i.i.d.) samples
distributed according to the distribution

, then, using the law of large numbers, MMSE
estimates could be computed by averaging, thus solving the
state estimation problem. Unfortunately, obtaining such i.i.d.
samples from the posterior distribution is not
straightforward. Thus, alternative sampling schemes must be
investigated.

A. Markov Chain Monte Carlo Method

We compute samples from the posterior distribution
using an MCMC method [29]. The key idea of

MCMC methods is to run an ergodic Markov chain whose
invariant distribution is the distribution of interest. The obtained
samples are then used to compute MMSE estimates of the states

and . The proposed algorithm proceeds as follows.

MCMC algorithm to obtain the MMSE estimates

1) Initialization. Set randomly r
(0)
1:T 2 R.

2) Iteration k,k � 1

� For t = 1; . . . ; T , sample r
(k)
t � p(rt jy1:T ; r

(k)
�t

).

� Optional Step. Compute x
(k)
0:T = [x0:T jy1:T ; r

(k)
1:T ],

where r
(k)
�t

4

= (r
(k)
1 ; . . . ; r

(k)
t�1; r

(k�1)
t+1 ; . . . ; r

(k�1)
T

).

Once the algorithm has been iteratedtimes, the MMSE
estimates of and are computed using

(3)

The different steps of this algorithm are detailed in the following
subsections. In order to simplify notation, we drop the super-
script from all variables at iteration when it is unneces-
sary.

B. Implementation and Convergence Issues

1) Implementation Issues:This algorithm requires
sampling from and computing

. Given the sequence , the system (1)
and (2) is linear Gaussian; therefore, estimating

can be straightforwardly done using a
Kalman smoother [1] in operations. To sample from

, a direct solution would consist of evaluating
for the distribution

using times a Kalman filter to compute
the likelihood terms for .
As we need to sample from for ,
this would result in an algorithm of computational com-
plexity . We develop here an algorithm of complexity

that relies on the following key decomposition of the
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likelihood that allows for the efficient compu-
tation of for . Indeed, for any

(the modifications needed to handle the case
of boundaries are straightforward and omitted here), we have

(4)

where

(5)

The two first terms on the right-hand side of (4) can be com-
puted using a forward recursion based on the Kalman filter [1].
It appears that it is possible to evaluate the third term using a
backward recursion given by (5). The following lemma gives a
useful expression for .

Lemma 1: For any is a
Gaussian distribution with mean
and covariance cov , where and

are defined in Appendix B.A. Let us define

and, subsequently, the fol-
lowing quantities:

If is integrable in , then
is a Gaussian distri-

bution of argument , mean , and covariance
, hence the introduction of this notation. In the

general case, is not integrable in , but
and always satisfy the

following backward information filter recursion.

1) Initialization

(6)

2) Backward recursion. For

(7)

Proof: See Appendix B.A.
Now, combining (4) and the previous lemma, one obtains an

expression for .
Proposition 1: For any , we have, if

(8)

If , then it exists that ,
and such that

. The matrices and
are straightforwardly obtained using the singular value
decomposition of Matrix is a

diagonal matrix with the nonzero
eigenvalues of as elements. Then, one has

(9)

where

(10)

The quantities
and are, respectively, the one-step ahead

prediction and covariance of , the filtered estimate and co-
variance of , the innovation at time, and the covariance of
this innovation. These quantities are given by the Kalman filter,
the system (1) and (2) being linear Gaussian untilconditional
upon .

Proof: See Appendix B.B.
To sum up, the algorithm to sample from

for requires first the computation of the backward
information filter, second, the evaluatation of
combining the information and Kalman filters, and finally,
sampling from and storing accordingly the
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updated set of sufficient statistics and

. It proceeds as follows at iteration.

Backward–Forward procedure
1) For t = T; . . . ; 1 compute and store P 0

t j t+1(r
(k�1)
t+1:T ) and

P 0
t j t+1(r

(k�1)
t+1:T )m

0
t j t+1(r

(k�1)
t+1:T )using (6) and (7).

2) For t = 1; . . . ; T

�For i = . . . ; s, run the one step-ahead Kalman filter
with rt = i, store mt j t(r

(k)
1:t�1; rt = i);and Pt j t(r

(k)
1:t�1; rt =

i), then compute up to a normalizing constant p(rt = i j

y1:T ; r
(k)
�t ) using (9).

