1216 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 6, JUNE 2001

Iterative Algorithms for State Estimation of Jump
Markov Linear Systems

Arnaud Doucet and Christophe Andrieu

Abstract—Jump Markov linear systems (JMLSs) are linear sys- timal algorithms has already been proposed in the literature to
tems whose parameters evolve with time according to a finite state solve these estimation problems [2], [11], [15], [23], [31], [32].
Markov chain. Given a set of observations, our aim is to estimate In this paper, we present original iterative stochastic and
the states of the finite state Markov chain and the continuous (in deterministic algorithms to perform MMSE and MMAP

space) states of the linear system. . ) . .
In this paper, we present original deterministic and stochasticit- €stimation of JMLS. The stochastic algorithms developed to es-

erative algorithms for optimal state estimation of JIMLSs. The first
stochastic algorithm yields minimum mean square error (MMSE)

estimates of the finite state space Markov chain and of the contin-

uous state of the JMLS. A deterministic and a stochastic algorithm
are given to obtain the marginal maximuma posteriori(MMAP)

sequence estimate of the finite state Markov chain. Finally, a de-

terministic and a stochastic algorithm are derived to obtain the
MMAP sequence estimate of the continuous state of the JMLS.

Computer simulations are carried out to evaluate the perfor-
mance of the proposed algorithms. The problem of deconvolution
of Bernoulli-Gaussian (BG) processes and the problem of tracking
a maneuvering target are addressed.

Index Terms—Jump Markov linear systems, MCMC, simulated
annealing, switching state-space models.

. INTRODUCTION

timate the MMSE and MMAP estimates are based, respectively,
on homogeneous and nonhomogeneous Markov chain Monte
Carlo (MCMC) methods [29]. The developed nonhomogeneous
MCMC methods correspond to simulated annealing (SA) algo-
rithms. The deterministic algorithms developed to estimate the
MMAP estimates are based on coordinate ascent optimization
methods. These latter algorithms are easily deduced from their
stochastic counterparts amice versa The key point of our
algorithms is that they have a computational cO%T") per
iteration. They have also several other advantages compared
with current methods.

» They neither require the state covariance matrix to be
strictly positive nor the transition matrix of the state-space
model to be regular, contrary to [6], [15], and [18].

» Contrary to [11], [21], [23], and [30], they avoid the intro-

UMP Markov linear systems are linear systems whose pa-

rameters evolve with time according to a finite state Markov
chain. These models are widely used in several fields of signal
processing and include as particular cases common models in
impulsive deconvolution [7], [10], [16], [19], [21], [26], [30],
digital communications [20], [23], and target tracking [2], [27]. *
Given a set of observations, our aim in this paper is to estimate
the states of the finite state Markov chain and the continuous (in

duction of any missing data set. Consequently, they can
deal, for example, with a dynamic noise modeled as a BG
process when inference on the finite Markov chain is re-
quired. This is of major interest in impulsive deconvolu-
tion [26].

They allow us to consider autoregressive moving-average
(ARMA) models, whereas [4], [7], and [16] are restricted
to MA models.

space) states of the linear system. More precisely, our aim isMoreover, it can be theoretically established that they are more
estimate, respectively, the MMSE estimates of the states andéffficient in various aspects. We discuss in detail these issues in
MMAP sequence estimates of the finite state Markov chain aection VI.
of the continuous state of the JMLS. We now list the main results and the organization of this
Under assumptions detailed later on, it is well known thgiaper. Section Il formally presents the signal model and esti-
exact computation of these three estimates for JMLS involvestion objectives. In Section Ill, an MCMC algorithm based
a prohibitive computational cost exponential in the number, say the Gibbs sampler is proposed to compute the MMSE es-
T, of observations [32]. Thus, itis necessary to consider in pragnates. In Section IV, a deterministic coordinate ascent opti-
tice suboptimal estimation algorithms. A variety of such subomization method and a SA version of the Gibbs sampler devel-
oped in Section Il are presented to obtain the MMAP estimate
of the finite state Markov chain of the JMLS. In Section V, a
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target. Appendix B contains all the notation used in the paper.
Finally, the proofs of lemmas and propositions are grouped in

Appendix C.

Il. PROBLEM FORMULATION

A. Signal Model

Let », denote a discrete-time, time-homogeneosistate,
first-order Markov chain with transition probabilitigs;
Pr{riy1 = jl|me ¢} for any ¢,5 € S, where S
{1,2,...,s}. The transition probability matrixp;,] is, thus,
an s x s matrix, with elements satisfying;; > 0 and
> j—1pij = 1, for eachi € S. Denote the initial proba-

e e

bility distribution asp; 2 Pr{r, = i} fori € § such that
pi > 0,Vi € Sand> !  p; = 1. Consider the following
JMLS:

1217

I1l. MINIMUM MEAN SQUARE ERRORESTIMATION

The MMSE estimatef{rl:;p |y1:T} and |E{X0;T | y1:T}

are obtained by integration with respect to the joint pos-
terior distribution. If we were able to obtaiv (for large

N) independent and identically distributed (i.i.d.) samples
{rg’f%; k =1,...,N} distributed according to the distribution
p(r1.7 |y1.7r), then, using the law of large numbers, MMSE
estimates could be computed by averaging, thus solving the
state estimation problem. Unfortunately, obtaining such i.i.d.
samples from the posterior distributigifr,.7 | y1.7) is not
straightforward. Thus, alternative sampling schemes must be
investigated.

A. Markov Chain Monte Carlo Method

We compute samples from the posterior distribution
p(ri7 | yir) using an MCMC method [29]. The key idea of
MCMC methods is to run an ergodic Markov chain whose
invariant distribution is the distribution of interest. The obtained

1 = A(rep)ze + B(repn) v + F(rip)us (1) samples are then used to compute MMSE estimates of the states
ye = Clry)ze + D(r)we + Glry )y (2) ri.7 andxo.r. The proposed algorithm proceeds as follows.
where
z; € R™ system state; MCMC algorithm to obtain the MMSE estimates
v € R observation at time: 1) Initialization. Set randomly %) € R.
t,uy € R known deterministic input; 2) lteration kk > 1 ) )
" hi ) _ e Fort=1,....,T, sample »," ~ p(r¢|yrr,rl)).
v € R zero-mean w ite Gaussian noise sequence Optional Step. Compute x((]k% — Elxor |yl:1_’rgl:v1)_],
with covariance; &) A, (k) (k) (k=1) (k—1)
. . ) where v} = (vi", ..o 2L ey T,
L, ,w, € R™ zero-mean white Gaussian noise sequence
with covariancel, . and D(:)DT(i) >
0(VieS). Once the algorithm has been iteratddtimes, the MMSE
The matrices A(.),B(:),C(-),D(:),F(:) and G(.) estimates of;.r andxo.r are computed using

the Markov chain state,, i.e.,
€ {(A®),B(1), C(4),

are functions of
D(4), F(1), G(4));
realization of the finite state Markov chair. We assume
that o ~ AN(Zo,Fo) and letzg,v; and wy be mutually

