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Abstract. This article is concerned with the propagation-of-chaos properties of genetic-type
particle models. This class of models arises in a variety of scientific disciplines including theoretical
physics, macromolecular biology, engineering sciences, and more particularly in computational statis-
tics and advanced signal processing. From the pure mathematical point of view, these interacting
particle systems can be regarded as a mean field particle interpretation of a class of Feynman–Kac
measures on path spaces. In the present paper, we design an original integration theory of prop-
agation of chaos based on the fluctuation analysis of a class of interacting particle random fields.
We provide analytic functional representations of the distributions of finite particle blocks, yielding
what seems to be the first result of this kind for interacting particle systems. These asymptotic ex-
pansions are expressed in terms of the limiting Feynman–Kac semigroups and a class of interacting
jump operators. These results provide both sharp estimates of the negligible bias introduced by the
interaction mechanisms, and central limit theorems for nondegenerate U -statistics and von Mises
statistics associated with genealogical tree models. Applications to nonlinear filtering problems and
interacting Markov chain Monte Carlo algorithms are discussed.
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1. Introduction. In this paper, we present an original fluctuation analysis of
the propagation of chaos properties of a class of genetic-type interacting particle sys-
tems. This subject has various natural links to statistical physics, macromolecular
biology, engineering sciences, and more particularly, to rare event estimation, nonlin-
ear filtering, global optimization, and sequential Monte Carlo theory.

The objects on which these particle models are studied vary considerably from one
application area to another. But, from the strict mathematical and physical points of
view, the genetic models discussed in this study can be interpreted as mean field par-
ticle approximations of an abstract and general class of Feynman–Kac path measures.
From the point of view of statistics and engineering sciences, these models can also
be interpreted as methods for sampling from complex distributions on path spaces.
In observing this connection, we mention that the propagation-of-chaos properties of
interacting processes allows us to measure the statistical bias, as well as the degree
of independence between the sampled particles. For a detailed review of these model
application areas, and precise asymptotic theory of these particle schemes, we refer
the reader to the recent research books of the first and second authors [2], [7].

The study of the propagations-of-chaos properties for discrete and continuous
time genetic models was begun in [5] and [6], and it has been further developed in [2].
These three studies have been influenced by the article of Ben Arous and Zeitouni [1]
and the pioneering studies of Graham and Méléard [8] and Méléard [11]. In [1], [5],
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increasing propagation-of-chaos properties are discussed for McKean–Vlasov diffu-
sions, as well as for genetic-type particle models with sufficiently regular mutation
transitions. We note that the change of reference measure technique, developed in [5],
relies entirely on some regularity conditions on the mutation transition, which are not
satisfied for path-particle models. As a result, they do not apply to genealogical par-
ticle tree models. In [8], [11], the authors present strong propagation-of-chaos results
for the N -particle approximating model associated with a class of generalized Boltz-
mann equations. Using general interacting graphs and precise coupling techniques,
they show that the order of convergence for the total variation distance between the
law of the q-first particles and the limiting distribution on a compact interval [0, t]
is q2 c(t)/N . The connections between spatially homogeneous Boltzmann equations
and continuous time Feynman–Kac formulae are described in some detail in [2], [6].
Loosely speaking, the microscopic colliding particle interpretations of the generalized
Boltzmann equations introduced by Méléard [11] can also be interpreted as selective
interacting jump models. In [2], [5], [6], the authors have also obtained, in the con-
text of genetic models, the same increasing propagation of chaos property using an
alternative Feynman–Kac semigroup approach.

The increasing propagation-of-chaos property developed in the above series of
articles leads us inevitably to question the sharpness of the order q2/N . Furthermore,
in most of these studies, the remainder control constant c(t) increases exponentially
fast to infinity, as the time parameter increases. As a consequence, these estimates
cannot really be used in practice to quantify the degree of independence and the
performance of the particle interpretation models.