� Sample r
(k)
t � p(rt jy1:T ; r

(k)
�t ), store mt j t(r

(k)
1:t�1; r

(k)
t )

and Pt j t(r
(k)
1:t�1; r

(k)
t ).

End For .

The complexity of this algorithm at each iteration is thus
.

2) Convergence Issues:It is easy to check that the simu-
lated sequence is a finite state-space irreducible
and aperiodic Markov chain on so that uniform geometric
convergence of the Markov chain toward its invariant distribu-
tion holds; see, for example, [29]. Consequently,

and , given by (3), converge almost surely to-
ward the MMSE estimates and satisfy a central limit theorem.

IV. M ARGINAL MAXIMUM A POSTERIORISTATE SEQUENCE

ESTIMATION OF

Obtaining a global maximum of requires the
solution of a nondeterministic polynomial (NP) combinatorial
optimization problem [31]. We propose a suboptimal determin-
istic algorithm and a stochastic globally convergent algorithm
to solve it.

A. Algorithms

The proposed deterministic algorithm is a coordinate ascent
method that uses the fact that one can maximize iteratively and
successively over for . The
stochastic algorithm is a SA algorithm that is just a nonho-
mogeneous version of the algorithm proposed in the previous
section, which can also be interpreted as a randomized ver-
sion of the deterministic algorithm. It is a nonhomogeneous
Markov chain whose transition kernel at iterationdepends on
a so-called cooling schedule verifying

and [29]. The proposed algo-
rithms proceed as follows.

Deterministic/Stochastic Algorithms to Estimate the MMAP
Sequence ofr1:T

1) Initialization. Set randomly r
(0)
1:T 2 R.

2) Iteration k, k � 1

� Deterministic algorithm : For t = 1; . . . ; T; r
(k)
t =

argmaxf1;...;sgp(rt jy1:T ; r
(k)
�t ).

� Stochastic algorithm: For t = 1; . . . ; T; sample r
(k)
t �

�p
 (rt jy1:T ; r
(k)
�t ):

, and

.

B. Implementation and Convergence Issues

1) Implementations Issues:In Section III, we proposed
a backward-forward procedure to estimate and sample

for . We can use the same
procedure to estimate to maximize it or to
sample from as is a dis-
crete distribution. Thus, the computational complexity of these
algorithms is .

2) Convergence Issues:The deterministic algorithm
is a simple coordinate ascent method where the compo-
nents are maximized one at a time. By construction, the
sequence defined by the deterministic algorithm satis-
fies . It converges in a finite
number of iterations toward a local maximum of 1

The convergence of the SA algorithm toward the set of global
maxima of follows from standard arguments [14]
for a logarithmic cooling schedule , where .

Remark 1: is unknown in practice. Moreover, a log-
arithmic cooling schedule goes too slowly to infinity to be
implemented. “Faster” linear growing cooling schedules are
used in applications; see Section VII.

V. MARGINAL MAXIMUM A POSTERIORISTATE SEQUENCE

ESTIMATION OF

Obtaining the MMAP sequence of requires the solution
of a complex global optimization problem. We propose a sub-
optimal deterministic algorithm and a stochastic algorithm to
solve it.

A. Algorithms

The proposed suboptimal deterministic algorithm is a coor-
dinate ascent method that maximizes successively and itera-
tively over for . The pro-
posed stochastic algorithm is a SA algorithm, which is a ran-
domized version of the deterministic algorithm. It is a nonho-
mogeneous Markov chain whose transition kernel at iteration
depends on a so-called cooling schedule , verifying

and . To work, these
two algorithms require the following assumption.

Assumption: for all 2

The proposed algorithms proceed as follows.

Deterministic/Stochastic Algorithms to Estimate the MMAP
Sequence ofx0:T

1) Initialization. Set randomly x
(0)
0:T .

2) Iteration k, k � 1

� Deterministic algorithm : For t = 0; . . . ; T , x(k)
t =

argmax
x
p(xt jy1:T ;x

(k)
�t

).

1In a finite space, the notion of local maximum is induced by the updating
scheme of the algorithm used to perform maximization.

2If B(i)BT(i) 6= 0 , then the jump Markov linear system can be trans-
formed to a new system where the noise covariance matrix is positive definite;
see [17, Sec. 3.9] for details.
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� Stochastic algorithm: For t = 0; . . . ; T , sample x
(k)
t �

�p
 (xt jy1:T ;x
(k)
�t ):

, and

.