€ S}. They evolve according to the

N—-1 N—-1
= Al ; _ Al 4
rr(N) = 5 Do, xer(N) = 5 Do xir. @)
k=0 k=0

known, where\ 2 {p;, pi;, A(i), B(3), C(i), D(3), F(5), G(i),

subsections. In order to simplify notation, we drop the super-
script-(*) from all variables at iteratiok when it is unneces-

2o, Fo;i,j € S}. Finally, let R denote the set of paths of theSary

finite Markov chainr; of non-null prior probability.

B. Estimation Objectives
Giveny;.7, assuming that the model parametarare ex-

actly known, all Bayesian inference for JMLS relies on the joi
posterior distribution(r1.7, Xo.7 | ¥1.7)- In this paper, we con-

sider the three following optimal estimation problems:

1) MMSE estimates ofy.r andri.r: Compute optimal (in
a mean square sense) estimatesgf andr.7 given by
E{ri.r|yir} andE{xo.r | y1.7}.

2) MMAP sequence estimate of: Compute optimal (in
a MAP sense) state estimates gf; by maximizing

. N A
p(rir | yir), i€, Py = argmaxy, , p(tig | Yir).

3) MMAP sequence estimate »f.7-: Compute optimal (in

a MAP sense) state estimates xaf. by maximizing

. . A
p(XO:T |Y1:T), .., X0.:7 = argmMaXxg,, p(XO:T | Y1:T)-

B. Implementation and Convergence Issues

1) Implementation IssuesThis algorithm requires

r;F[ampling from p(r|y1.7,v—+) and computing E{xo.r |

vi.T.ri.r}. Given the sequencer;.r, the system (1)
and (2) is linear Gaussian; therefore, estimatiagr
E[xo.r |yi.7,r1.r] can be straightforwardly done using a
Kalman smoother [1] inO(T") operations. To sample from
p(re|y1.1,r—+), @ direct solution would consist of evaluating
for ¢ € S the distributionp(r; = ¢ |y1.r,vr—+) X p(yr.T |7t =
t,r—+)p(ry = i|r_;) usings times a Kalman filter to compute
the s likelihood termsp(y 1.7 |r = 4,r—¢) fori = 1,...,s.
As we need to sample frop(r; |y1.7,vr—) fort = 1,...,T,
this would result in an algorithm of computational com-
plexity O(T?). We develop here an algorithm of complexity
O(T) that relies on the following key decomposition of the
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likelihood p(y1.r |ri.r) that allows for the efficient compu- P{ﬁ(rt;T) = P{[:+1(rt+1:T)
tation of ,r_y) fort = 1,....,T. Indeed, for an _
P(” |¥17,r—t) y + CT(”)( (7‘t)DT(7‘t)) 10(7,t)

t=2,. — 1 (the modifications needed to handle the case L
of boundarles are straightforward and omitted here), we have P} |; (ter)my | (ter) = Py (Ceqra)my gy (Ceg i)
CYr)(Dr)DY (r) ™ (0 — Glre)us). 7
p(Y1:T|I‘1:T) IP(Y1:t—1 |I‘1:t—1)p(yt |Y1:t—1,1‘1:t) + (”)( (”) (”)) (yt (”)ut) ( )
X /p(Yt+1:T | Te1:m, ©)p(Te | Y1, T1e) doy (4) Proof: See Appendix B.A.

Now, combining (4) and the previous lemma, one obtains an

where expression fop(ry | y1.7,T_+). ]
Proposition 1: For anyt = 2,...,7 — 1, we have, if

p(yt:T | I‘t:Ta-/Ijt—l) Pt|t(r1:t) = 0n$><n$

= /p(Yt+l:T |ver7, ©)p(Yes T | 11, 20—1) doe. (5) PP | Y112 T—t) X Doy Droreis Nt (T1:0), Se(r1:2))

The two _first terms on the right-hand side of (4) can be com- X exp <_%m}‘|t(rlit)Pt/|_tl+1(rt+12T)mt|t(r12t)
puted using a forward recursion based on the Kalman filter [1].

it 1 H 1 1
It appears that |t_ is pessmle to evaluate the third term usinga _ 2m}‘|t(r12t)Pt|t+l(rt+1 T)mt|t+1(rt+1 T)> 8)
backward recursion given by (5). The following lemma gives a
useful expression fas(ys.7 | rr.r, 2 —1). ] ] .

Lemma 1:For anyt = 1,...,T, p(yer |rer, 1) isa |f Pre(Cu)  # Onoxn,, then it exists thatlly |, (r1),
Gaussian distribution with meaw, (ry.7)x:_ 1 +E{[Ne(re.7)]} and Q| t(rl +) such that P t(rl 1) = Quelrie)
and covariance cdWV;(rur)} > 0, where My(ry.y) and  j4(ri. t)Qm(rl ¢). The matrlceme(rl ¢) and Il (ri.)
Ny(r.r) are defined in Appendix B.A. Let us defineare straightforwardly obtained using the singular value
Li(rer) A Nt(rt;T)NtT(rt;T) and, subsequently, the f0|_decomp03|t|on of Pt|t(r1,,,_) Matrix Hm(rl ¢) is a
lowing quantities: ny X ng,1 < ny < n, diagonal matrix with the nonzero

eigenvalues of, |,(r1.;) as elements. Then, one has

s JaN T -1
TIM I‘;TL I‘;TM ) Sl .
- llt( ) i ( ' ) ¢ ( ' ) t( ' )’ p(7)t|y1:T7r—t)O(p1’t,11‘tprt1‘t+1N(yt|t—1(rl:t)7St(rl:t))