The increasing propagation-of-chaos properties discussed in this paper show that
the order q2/N is actually sharp. Additionally, we derive precise asymptotic expan-
sions of the law of finite particle blocks with respect to the size of the system. Our
analysis does not rely on any regularity condition on the mutation transitions. Con-
sequently, it applies to path space genealogical tree models. In contrast to traditional
studies on this theme, our approach also describes the precise fluctuations associated
with these asymptotic weak expansions. From a statistical point of view, these fluc-
tuations can be interpreted as central limit theorems for nondegenerate U -statistics.
These results extend the original central limit theorem for U -statistics due to Hoeff-
ding [9], [10] for independent and identically distributed random variables to mean
field and genealogical processes. Moreover, we provide a semigroup technique to esti-
mate the first order operator of these asymptotic expansions. For sufficiently regular
models, we show that the asymptotic remainder constant c(t) is uniformly bounded
with respect to the time parameter.

The rest of this article is organized as follows.
In a preliminary section, subsection 1.1, we provide a mathematical description

of the Feynman–Kac models and their probabilistic particle interpretations.
In subsection 1.2 we describe our main results. We start with a brief reminder

of the propagation-of-chaos properties of interacting particle systems. Then we de-
velop an asymptotic propagation-of-chaos estimate for polynomial tensor product test
functions. This first result applies to a general class of particle McKean interpreta-
tion models on abstract measurable state spaces. We already mentioned that this
result also provides a sharp estimate of the bias introduced by the particle interaction
mechanism. In the second part, we extend this propagation-of-chaos property to the
context of simple genetic models on locally compact and separable metric spaces. We
provide a first order asymptotic expansion of the distribution of finite particle blocks.
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In subsection 1.3, we illustrate this abstract class of models with two concrete
scenarios arising in applied probability, computational statistics, and engineering sci-
ences. In the first scenario, we discuss a class of interacting Markov chain Monte Carlo
algorithms for sampling from complex high dimensional distributions and to sample
paths of Markov chains restricted to their terminal values. These particle models,
also known as sequential Monte Carlo samplers, were recently introduced by the first
two authors [3]. Their applications to statistics and global optimization were further
developed in [4]. The second scenario described in this section is related to nonlin-
ear filtering problems. This class of Feynman–Kac-type models is currently used in
advanced signal processing and Bayesian analysis. In this context, the correspond-
ing genetic particle approximation models are also known as particle filters. In both
situations, it is essential to estimate the bias induced by the interaction mechanisms,
as well as the degree of independence between the particles. The asymptotic propa-
gation of chaos expansions developed in this article provide precise answers to these
two fundamental questions.

In section 2 we have collected a series of results both on the weak convergence
of random fields and on the combinatorial transport properties of q-tensor product
particle measures. Section 3 presents the proof of the main results of this article. In
the final section, section 4, we present an original semigroup contraction technique
to control the first order operator of the asymptotic propagation of chaos expansion
uniformly in time.

1.1. Description of the models. Let (En, En)n�0 be a collection of measur-

able state spaces. We denote by Bb(En) the Banach space of all bounded and mea-
surable functions f on En equipped with the uniform norm ‖f‖ = supxn∈En

|f(xn)|,
whereas we denote by Cb(En) the space of continuous and bounded measurable func-
tions f . We also consider a collection of potential functions Gn on the state spaces En,
a distribution η0 on the space E0, and a collection of Markov transitions Mn(xn−1, dxn)
from En−1 into En. To simplify the presentation and avoid unnecessary technical dis-
cussion, we shall suppose that the potential functions are chosen such that

sup
(xn,x′

n)∈E2
n

Gn(xn)

Gn(x′
n)

< ∞.

We associate the Feynman–Kac measures, defined for any fn ∈ Bb(En) by the formulae

(1.1) ηn(fn) =
γn(fn)

γn(1)
with γn(fn) = E

[
fn(Xn)

∏
0�k<n

Gk(Xk)

]
,

with the pair potentials/transitions (Gn,Mn). In (1.1), (Xn)n�0 represents a Markov
chain with initial distribution η0 and elementary transitions Mn.