B. Implementation and Convergence Issues

1) Implementation Issues:This algorithm requires the esti-
mation of to maximize it or to
sample from . A direct evaluation of this dis-
tribution would have a complexity . We develop here an
algorithm whose complexity is . Conditional upon ,
the system (1) and (2) is a finite state-space HMM [28]. Thus,
the likelihood can be computed by the forward-
backward recursion adapted to this particular case. (The modi-
fications needed to handle the case of boundaries are straight-
forward and omitted here.) For any

(11)

where

(12)

The two first terms on the right-hand side of (11) can be com-
puted using a forward recursion based on the HMM filter [1],
[28]. It is possible to evaluate the third term using a backward
recursion given by (12). Combining these results, we get the fol-
lowing expression for .

Proposition 2: For any , we have

(13)

where

(14)

(15)

and

(16)

where is given by

(17)

Proof: See Appendix B.C.
To maximize or to sample from

for , the algorithm pro-
ceeds thus as follows at iteration.

Backward–Forward procedure
1) For t = T; . . . ; 1 compute and store p(yt:T ;x

(k�1)
t:T

j rt�1; x
(k�1)
t�1 ) for any rt�1 = 1; . . . ; s using (12).

2) For t = 0; . . . ; T

� For i = 1; . . . ; s;

run one step-ahead the HMM one-step ahead predictor
p(rt = i jy1:t�1;x

(k)
0:t�1);

and then compute p(xt jy1:T ;x
(k)
�t ) using (13) to (17).

� Deterministic version: x(k)
t = argmaxx p(xt jy1:T ;x

(k)
�t ).

� Stochastic version: Sample x
(k)
t � �p
 (xt jy1:T ;x

(k)
�t ):

This algorithm has a complexity per iteration.
However, there are additional problems as maximizing

does not admit any analytical solution,
and sampling from is not obvious.
To maximize , we propose to use a gra-
dient-based method initialized at the previous estimate

. To sample from , we propose
to use a Metropolis–Hastings (M–H) algorithm coupled
with an accept/reject procedure [29, p. 270], i.e., we use
an M–H algorithm with a proposal distribution proportional
to , where

is defined later.

MH—accept/reject procedure to sample from�p
 (xt jy1:T ;x
(k)
�t )

1) Repeat
� Sample a candidate x�t � p�k(xt jy1:T ;x

(k)
�t );

and sample u � U[0;1].
Until u � (p
 (x�t jy1:T ;x

(k)
�t )=Ckp

�

k(x
�

t jy1:T ;x
(k)
�t )).

2) Sample u � U[0;1]:Set x(k)
t = x�t with probability

min 1;
p
 x�t jy1:T ;x

(k)
�t p�k x

(k�1)
t jy1:T ;x

(k)
�t

p
 x
(k�1)
t jy1:T ;x

(k)
�t p�k x�t jy1:T ;x

(k)
�t

� if p
 x�t jy1:T ;x
(k)
�t > Ckp

�

k x�t jy1:T ;x
(k)
�t

min 1;
Ckp

�

k x
(k�1)
t jy1:T ;x

(k)
�t

p
 x
(k�1)
t jy1:T ;x

(k)
�t

otherwise

otherwise set x(k)
t = x

(k�1)
t :
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The proposal distribution is a mixture of
Gaussians given by

with

and

2) Convergence Issues:By construction, the sequence
defined by the deterministic algorithm satisfies

. Actually, the gradient-based algo-
rithm does not ensure that
as it can be trapped in local maxima, but it ensures that is
chosen such that
so that still increases monotonically.

As does not lie in a finite or in a compact space, it ap-
pears much more difficult to prove convergence of the sequence

toward the set of global maxima. We have not established
such a result. However, it is easy to see that the assumption on

ensures that the associated homogeneous Markov
chains for any is ergodic of limiting distri-
bution .

VI. DISCUSSION

Numerous methods have been proposed earlier in the litera-
ture to address these problems. We have already discussed in the
introduction the interest of our algorithms. We detail them here.