= / JAN T 1
_1e(rem)my_y (ver) = My (rep) Ly (reg)yer- - ~ - - —1/2
t—1]t t—1]|t t X ‘Htlt(rlit)Q}it(rlit)Pt/H-ll—l (rt+1:T)Qt|t(r1:t)+Int
If p(yer|rer,zi—1) is integrable inz,_;, then ([ p(ye.r| 17 T —
reT, a:t,l) da:t,l)_lp(yt:T | reT, a:t,l) is a Gaussian distri- X exXp <_§ |:mt|t(r1:t)Pt|t+1(rt+1:T)mt|t(r1:t)
bution of argument;_,, meanm;_,,(r..r), and covariance T 1 )
P/_(rer), hence the introduction of this notation. In the — 2y (P10 By (Corer )it g (Frgrir)
genleral casey(yu.r | Thp, T 1) is not integrable inz:t__l, but _ (m§|t+1(rt+1:T) _ mt|t(r1:t))T
P/ 1 (rer)andP,_ | (ver)my_ |, (rer) always satisfy the prt R
foIIowmg backward mformatlon filter recursion. X Bjjppr (egrr) Repe(ris)
1) Initialization X P |t+1(rt+1 T)(mng_l(rt_,_l:T) - mt|t(r1;t))> (9)
—1
r17(rr) = CT () (D) DT ()™ O(rr )
o ) where
PT|T(TT)mT|T(TT) . . AT
— CT(TT)(D(TT)DT(TT))_l(yT — G(rr)ur). (6) Ry 1(r1:) = Q1 4(r1t) [H”t(rl:t) +Q; | (r1e)
-1
ST
2) Backward recursion. Fot =7 —1,..., 1, X Pl ey 1) Qe (v t)} Qppe(rie).  (20)
1 —1 ...
Ay = |:In1, + BT(ml)P{ll|t+1(rt+1:T)B(7’t+1)] The quantltlesnt“_l(rl:t)’P”t_l(rl:t).’m”t(rl:t)’ Dype(rize),
. - Uee—1(r1:t), and Si(r1.¢) are, respectively, the one-step ahead
P{|t+1(rt+1;T) = AT(rtH)P{H|t+1(rt+1:T) prediction and covariance af;, the filtered estimate and co-
7 Blri A variance ofz,, the innovation at time, and the covariance of
% ( ne = B ) Avpa (Feger) this innovation. These quantities are given by the Kalman filter,
% BT(7’t+1)P{;1 |t+1(rt+l:T)) Alregr) theoi);stem (1) and (2) being linear Gaussian urgdnditional
1 1:t- )
Pt/| t+1(rt+1:T)m; | 1 (Ceprr) = AT(7’t+1) Proof: See Appendix B.B.
; —1 To sum up, the algorithm to sample fropir: | y1.7,r—7)
% ( ne = Pipajena(renr) fort = 1,...,7 requires first the computation of the backward
% B(?’t+1)At+1(rt+1;T)BT(7’t+1)) |nforn_1a_t|on f||ter_, secono_l, the evaluatatlon]g(frt |¥1.7, r__T)
combining the information and Kalman filters, and finally,

-1 . . .
X Py o1 (Cerr)(mi gy 11 (Cepar) — F(reg1)uqn) - sampling fromp(ry | y1.r,r—7) and storing accordingly the
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updated set of sufficient statisticmm(rg’ft)fl,rt(k)) and ﬁ“(n|y1:T,r(_kt)) x [p(rt|y1:T,r(_kt))]%, and
Pt|t(r§’ft)_l,rt(k)). It proceeds as follows at iteratidn r®) 2 (™. -77’55)177’5-’;11)7 L 77>(T’“*1)),

B. Implementation and Convergence Issues
Backward—Forward procedure

1)For t = T,...,1 compute and store pt/\_tlJrl(rgiT}I)’) and 1) Implementations Issuedn Section I_II, we proposed
P[ﬂll(rgﬁlr))ml\L+1(r5i?lr))USing (6) and (7). a backward-forward procedure to estimate and sample
2) Fort—1..... T p(re | y1r,Tt) fqr t = 1,...,7. We can use the same
oFOr i = ....s, run the one step-ahead Kalman filter ~ Procedure to estimate(r, |(3ISL:T7P4) to maximize it or to
with r, = i, store m, () ,.re = i).and Py, (¥ .r, = Sample fromp™(r, |yir,r25) asp(re |yir.r—) is a dis-
i), then compute up to a normalizing constant p(r; = | crete_d|str|b_ut|on. Thus, the computational complexity of these
yi.r,r*)) using (9). algorithms isO(T). o |
o Sample ") ~ p(re|yrr, ™)), store my (e ) 2) C_onvergence. Issuesthe deterministic algorithm
and P, ("), (™). is a simple cqorgmate ascent method where the.compo—
End For a hents are maximized one at a time. By construction, the

sequence{r&’f}) defined by the deterministic algorithm satis-
fies p(rﬂ“% |yir) > p(r§’j‘;1> | y1.7). It converges in a finite
The complexity of this algorithm at each iteration is thuaumber of iterations toward a local maximunmyef .z | y1.7).1
o(T). The convergence of the SA algorithm toward the set of global
2) Convergence Issuedt is easy to check that the simu-maxima ofp(ri.z | y1.7) follows from standard arguments [14]
lated sequenc@ri’:‘%; k € N} is afinite state-space irreduciblefor a logarithmic cooling schedutg, = C'ln(k), whereC > 0.
and aperiodic Markov chain oR so that uniform geometric Remark 1: C is unknown in practice. Moreover, a log-
convergence of the Markov chain toward its invariant distribarithmic cooling schedule goes too slowly to infinity to be
tion p(r1.7 | y1.7) holds; see, for example, [29]. Consequentlymplemented. “Faster” linear growing cooling schedules are
r1.p (V) andxo.(N), given by (3), converge almost surely to-used in applications; see Section VII.
ward the MMSE estimates and satisfy a central limit theorem.