The advantage of the general Feynman–Kac model presented here is that it uni-
fies the theoretical analysis of a variety of genetic-type algorithms currently used in
Bayesian statistics, biology, particle physics, and engineering sciences. It is clearly
beyond the scope of this article to present a detailed review of these particle ap-
proximation models. We refer the reader to the pair of research books [2], [7] and
references therein. To illustrate this rather abstract model, two concrete applications
are discussed in some detail in subsection 1.3.

It is important to notice that this abstract formulation is particularly useful for
describing Markov motions on path spaces. For instance, Xn may represent the
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historical process

(1.2) Xn = (X ′
0, . . . , X

′
n) ∈ En = E′

[0,n] = E′
0 × · · · ×E′

n

associated with an auxiliary Markov chain X ′
n which takes values in some measurable

state spaces E′
n. As we shall see, this simple observation is particularly useful for

modeling and analyzing genealogical evolution processes. By the Markov property
and the multiplicative structure of (1.1), it is easily checked that the flow (ηn)n�0

satisfies the following equation:

(1.3) ηn+1 = Ψn(ηn)Mn+1
def
=

∫
En

Ψn(ηn)(dxn)Mn+1(xn, •),

where the Boltzmann–Gibbs transformation Ψn is defined by

Ψn(ηn)(dxn) =
1

ηn(Gn)
Gn(xn) ηn(dxn).

The particle approximation of the flow (1.3) depends on the choice of the McKean
interpretation model. These probabilistic interpretations consist of a chosen collection
of Markov transitions Kn+1,ηn , indexed by the set of probability measures ηn on En

and satisfying the compatibility condition

Ψn(ηn)Mn+1 = ηnKn+1,ηn

(
=

∫
ηn(dxn)Kn+1,ηn

(xn, •)

)
.

These collections are not unique. We can choose, for instance, Kn+1,ηn = Sn,ηnMn+1,
where Sn,ηn(xn, dyn) is the updating Markov transition on En defined by

(1.4) Sn,ηn(xn, dyn) = εnGn(xn) δxn
(dyn) + (1 − εnGn(xn)) Ψn(ηn)(dyn).

In the above formula, εn represents any (possibly null) constant such that ‖εnGn‖ � 1.
The corresponding nonlinear equation ηn+1 = ηnKn+1,ηn can be interpreted as the
evolution of the law of the states of a canonical Markov chain Xn whose elementary
transitions Kn+1,ηn depend on the law of the current state. That is, we have that

(1.5) P{Xn+1 ∈ dxn+1 | Xn = xn} = Kn+1,ηn(xn, dxn+1) with P ◦X−1
n = ηn.

The law Pn of the random canonical path (Xp)0�p�n under the McKean measure P
is simply defined by

Pn

(
d(x0, . . . , xn)

)
= η0(dx0)K1,η0

(x0, dx1) · · ·Kn,ηn−1
(xn−1, dxn).

The mean field particle model associated with a McKean model is an EN
n -valued

Markov chain ξ
(N)
n = (ξ

(N,i)
n )1�i�N with elementary transitions defined in symbolic

form by

(1.6) P
{
ξ(N)
n ∈ d(x1

n, . . . , x
N
n ) | ξ(N,i)

n−1

}
=

N∏
i=1

Kn,ηN
n−1

(ξ
(N,i)
n−1 , dxi

n)

with the empirical N -particle measures

ηNn−1
def
=

1

N

N∑
j=1

δ
ξ
(N,j)
n−1

.
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In the formula above, d(x1
n, . . . , x

N
n ) represents an infinitesimal neighborhood of the

point (x1
n, . . . , x

N
n ) ∈ EN

n . The initial configuration ξ
(N)
0 = (ξ

(N,i)
0 )1�i�N consists

of N independent and identically distributed random variables with distribution η0.
As usual, when there is no possible confusion, we simplify notation by suppressing

the index (•)(N) and writing (ξn, ξ
i
n) instead of (ξ

(N)
n , ξ

(N,i)
n ).