1) MMSE Estimation/MMAP Estimation of : To obtain
MMSE estimates, previous algorithms are mainly based on
a fixed-interval smoothing extension of deterministic and
heuristic finite Gaussian mixtures approximations used in
filtering such as the popular interactive multiple models
(IMM) algorithm [2]; see, for example, [3], [15], and [18]
for related methods. These algorithms are noniterative and
computationally cheaper than the one we present. However,
it is very difficult to quantify the approximations that are
done. Moreover, these algorithms make the assumption that

is integrable in ; it implies, for ex-
ample, that has to be regular,
which is rarely true in practice, as outlined in [15, p. 1848]. This
conservative assumption is relaxed here. In [5], an alternative
Monte Carlo integration algorithm is proposed based on data
augmentation [29], which samples iteratively and successively
from and ; see [11] for
convergence proofs. It requires the assumption ;
see also [10], [21], [23], and [30] for a similar assumption
resulting from the introduction of the missing data set .

The proposed algorithm does not perform data augmentation
as it is based on a recursion that evaluates at each iteration

for , the continuous states
being integrated out. The proposed stochastic and deterministic
algorithms to maximize are based on the same
recursion. A related strategy has been developed earlier in
[19] and [26] to obtain the MMAP estimate of , but the
proposed popular single most likely replacement (SMLR) algo-
rithm has a computational complexity . This prohibitive
computational complexity has motivated alternative approaches
in the context of impulsive deconvolution [16]. An algorithm
for MA models excited by BG processes is presented in [7],
but its complexity depends explicitly on the square number of
occurrences of the Bernoulli process. However, in a state-space
framework [6], an algorithm of complexity has already
recently been proposed. Nevertheless, this algorithm is based
on an approximate initialization of a backward recursion and
assumes that is regular for any . Our recursion has a
similar complexity at each iteration, but it does not rely on
any approximation and makes no assumption on . The
resulting algorithms thus have a wider range of applicability.

Moreover, even if , the proposed determin-
istic algorithm to obtain the MMAP of is ensured to have
a better asymptotic convergence rate than the expectation max-
imization (EM) algorithm in [23]. Indeed, it is a simple coordi-
nate ascent method that avoids the introduction of missing data
[24]. Finally, in the case where is an independent sequence,
the proposed stochastic algorithm is ensured to have a lower
maximum correlation (see [22] for a definition) than the algo-
rithm described in [5] and [11] according to ([22, Th. 5.1]).

2) MMAP Estimation of : To obtain the MMAP
sequence estimate of , an EM algorithm has been recently
proposed in [23]. It introduces the set of missing data. Our
deterministic algorithm is a simple coordinate ascent method
that does not introduce any missing data. It is thus ensured
to have a better asymptotic convergence rate than the EM
algorithm in [23] according to [24]. Although we have not ob-
tained any theoretical convergence on the proposed stochastic
algorithm, the latter appears less sensitive to initialization in
practice than its deterministic counterpart, as demonstrated
in simulations presented in Section VII. It is thus of practical
interest.

VII. SIMULATIONS

In simulations, the deterministic algorithms are iterated until
convergence. Convergence occurs after no more than eight it-
erations in our experiments. Theoretically, the three stochastic
algorithms require an infinite number of iterations to give the
exact values of the MMSE and MMAP estimates. For all our
simulations, we discard the first iterations to compute the
MMSE estimates using the MCMC sampler. These firstiter-
ations correspond to the so-called burn-in period of the Markov
chain.3 As in [9], the MCMC sampler algorithm is then iter-
ated until the computed values of the ergodic averages are no
longer modified. To ensure convergence toward the set of global

3Methods for determining the burn-in periodN are beyond the scope of this
paper; see [29] for an overview of such methods.
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maxima, the SA algorithm presented in Section IV requires a
logarithmic cooling schedule. Such a schedule is too slow to
be implemented in practice. As it is usually done in practice,
we implement iterations of the SA algorithms with a linear
cooling schedules, i.e., [29], satisfying
and . Then, we apply the deterministic algorithms.

Computer simulations were carried out to evaluate the perfor-
mance of our algorithms. All the algorithms were coded using
Matlab©, and the simulations were performed on a Pentium
II®. Section VII-A considers the problem of estimating a sparse
signal based on a set of noisy data. We applied our algorithms
to both simulated signals and a real data set. Section VII-B con-
siders the problem of tracking a maneuvering target.