V. MARGINAL MAXIMUM A POSTERIORISTATE SEQUENCE
IV. MARGINAL MAXIMUM A POSTERIORISTATE SEQUENCE ESTIMATION OF xo.17
ESTIMATION OF ry.p- Obtaining the MMAP sequence =f,.7 requires the solution
Obtaining a global maximum qi(r1.7 | y1.) requires the of a complex global optimization problem. We propose a sub-
solution of a nondeterministic polynomial (NP) combinatorigfPtimal deterministic algorithm and a stochastic algorithm to
optimization problem [31]. We propose a suboptimal determig©!Ve it
istic algorithm and a stochastic globally convergent algorithm
to solve it. A. Algorithms
The proposed suboptimal deterministic algorithm is a coor-
A. Algorithms dinate ascent method that maximizes successively and itera-

The proposed deterministic algorithm is a coordinate ascdl¥fY p(z¢|yir, %) OVEra, for ¢ = 0,...,T. The pro-

method that uses the fact that one can maximize iteratively a%%se_d StOCha.St'C algorithm is a SA algont_hm, Wh'.Ch IS a ran-
successively(r, |y, r_s) overr, for t = 1 T The domized version of the deterministic algorithm. It is a nonho-
t Tyl —t t - AR

stochastic algorithm is a SA algorithm that is just a nonhdnogeneous Markov chain whose transition kernel at iterdtion

mogeneous version of the algorithm proposed in the previoﬂgpenOIS on a so-called cooling schedulg; k € N}, verifying

section, which can also be interpreted as a randomized vé+L = Vi ik poo 1 = +00 andyp > 0. To work, these
sion of the deterministic algorithm. It is a nonhomogeneoﬁ@'O algorlth.ms. requw% the following gssumptlon.
Markov chain whose transition kernel at iteratiodepends on Assumption: B(:)B .(Z) >Oforalli € {1,...,5}.2
a so-called cooling scheduley; &£ € N} verifying yx41 > The proposed algorithms proceed as follows.
Y, iy 4 oo 76 = 400 @and-yo > 0 [29]. The proposed algo-
rithms proceed as follows. Deterministic/Stochastic Algorithms to Estimate the MMAP
Sequence ofkg. 7

1) Initialization. Set randomly x(°)..

2) lteration k, k > 1

e Deterministic algorithm: For¢t = 0,...,T, xik) =

argmaxxfp(.rt |yi:r, xg"t))

Deterministic/Stochastic Algorithms to Estimate the MMAP
Sequence ot

1) Initialization. Set randomly r{") € R.

2) lteration %, & > 1

e Deterministic algorithm: For¢t = 1,...,T, Tgk») = 1in a finite space, the notion of local maximum is induced by the updating
p(re|yir r(k)) scheme of the algorithm used to perform maximization.

------ s o *'f = _ le (0 2f B(i) BT (i) # 0., x=,, , then the jump Markov linear system can be trans-

» Stochastic algorithm: For ¢+ = 1,...,T,sample r; formed to a new system where the noise covariance matrix is positive definite;

P (re |y, ). B see[17, Sec. 3.9] for details.

argmax {1

2
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. Stochasﬂc algorithm: For ¢ = 0,....T, sample ¥ ~ wherea, (i, j) is given by

(e |y, x5)). . .
Oét('L,J) = p(Yt+2:Taxt+2:T |7’t+1 = J,$t+1)
X pijp(re = | y14-1,X0:t 1)
( ‘) J

P (x| yir, X)) x [p(at | yrr, x)]*,  and 1y g -

() 2,0 Wy e ) X N7 (i, 7), B, ’))
L N(y — G(iyu, D(i)D (i)
B. Implementation and Convergence Issues N(A(@D)we—1 + F(i)ue, B(i) B T( )

1) Implementation IssuesThis algorithm requires the esti- N(ze41 — F(j)ursr, BG)BY(5))
mation ofp(z; | y1.7, X—+) & p(¥1.7, X0.7) t0 Maximize it or to N(yer1 — C()meg1 — Gugsr, D(j )DT(j)),
sample fronp™* (x4 | y 1.7, X (_’“t)) A direct evaluation of this dis- (17)

tribution would have a complexit®(7?). We develop here an

algorithm whose complexity i© (7). Conditional uponkg.r, Proof: See Appendix B.C.

the system (1) and (2) is a finite state-space HMM [28]. Thus, To maximize p(x;|y1.7,%x—:) or to sample from
the likelihoodp(y;.7, x0.7) can be computed by the forward-p"* (z; | y1.7,x—) for ¢t = ., T, the algorithm pro-
backward recursion adapted to this particular case. (The modgeds thus as follows at iteratién

fications needed to handle the case of boundaries are straight-

forward and omitted here.) For aty=2,...,7 — 1

p(Yl:Tv XO:T)

= p(¥1:—1,X0:t—1)P(Yt, Tt | Y 1:4—1, Ko:t—1)
S

x ZP(Yt-l—l:Ta Xeqrr |12 = 6 3)p(re = 0] Y1, Xout)

=1
(11)
where
P(Yt:T7 Xt.T | Tt—1 = iaxt—l)
= Zp(yt+1:T7Xt+l:T |7’t =7, 37t)
j=1
X p(yt7 Tt | Ty = jv xtfl)pij' (12)

Backward—Forward procedure
1) For t = T,....1 compute and store p(y.r.x\""
|71, 252 for any r—y = 1,..., s using (12).
2)Fort=0,..., T

1)

. For i = 1,..., s,

run one step-ahead the HMM one-step ahead pred|ctor
(k)

p(re = Pyt X001,

and then compute p(;z:t |y, x*)) using (13) to (17).
« Deterministic version: z{*) = arg max,, p(z |y1.r.x")).
« Stochastic version Sample «*) ~ 57 (a; |y1.r,x ). m

This algorithm has a complexityO(T") per iteration.
However, there are additional problems as maximizing

p(ze | y1.7,X ()) does not admit any analytical solution,

and sampling from g (x4 | y1.T, (t)) is not obvious.

To maximize p(z; | y1.T, (_kt)), we propose to use a gra-

The two first terms on the right-hand side of (11) can be cordient-based method initialized at the previous estimate

puted using a forward recursion based on the HMM filter [1};;

(k=1)

. To sample fromﬁVk(a:t|y1:T,x(_kt)), we propose

[28]. It is possible to evaluate the third term using a backwatd use a Metropolis—Hastings (M—H) algorithm coupled
recursion given by (12). Combining these results, we getthe felith an accept/reject procedure [29, p. 270], i.e., we use

lowing expression fop(x; | y1.7, X—t).
Proposition 2: Foranyt = 2,...,7 — 2, we have

plee | Yo, X—¢)

_ Z zat@,j)N(xt — (i), Pi,g)  (13)
where
P, 5) = (BE@)BY(@) + T (DD ) Lo

+ AT BB ()T AG) (14)
ma(i,§) = Po(i, (BB () ™ (AW)ze1 + F(i)uy)

+ CTO)(DEODT (@) Ly — Gli)ue)

+ ATGHBG)B () @41 — F(ur41)] (15)
and

-1

an M—H algorithm with a proposal distribution proportional
to min(p™ (z¢|yrr, X (—t)) Crpile | yrar, x (_kt))) where
P | yir, x%)) is defined later.