By the definition of the McKean transitions, it appears that (1.6) is the combi-
nation of simple selection/mutation genetic transitions. The selection stage consists

of N randomly evolving path particles ξin−1 � ξ̂in−1 according to the update tran-
sition Sn,ηN

n−1
(ξin−1, •). In other words, with probability εn−1Gn−1(ξ

i
n−1), we set

ξ̂in−1 = ξin−1; otherwise, the particle jumps to a new location, randomly drawn from
the discrete distribution Ψn−1(η

N
n−1). During the mutation stage, each of the selected

particles ξ̂in−1 � ξin evolves according to the Markov transition Mn.
If we consider the historical process Xn = (X ′

0, . . . , X
′
n) introduced in (1.2), then

the above mean field model consists of N path particles evolving according to the
same selection/mutation transitions. It is immediately clear that the resulting particle
model can be interpreted as the evolution of a genealogical tree model. Also notice
that for ε = 0, the particle interpretation model reduces to a simple mutation/selection
genetic model.

It is obviously beyond the scope of this article to present a full asymptotic analysis
of these genealogical particle models. We refer the interested reader to the recent
research monograph [2] and the references therein. For instance, it is well known that
the occupation measures of the ancestral lines converge to the desired Feynman–Kac
measures. That is, we have with various precision estimates and as N tends to infinity,
the weak convergence result limN→∞ ηNn = ηn.

1.2. Statement of the main results. Several propagation-of-chaos estimates
have been recently obtained which ensure that the particles ξin are asymptotically
independent and identically distributed with common distribution ηn. The weak-
est form of this property can be stated as follows. We say that the particle model
ξn = (ξin)1�i�N is weakly chaotic with respect to the measure ηn if we have

(1.7) lim
N→∞

E

(
q∏

i=1

f (i)
n (ξin)

)
=

q∏
i=1

ηn(f (i)
n )

for any finite block size q � N , any time horizon, and any sequence of functions

(f
(i)
n )1�i�q ∈ Bb(En)q. This propagation-of-chaos property is known to be satisfied

for the McKean interpretation models defined in (1.4). Note that if q = 1, then (1.7)
simply says that the law of a single particle is asymptotically unbiased. In other
words, by the exchangeability property of the particle model, we have

(1.8) E
(
f (1)
n (ξ1

n)
)

= E
(
ηNn (f (1)

n )
)
→ ηn(f (1)

n ) as N → ∞.

If we take ε = 0 in (1.4), the particle model reduces to a simple genetic model.
In this context, we also have the increasing propagation-of-chaos estimate

(1.9) ‖Law(ξ1
n, . . . , ξ

q
n) − η⊗q

n ‖tv � c(n) q2N−1

for some finite constant, which depends only on the time parameter n and where ‖•‖tv

denotes the total variation norm on the set of bounded measures. The complete proof
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of this well-known result and related estimates with respect to relative entropy-type
criteria can be found in [2] (see, for instance, Theorems 8.3.2 and 8.3.3, pp. 259–260).

The main object of this paper is to provide an asymptotic functional expansion of
these two convergence results with respect to the precision parameter N . To simplify
the presentation, we shall often use the following slight abuse of notation; for a given
Markov transition K from a measurable space (E, E) into another space (F,F) and
for any pair of functions f, g ∈ Bb(F ), we write

K
[(
f −K(f)

)(
g −K(g)

)]
(x)

def
= K

[(
f −K(f)(x)

)(
g −K(g)(x)

)]
(x)

= K(fg)(x) −K(f)(x)K(g)(x).

Our asymptotic expansions are expressed in terms of a collection of independent and
centered Gaussian fields Wn on the Banach function spaces Bb(En) with, for any
fn, gn ∈ Bb(En),

(1.10) E
(
Wn(fn)Wn(gn)

)
= ηn−1Kn,ηn−1

([
fn −Kn,ηn−1

(fn)
][
gn −Kn,ηn−1

(gn)
])

.