A. Deconvolution of Bernoulli–Gaussian Processes

In several problems related to seismic signal processing and
nuclear science [7], [16], [19], [21], [26], [30], the signal of in-
terest can be modeled as the output of a linear filter excited by
a BG process and observed in white Gaussian noise. ARMA
models allow for a parsimonious representation of the impulse
response of the system and enjoy much popularity [26]. The
signal of interest can be modeled as the output of an ARMA
model filter excited by a BG process and observed in white
Gaussian noise. For an ARMA model, we have

(18)

(19)

where

(20)

for , and is the delta-Dirac measure in 0. is
assumed to be a white noise sequence. Note that it could also be
modeled as a first-order Markov sequence to take into account
the dead time of the sensor [21]. It is convenient from an algo-
rithmic point of view to introduce the latent Bernoulli process

such that and

(21)

We can define an i.i.d. Gaussian sequence such
that, conditional upon , . If we introduce the
state vector , such that , and extend the
ARMA coefficients, i.e., for and for ,
then it is standard to re-express this model as a JMLS (1) and
(2); see, for example, [33, p. 298].

We address here an application from nuclear science [10].
The aim is to deconvolve the output of a digital spectrometer.
The transfer function is modeled by an ARMA whose im-
pulse response is displayed in Fig. 1. The other parameters are
equal to and (these parameters
correspond to the real data set discussed below). In this applica-
tion, these parameters are estimated in a preliminarycalibration
step. We apply our algorithms to some simulated signals.

We start with the MCMC algorithm presented in Section III to
compute the MMSE estimates . To compute the
MMAP sequence , we implement both the SA algorithm

Fig. 1. Impulse response of theARMA(3; 2) model.

TABLE I
PERFORMANCEMEASURE FORMMSE ESTIMATION

and the deterministic algorithm. In this case, it is not possible to
apply the algorithms presented in Section V as
. The algorithm that computes the MMSE estimate is com-

pared with the fixed-interval smoothers developed in [15] and
[18]. The algorithms that compute the MMAP sequence
are compared with the algorithm presented in [19]. The MCMC
and SA algorithms were run for and itera-
tions. All the simulations were run on points and av-
eraged over independent runs with the same random
initialization. The performance measure for the MMSE algo-
rithms is the root mean square (RMS) position error computed
as in (22), shown at the bottom of the next page, following from
the MMSE estimates with respect to the true simulated trajec-
tories, where is the MMSE estimate of of the

th Monte Carlo simulation. For the MMAP, the performance
measure is of course the penalized log-likelihood of the MMAP
estimate , i.e., . The results are pre-
sented in Tables I and II.

It appears that our iterative algorithm that computes the
MMSE with , although about roughly 50 times slower
than the algorithms in [15] and [18], clearly outperforms them.
Moreover, increasing the number of iterations of this algorithm
by a factor 10 does not appear to modify the results. This
suggests that the MCMC algorithm has converged toward the
MMSE estimate. In terms of MMAP sequence estimation,
our algorithms also outperform the current method applicable
to this problem. The deterministic algorithm we propose has
performance comparable with the SMLR algorithm in [19]
while being computationally much cheaper (this improvement
increases as increases). The SA algorithms outperform the
deterministic algorithms. Similarly to the MMSE case, it does
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TABLE II
PERFORMANCEMEASURE FORMMAP ESTIMATION OF r

not appear to be really useful to use a large number of iterations.
It is difficult to specify another objective criterion to compare
these algorithms. However, by visual inspection, the estimated
sequences obtained using the SA algorithm appear often better
than the ones obtained using the deterministic algorithm.

B. Tracking of a Maneuvering Target

We address the problem of tracking a maneuvering target in
noise. The difficulty in this problem arises from the uncertainty
in the maneuvering command driving the target. The state of the

target at time is denoted as , where
and represent the position and velocity of

the target in the (respectively, in the ) direction. It evolves
according to a JMLS model of parameters [2]

(23)

and diag . The switching term is ,
where is a three-state Markov chain corresponding to the
three possible maneuver commands: straight, left turn, and right
turn. It has the following transition probabilities:
and for . We have for any

(24)

We apply the algorithms developed in this paper to compute the
MMSE estimate , the MMAP sequence , and

. The MCMC algorithm that computes the MMSE estimate
is compared with the smoothers developed in [11], [15], and
[18]. The algorithms that compute the MMAP sequences
and are compared with the algorithms presented in [11] and
[23]. The MCMC and SA algorithms were run for and

iterations. All the simulations were run on
points and averaged over independent runs with the
same random initialization. The performance measure for the
MMSE algorithms is the root mean square (RMS) position error
computed, shown in (25) at the bottom of the page, follows from
the MMSE estimates with respect to the true simulated trajecto-
ries, where [respectively, ] is the MMSE
target position estimate in the(resp. ) direction at time of the

th Monte Carlo simulation. The performance measure for the
MMAP algorithms is the penalized log-likelihood of the MMAP
estimates. We present, in Tables III-V, the performance of the
different algorithms.