MH—accept/reject procedure to sample fromp”* (z¢ | y1.1°, x ))
1) Repeat
e Sample a candidate x; ~
and sample u ~ U 1.
Until v < (p"* (27 | y1. T x
2) Sample u ~ Ujg,17.Set 2P

P (l't |yir, x(")) (;r(kfl) lyir, 9)
min< 1, ey ) )
]J"""(' |y11> ) (l |y11> )

x if p& (Tz lyir, x4 t) > Crpi (Tt |yiT, X“f))

pi(ee |y, x%),

D/ Crpi (@i [y, x2)).
= 27 with probability

. Crpx ( - |yir x" )> .
min< 1, D ® otherwise
pk (371 | yio, x5 )
otherwise set »{*) = z{=1). n
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The proposal distributiop; (| y1:T7X(_kt)) is a mixture of The proposed algorithm does not perform data augmentation
Gaussians given by as it is based on a recursion that evaluates at each iteration
p(re |y, vr—) for t = 1,...,7, the continuous statesy.r
o (a:t | yiT, x(_’“g) being integrated out. The proposed stochastic and deterministic
s s algorithms to maximize(r,.7 | y+.r) are based on the same
_ Zzaf(id)N(ﬂ?t — me(6, ), wPi(i, §)) recursion. A related_strategy has be_en developed earlier in
[19] and [26] to obtain the MMAP estimate af.r, but the
proposed popular single most likely replacement (SMLR) algo-
with rithm has a computational complexi(7"?). This prohibitive
AP, A2 _computational cor_nplexit_y has motivate_d alternative apprqaches
& (6,5) = —= O‘St(LvJ)| (2, 9) in the context of impulsive deconvolution [16]. An algorithm
D11 2oz ()| P (1, m)[ (170072 for MA models excited by BG processes is presented in [7],
and but its complexity depends explicitly on the square number of
A B occurrences of the Bernoulli process. However, in a state-space
Cr = <Z >l m)| Pl m)| w)/2> framework [6], an algorithm of complexit@(Z’) has already
=1 m=l recently been proposed. Nevertheless, this algorithm is based
X (27r)n7w(17”’“)'y,:7. on an approximate initialization of a backward recursion and
assumes thati(¢) is regular for anyi. Our recursion has a
2) Convergence IssuesBy construction, the sequencesimilar complexity at each iteration, but it does not rely on
(xé’f}) defined by the deterministic algorithm satisf'ye(&é’f% any approximation and makes no assumptionAfd). The
|lyir) > p(x((fT_l) | y1.7). Actually, the gradient-based algo-resulting algorithms thus have a wider range of applicability.
rithm does not ensure thaf*) = argmax,, p(z: |y1.7, x ) Moreover, even ifB(i)BT(i) > 0, the proposed determin-
as it can be trapped in local maxima, but it ensurestffdtis IStic algorithm to obtain the MMAP of .- is ensured to have
chosen such thqt(xgk) |y1:T7x(_kf)) > p(xgk—l) |y1:T7X(_kf)) gpettc_ar asymptotic convergence rate tha_n.the expectation max-
so that (x(k) |y 1) still increasés monotonically. ' imization (EM) algorithm in [23]. Indged, it |s§13|mplg cqordl—
P\ Xo.r | Yir Y nate ascent method that avoids the introduction of missing data

AS xo.7 does not lie in a finite or in a compact space, it a 24]. Finally, in the case wherg is an independent sequence,

pears much more difficult to prove convergence of the sequerjce : : .

(k) . . proposed stochastic algorithm is ensured to have a lower
(xp,r) toward the set ofg!opal maxima. We have not establl_sh aximum correlation (see [22] for a definition) than the algo-
suqh aTrgsuIt. However, it is easy tc_) see that the assumptlonrmqm described in [5] and [11] according to ([22, Th. 5.1]).
B(Z?B (i) ensures that the ass_omated .hom‘?ge.’?e"”? MarkO\Q) MMAP Estimation ofxq.r: To obtain the MMAP
cha.msfyk =7 > Oforanyk € Nis ergodic of limiting distri- seguence estimate &f.7, an EM algorithm has been recently
bution ™ (xor | y1.1)- proposed in [23]. It introduces the agt; of missing data. Our

deterministic algorithm is a simple coordinate ascent method
VI. DiscussION that does not introduce any missing data. It is thus ensured

Numerous methods have been proposed earlier in the litei@-have a better asymptotic convergence rate than the EM
ture to address these problems. We have already discussed irgtgerithm in [23] according to [24]. Although we have not ob-
introduction the interest of our algorithms. We detail them hertgined any theoretical convergence on the proposed stochastic

1) MMSE Estimation/MMAP Estimation of.;: To obtain algorithm, the latter appears less sensitive to initialization in
MMSE estimates, previous algorithms are mainly based @ractice than its deterministic counterpart, as demonstrated
a fixed-interval smoothing extension of deterministic andd Simulations presented in Section VII. It is thus of practical
heuristic finite Gaussian mixtures approximations used iAterest.
filtering such as the popular interactive multiple models
(IMM) algorithm [2]; see, for example, [3], [15], and [18] VII. SIMULATIONS

for relate_d methods. These algorithms are noniterative andm simulations, the deterministic algorithms are iterated until
computationally cheaper than the one we present. Howev

it is very difficult to quantify the approximations that are&ghvergence. Convergence occurs after no more than eight it-
done M)c/)reover thesg algorithms n?gke the assumption t rations in our experiments. Theoretically, the three stochastic
' ' 9 P orithms require an infinite number of iterations to give the

p(YtIT |:r::T(ﬁt_;1) 'lS) w)ntegz)rla}bl)e In_a:lt; i It meltlez, for e)l(- exact values of the MMSE and MMAP estimates. For all our
ample, thaC’” (r)(D(r¢) D" (rr))~" C(rr) has to be regular, simulations, we discard the firg¥, iterations to compute the

which is ra_lrely true in p_ract_lce, as outlined in [15, p. 1848]. Th'ﬁIMSE estimates using the MCMC sampler. These Nsiter-
conservative assumption is relaxed here. In [5], an alternat

I . .
Monte Carlo integration algorithm is proposed based on d Nfions correspond to the so-called burn-in period of the Markov

) . . : dagain3 As in [9], the MCMC sampler algorithm is then iter-
augmentation [28], which samples iteratively and SUCCESSIVERe until the computed values of the ergodic averages are no
from p(xo.7 | y1:7, r1r) andp(ri.r | yi.7, Xo:7); see [11] for

: longer modified. To ensure convergence toward the set of global
convergence proofs. It requires the assumpB¢i) BT (i) > 0; g g g

SEE a_lso [10], [21].- (23], ahd [30] for a Si.m"ar assumption syietnods for determining the burn-in peridd, are beyond the scope of this
resulting from the introduction of the missing data sgt;r. paper; see [29] for an overview of such methods.

i=1 j=1
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maxima, the SA algorithm presented in Section IV requires a
logarithmic cooling schedule. Such a schedule is too slow to .}
be implemented in practice. As it is usually done in practice,
we implementq iterations of the SA algorithms with a linear
cooling schedules, i.ey, = ak + b [29], satisfyingy, = 0.1 ol
and~vy = 10. Then, we apply the deterministic algorithms.
Computer simulations were carried out to evaluate the perfor- *f
mance of our algorithms. All the algorithms were coded using | \/\ﬁ
Matlab®©, and the simulations were performed on a Pentium
I1®. Section VII-A considers the problem of estimating a sparse - 1
signal based on a set of noisy data. We applied our algorithms . ‘ . . ‘ . } ‘ ‘
to both simulated signals and a real data set. Section VII-B con- o A
siders the problem of tracking a maneuvering target. Fig. 1.

3+ -

Impulse response of tReRMA (3, 2) model.

A. Deconvolution of Bernoulli-Gaussian Processes

L . TABLE |
In several problems related to seismic signal processing and PERFORMANCEMEASURE FORMMSE ESTIMATION
nuclear science [7], [16], [19], [21], [26], [30], the signal of in-
terest can be modeled as the output of a linear filter excited Algorithm RMS Computational time (in secs.)
a BG process and observed in white Gaussian noise. ARN
models allow for a parsimonious representation of the impul MMSE estimate [18] 43.3 386
response of the system and enjoy much popularity [26]. Tl
P ¥ oy pop y [26] MMSE estimate [15] 454 2.9

signal of interest can be modeled as the output of an ARM
model filter excited by a BG process and observed in Whi yiyisk estimate. N = 100 | 38.4 168.4
Gaussian noise. For an ARM#, ¢) model, we have

» . MMSE estimate, N = 1000 | 38.4 1686.0
Sy = Z a;si_i + vy + Z bivy_; (18)
i=1 i=1 N . . " :
Yo = Sy +w! (19) and the determ_lnlstlc algorithm. !n this case, itis notTpossmIe to
apply the algorithms presented in Section VEAR) B*(2) =
where 0. The algorithm that computes the MMSE estimate is com-

) ) ) ) pared with the fixed-interval smoothers developed in [15] and
v ~ AN (0,07) + (1= Nbo, w, ~N(0,07,)  (20) [18]. The algorithms that compute the MMAP sequemcg-
are compared with the algorithm presented in [19]. The MCMC

for0 <A<, and.6° 1S Fhe delta-Dirac measure in 0 is aBd SA algorithms were run f@¥ = 100 andN = 1000 itera-
assumed to be a white noise sequence. Note that it could als% e

modeled as a first-order Markov sequence to take into acco ogs. All the 5|mulat|9ns were run dfi = 1.100 points and av-
the dead time of the sensor [21]. It is convenient from an algo? .ge?d o_veM = 100 independent runs with the same random
L ) . . ' . nitialization. The performance measure for the MMSE algo-
rithmic point of view to introduce the latent Bernoulli process. . o
fithms is the root mean square (RMS) position error computed
re € {1,2} such thalPr(r, = 1) = A and as in (22), shown at the bottom of the next page, following from
Wlr =1~ N(0,02), v)|r =2~ 6. (21) the MMSE estimates with respect to the true simulated trajec-
tories, wherezMMSE () is the MMSE estimate of, of the
We can define an i.i.d. Gaussian sequence- A (0,1) such mth Monte Carlo simulation. For the MMAP, the performance
that, conditional upom; = 1, v; = o,v;. If we introduce the measure is of course the penalized log-likelihood of the MMAP
state vector,, such thatr, = max(p,q + 1), and extend the estimatet}MAL je. log p(#MMAT | y1.7). The results are pre-
ARMA coefficients, i.e.a; = 0fori > pandb;, = 0fori > q, sented in Tables | and II.
then it is standard to re-express this model as a JMLS (1) andt appears that our iterative algorithm that computes the
(2); see, for example, [33, p. 298]. MMSE with N = 100, although about roughly 50 times slower
We address here an application from nuclear science [18jan the algorithms in [15] and [18], clearly outperforms them.
The aim is to deconvolve the output of a digital spectrometéfioreover, increasing the number of iterations of this algorithm
The transfer function is modeled by an ARNIA 2) whose im- by a factor 10 does not appear to modify the results. This
pulse response is displayed in Fig. 1. The other parameters suggests that the MCMC algorithm has converged toward the
equal tox = 0.07, o, = 0.37 ando,, = 0.41 (these parameters MMSE estimate. In terms of MMAP sequence estimation,
correspond to the real data set discussed below). In this applicar algorithms also outperform the current method applicable
tion, these parameters are estimated in a prelimicalifpration  to this problem. The deterministic algorithm we propose has
step. We apply our algorithms to some simulated signals.  performance comparable with the SMLR algorithm in [19]
We start with the MCMC algorithm presented in Section Il tavhile being computationally much cheaper (this improvement
compute the MMSE estimaté&s{x;.7 | y1.7}. To compute the increases a¥ increases). The SA algorithms outperform the
MMAP sequencer;.7, we implement both the SA algorithmdeterministic algorithms. Similarly to the MMSE case, it does
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TABLE I
PERFORMANCEMEASURE FORMMAP ESTIMATION OF ry.1
Algorithm logp (?{44F|y1.r) Computational time (in secs.)
MMAP estimate [19] -234.7 692.9
D-MMAP ry.7r -234.7 10.7
S-MMAP ry.p, N = 100 -232.3 172.7
S-MMAP ri.7,, N = 1000 -232.2 1726.2

not appear to be really useful to use a large number of iteratiolge apply the algorithms developed in this paper to compute the
It is difficult to specify another objective criterion to compareMMSE estimaté={x;.7 | y1.7 }, the MMAP sequence, .-, and
these algorithms. However, by visual inspection, the estimated;. The MCMC algorithm that computes the MMSE estimate
sequences obtained using the SA algorithm appear often beigecompared with the smoothers developed in [11], [15], and
than the ones obtained using the deterministic algorithm.  [18]. The algorithms that compute the MMAP sequences

andx; . are compared with the algorithms presented in [11] and
B. Tracking of a Maneuvering Target [23]. The MCMC and SA algorithms were run faf = 100 and