Our conclusions are very similar to those of the previous ex-
ample. Our iterative algorithm that computes the MMSE with

, although about roughly 50 times slower than the other
deterministic algorithms, outperforms them, and increasing the
number of iterations by a factor 10 does not modify the results.
It also outperforms the alternative MCMC algorithm described
in [11] for a small number of iterations. This is consistent with
the theoretical results in [22], which suggest that our MCMC
algorithm converges faster as is integrated out. In terms
of MMAP sequence estimation of , our deterministic algo-
rithm has a computational complexity that is much cheaper than

RMS (22)

(25)
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TABLE III
PERFORMANCEMEASURE FORMMSE ESTIMATION

the SMLR algorithm [19]. It is also cheaper than the EM algo-
rithm developed in [23] and performs better. The SA algorithms
outperform the deterministic algorithm and the algorithm pre-
sented in [11]. It does not appear to be really useful to use a large
number of iterations for the SA. The same conclusion holds for

. Note that as the variance of the observation noise and/or
the dynamic noise decreases, our algorithms become increas-
ingly more efficient than the EM-based algorithms, which, in
the limit case, where one of these variances is equal to zero, do
not even converge.

VIII. C ONCLUSION

In this paper, we presented iterative deterministic and sto-
chastic algorithms to compute MMSE and MMAP estimates
for JMLS. These algorithms have a wider range of applica-
bility than the current methods. Moreover the computational
cost of an iteration and the memory requirements are linear in
the data length. The deterministic algorithms proposed to esti-
mate the MMAP state sequence estimates are coordinate ascent
methods that compare favorably both theoretically and practi-
cally to EM-based algorithms. However, as any deterministic
optimization method, they are sensitive to initialization. The
stochastic algorithms based on homogeneous and nonhomoge-
neous MCMC methods are ensured to converge asymptotically
toward the required estimates. In practice, they appear less sen-
sitive to initialization. Two applications were presented to illus-
trate the performance of these algorithms for deconvolution of
BG processes and tracking of a maneuvering target. Although
we addressed here the case where the parameters of the JMLS
were known, our algorithms can straightforwardly be used as
part of more complex MCMC algorithms to perform parameter
estimation [10], [29]. Finally, these algorithms can be combined
with particle filtering methods [12] to perform online state esti-
mation; see [13] for details.

APPENDIX A
NOTATION

• : Dimension of an arbitrary vector.
• : Discrete time.
• : Iteration number of the various iterative algorithms.

• For , .
• .

• : Gaussian distribution of mean and covariance
.

• : Uniform distribution on .
• : distributed according to .
• : conditional upon distributed according to

.

• For ,
.

• : Identity matrix of dimensions .
• : Submatrix including theth to th rows and the th

to th columns of matrix .
• : Transpose matrix.

APPENDIX B
PROOFS OFLEMMAS AND PROPOSITIONS

A. Proof of Lemma 1

The observations can be expressed as follows:
where is a

matrix, and is a matrix such that

remaining terms

for any . Thus, the distribution
is Gaussian with mean

and covariance cov , where the
positiveness comes from the assumption for

. We define . To compute
the parameters of the fixed-interval distribution ,
Mayne has established the algorithm to compute recursively

in time and

[25]. This recursion is a
backward information filter [1].

B. Proof of Proposition 1

The two first terms are easy to evaluate as
is given by the transition matrix of the Markov chain and

,
where the innovation is computed using the
Kalman filter. Now, the last term is equal to
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TABLE IV
PERFORMANCEMEASURE FORMMAP ESTIMATION OF r

TABLE V
PERFORMANCEMEASURE FORMMAP ESTIMATION OF x

by straightforward calculations. When ,
(8) follows immediately. If and
is symmetric, we have , which is a diagonal
matrix with first nonzero diagonal terms and

, such that

Then

and

where is given by (10). Therefore

Equation (9) follows as and
do not depend on .

C. Proof of Proposition 2

We have where
is given by (11) and

Therefore, we have the equation at the top of the next page,



1226 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 6, JUNE 2001

where

By identifying a quadratic form of argument, we obtain (17)
after a few calculations.
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