We address the problem of tracking a maneuvering target/\y = 1000 iterations. All the simulations were run @n= 400
noise. The difficulty in this problem arises from the uncertaintpoints and averaged ovéf = 100 independent runs with the
in the maneuvering command driving the target. The state of ts@me random initialization. The performance measure for the
target at timet is denoted as, & (Poots Vot Pyt Uy7t)T, where MMSE algorithms is the root mean square (RMS) position error
represent the position and velocity ofcomputed, shqwn in (25) at the bottom of the page, foIIows_from
the MMSE estimates with respect to the true simulated trajecto-
ries, where}M5E(m) [respectivelypl M5E(m)] is the MMSE
target position estimate in the(resp.y) direction at time of the

pa;,t (py,t) andva},t (Uy,t)
the target in the: (respectively, in they) direction. It evolves
according to a JMLS model of parameters [2]

1 p 00 mth Monte Carlo simulation. The performance measure for the
4-10 100 B =01l MMAP algorithms is the penalized log-likelihood of the MMAP
001 pf’ estimates. We present, in Tables Ill-V, the performance of the
0 001 different algorithms.
C=1, G=04xp, (23) Our conclusions are very similar to those of the previous ex-

ample. Our iterative algorithm that computes the MMSE with
N = 100, although about roughly 50 times slower than the other
eterministic algorithms, outperforms them, and increasing the
Amber of iterations by a factor 10 does not modify the results.
It also outperforms the alternative MCMC algorithm described
in [11] for a small number of iterations. This is consistent with
the theoretical results in [22], which suggest that our MCMC
algorithm converges faster &$.1 is integrated out. In terms

andD = v/3diag(20, 1, 20, 1). The switching term ig" (r; )u,
wherer, is a three-state Markov chain corresponding to t
three possible maneuver commands: straight, left turn, and ri
turn. It has the following transition probabilities;,, ,,, = 0.9
andp,, , = 0.05 for m # n. We have for any

F(l)u’t = (0707070)T

— |4 |4 |4 |4 T
F(2)uy = (-1.225,-0.35,1.225,0.35) of MMAP sequence estimation of.7, our deterministic algo-
F(3)u, = (1.225,0.35,—1.225, —0.35)T. (24) rithm has a computational complexity that is much cheaper than
1 M T T
RMS = | o D > (= YMSE(m)) ™ (2 — 2}M5F(m)) (22)
m=1t=1
1 M T ) 5
RMS = | 57 30 3 [ (e = 2R5m) + (py — BN (m) ] @)
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TABLE Il * N(m,X): Gaussian distribution of mean and covariance
PERFORMANCEMEASURE FORMMSE ESTIMATION 3
-, _ — * Ujp,1;: Uniform distribution on[0, 1].
gorithm RMS Computational time (in secs.) . 2~ p(z): » distributed according tp(z).
VIMSE estimate [18] 2431 26 * z|y ~ p(z): z conditional upory distributed according to
MMSE [15] 25.67 Pl Iy
A estimate . 1.8 T
e For ¢, S — R, [er)ydr = EFI:T(i)CsT
MMSE estimate [11], N = 100 | 20.46 129.4 o(rrr(i)).
.  I,: Identity matrix of dimensiong x n.
MMSE estimate [11], N = 1000 | 20.37 1319.6 * [A];.j x: Submatrix including théth to jth rows and théth
MMSE estimate, N = 100 20.38 1403 toTlth columns of matrixA.
« A%: Transpose matrix.
MMSE estimate, N = 1000 20.37 1405.7

APPENDIX B

. . PROOFS OFLEMMAS AND PROPOSITIONS
the SMLR algorithm [19]. It is also cheaper than the EM algo-

rithm developed in [23] and performs better. The SA algorithnfy Proof of Lemma 1

outperform the deterministic algorithm and the algorithm pre- The observations can be expressed as followsi =
sented in[11]. It does not appear to be really useful to use a Iam(rt:T)xt—l‘i‘Nt(rt:T) whereM, (ry.r)isan,(T—t+1)xn,
number of iterations for the SA. The same conclusion holds fafatrix, andV,(r.r) is an,(T —t+ 1) x 1 matrix such that
xo.7. Note that as the variance of the observation noise and/or

the dynamic noise decreases, our algorithms become increas- [Mi(re.7)]n, (i—1)+1in,i,Lina
ingly more efficient than the EM-based algorithms, which, in t
the limit case, where one of these variances is equal to zero, do =C(ri4i-1) H A(r;)
not even converge. j=t4i—1
[NVe(re.m)]n, (i—1)+1in,i,1:1
VIIl. CONCLUSION = D(7r44i_1)wsii—1 + remaining terms

In this paper, we presented iterative deterministic and sto- p S
chastic algorithms to compute MMSE and MMAP estimat(;@(;éni/;_ ex{l’)z’ié' égus_si;nerli;rﬁ Lheu;é/[t?f .d')S;”bUtfn
for JMLS. These algorithms have a wider range of applic%[]\tf'fr _Tt')T]’a;al covariance coW,(ruz)] > i Ot.avhér_el the
bility than the current methods. Moreover the computationfﬁ-)l{jsittivé'neSS comes from the asstur;ptla(i)DT&i) < 0 for
cost of an iteration and the memory requirements are linear'in , A T
the data length. The deterministic algorithms proposed to eéti€ - We defineL.(r.r) = Ni(r.r)N, (r.r). To compute
mate the MMAP state sequence estimates are coordinate asihtParameters of the fixed-interval distributiptw: | y1.1),

methods that compare favorably both theoretically and pradffayne has estiblished the algorithm to compute recursively

cally to EM-based algorithms. However, as any deterministi@ time P,,’_lm = MI(rer)L7 (rer)My(rer) and P{_11|t
optimization method, they are sensitive to initialization. Thﬁli_m 2 M (tr) L7 (v )yer [25]. This recursion is a
stochastic algorithms based on homogeneous and nonhomqggsayard information filter 1.

neous MCMC methods are ensured to converge asymptotically

toward the required estimates. In practice, they appear less nProof of Proposition 1

sitive to initialization. Two applications were presented to illus-
trate the performance of these algorithms for deconvolution of
BG processes and tracking of a maneuvering target. Although P
we addressed here the case where the parameters of the JIMLS & P(7t |T—)p(y1.r [T—¢,7t)

(Tt |Y1:T7 I‘—t)

were known, our algorithms can straightforwardly be used as o p(re | re—1, 7441) (Yt | ¥1:0—1,T1:2)
part of more complex MCMC algorithms to perform parameter
estimation [10], [29]. Finally, these algorithms can be combined x /p(y”l:T | Perri, 20)P(@e | Vi, Tiie) d.
with particle filtering methods [12] to perform online state esti- i
mation: see [13] for details. The two first terms are easy to evaluateyds; |r: 1,7+41)
is given by the transition matrix of the Markov chain and
APPENDIX A Py |Y1—1,11:) = N(Ge)e—1(r124), Se(r1:1)), Se(r1:t)s
NOTATION where the innovationg, ,—(r1.;) is computed using the

Kalman filter. Now, the last term is equal to
¢ n_: Dimension of an arbitrary vectar.

t € {1,2,...}: Discrete time.

k: Iteration number of the various iterative algorithms.
 FOrD < 4y 2 (2 2pr1, 7). = VO = Mo (e mo (i) Len ()
]\7(77747 E) = |27I'E|_1/2 exp(—1/2m 2_1/27’77,). + Mt+1(rt+1:T)Pt | t(rl:t)Mt+l(rt+1:T))

/p(Yt+1:T | reqr, ©)p(@e | T1ie, Y1) dae
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TABLE IV
PERFORMANCEMEASURE FORMMARP ESTIMATION OF ry.7
Algorithm logp (?VM4P|y1.r) Computational time (in secs.)
MMAP estimate [19] 50.1 582.3
MMAP-EM algorithm [23) 49.9 154
MMAP algorithm [11], N = 100 50.2 131.3
MMAP algorithm [11], N = 1000 50.0 1323.2
Deterministic-MMAP ry.p 50.1 8.5
SA-MMAP rqi.7, N = 100 51.3 142.9
SA-MMAP ri.p, N = 1000 51.4 1432.0
TABLE V
PERFORMANCE MEASURE FORMMAP ESTIMATION OF Xg.7
Algorithm logp (xMMAP | yir) Computational time (in secs.)
MMAP-EM algorithm [23} -183.4 18.9
Deterministicc MMAP xq.7 -183.0 12.4
SA-MMAP x¢.7, N = 100 -182.3 177.8
SA-MMAP xq.7, N = 1000 -182.2 1782.1
by straightforward calculations. Whel, |;(r1.t) = 0p_ xn, , X (Veqr:r — M1 (vegr.r)my o (r1))
(8) follows immediately. ItP, | .(r1:t) # On, xn, ANAL, | (r1:t) T . T
is symmetric, we haveél, | ,(r1.;), which is an; x n; diagonal =Yl (ter)yor + mt|t(r12t)
matrix with 1 < n, < n, first nonzero diagonal terms and o Pt ( ) (rea)
Tig1.7 )My (T
Q}‘u(rl:t)Qtlt(rl:t) = I, such that el LT TR [T

-1
- 2m}"| () Py (o) My (Ceprr)

T -1
- (m; | t+1(rt+1:T) — My ¢(r1:4)) Pt/|t+1(rt+12T)

1

X By t(rl:t)Pt/[H_l (req1r)

Pyi(rie) = Qt|t(rlzt)ﬁt|t(1°1:t)(22:|t(1”1:t)-
Then
‘Lt+1(1‘t+1:T) + Moy (vop1r) Py o (er) MYy (vegrir)
= |Less ()] Do (ri) Q) (race)

1 -
X Pt/|t+1(rt+l:T)Qt | t(rl:t) + Int

X (m;|t+1(rt+l:T) - mtlt(rl:t))-

Equation (9) follows as y;r+1:TLt_1(rt+1;T)yt+1:T and
|L+(r¢41.7)| do not depend on;.

and
|:Lt+1(rt+1:T) + M1 (o) Qo (1)L | (r1e) C. Proof of Proposition 2
1
5T T We have p(z; |y, %) o p(yi7,X—+,7:) Where
X Qo (rua) My (Teqrr) p(yi1,X_t, ) iS given by (11) and
= L (veyrr) — Ligy (Coprr) Miga (voqar)
X Ry t(rlzt)MEH(rt-l—l:T)Lt__:l(rt-l—l:T) (Y10 Xew1T | 70 = 4, 74)
whereR;|.(r1.¢) is given by (10). Therefore = Zpijp(Yt-i—Q:Ta X427 | Te41 = Jy Teq1)
=1
(V11 — Mog1 (vogrer ) 1 (r1e)) T [Lt+1(rt+1:T) X P(Yr41: Tot1 | Te1 = J, 1)

1
T .
+ MH-l(rH-l:T)PtIt(rlit)Mt+1(rt+1iT):| Therefore, we have the equation at the top of the next page,
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Py, Xor) = P(Y1—1, X0:—1)D(Yts Tt | Y1:6—15 K0:t—1)
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Y pip(yesar Xerar | 11 = G )Pt Terr | rear = Jizegn) | p(re =4 Y1:0.Xout)

i=1 \j=1

5 5
o Y > p(re =]yt Xoe 1)pij

i=1 j=1

X P(Yt+2:T7 Xt42:T | T4l = 7, $t+1)p(yt7 T | Ty =1, 37t—1)

X P(Yit1, Teg1 | 7o = J 5¢)

where

(Y, T | 7e = 4, 20— 1)P(Yet 15 Te1 | Te1 = J, T4)
=p(ye|re = d,2)p(@e |10 = i, 20-1)
X p(yet1 | Te41 = J, o)
X p(@ry1 | Te41 = 7, 2¢)
x Ny, — C(i)z, — G(i)uy, D) DT (3))
x N(zy — A(i)wy_1 — F(i)uy, B())BL(3))
X N(tr1 — C(i)wrer — G(uesr, D(H)DT()))
X N(wp1 — A(j)ze = F(j)ursr, BG)BT(5)).

By identifying a quadratic form of argumemnt, we obtain (17)

after a few calculations.
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