For n = 0 we use the convention K0,η−1
= η0. The Gaussian fields Wn represent

the asymptotic fluctuations of the local sampling errors associated with the mean
field particle approximation sampling steps. To describe precisely our first main re-
sult, let Qp,n with 0 � p � n be the Feynman–Kac semigroup associated with the
flow γn = γpQp,n. For p = n, we use the convention that Qn,n = Id. Using the
Markov property, it is not difficult to check that Qp,n has the following functional
representation:

(1.11) Qp,n(fn)(xp) = E

[
fn(Xn)

∏
p�k<n

Gk(Xk)
∣∣Xp = xp

]

for any test function fn ∈ Bb(En) and any state xp ∈ Ep. To check this assertion, we
simply note that

γn(fn) = E

[[ ∏
0�k<p

Gk(Xk)

]
× E

(
fn(Xn)

∏
p�k<n

Gk(Xk) | (X0, . . . , Xp)

)]

= E

[[ ∏
0�k<p

Gk(Xk)

]
Qp,n(fn)(Xp)

]
= γpQp,n(fn),

which establishes (1.11). For p = n we use the conventions
∏

∅
= 1 and Qp,n = Id.

We also denote by Rp,n the renormalized semigroup from Ep into En given by

(1.12) Rp,n(fn) =
Qp,n(fn)

ηp(Qp,n(1))
=

γp(1)

γn(1)
Qp,n(fn).

Theorem 1.1. For any time horizon n � 0, any block size parameter 0 < q � N ,

and every sequence of functions f
(k)
n ∈ Bb(En) with ηn(f

(k)
n ) = 1 and 1 � k � q, we

have

lim
N→∞

NE

[
q∏

k=1

ηNn (f (k)
n ) − 1

]
= −

q∑
i=1

n−1∑
p=0

γp(1)2E
(
Wp(Qp,n1)Wp(Qp,n[f (i)

n − 1])
)

+
∑

1�i<j�q

n∑
p=0

E
(
Wp

(
Rp,n(f (i)

n − 1)
)
Wp

(
Rp,n(f (j)

n − 1)
))

.(1.13)
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In addition, we have the weak asymptotic propagation of chaos estimate

(1.14)

lim
N→∞

N

[
E

(
q∏

k=1

f (k)
n (ξkn)

)
− E

(
q∏

k=1

ηNn (f (k)
n )

)]
= −

∑
1�i<j�q

(
ηn(f (i)

n f (j)
n ) − 1

)
.

The asymptotic expansions described in Theorem 1.1 are valid for any mean
field particle model of the form (1.6). The assumptions on the pair potential/kernel
(Gn,Mn) presented in subsection 1.1 are remarkably weak. Under stronger mixing-
type conditions on the mutation transitions Mn, we shall derive uniform bounds, with
respect to the time parameter, of the asymptotic estimates (1.13). The complete proof
of Theorem 1.1 is given in subsection 3.1.

These asymptotic expansions provide sharp estimates of the weak propagation of
chaos and of the unbiased properties stated in (1.7) and (1.8). For instance, if we
take q = 1 in (1.13) and consider the simple genetic interpretation model associated
with the choice of εn = 0 in (1.4), then, for any fn ∈ Bb(En), we have the asymptotic
unbiased expansion

lim
N→∞

NE
(
ηNn (fn) − ηn(fn)

)
= −

n−1∑
p=0

ηp
[
Rp,n(1)Rp,n(fn − ηn(fn))

]
.

Theorem 1.1 provides weak asymptotic expansions of the q-tensor particle mea-

sures (ηNn )⊗q on tensor product test functions Fn = (f
(1)
n ⊗· · ·⊗f

(q)
n ). From a statistics

point of view the random quantities

(ηNn )⊗q(Fn) =
1

Nq

N∑
i1,...,iq=1

Fn(ξi1n , . . . , ξiqn ),

where the summation is understood to be over all indexes (i1, . . . , iq) ∈ {1, . . . , N}q,
can also be interpreted as a sequence of U -statistics for interacting processes. The
fluctuations associated with these mathematical objects are discussed in (3.4) (see
subsection 3.2).

Our next objective is to further extend the propagation of chaos analysis of the
simple genetic model to test functions which are not necessarily tensor product func-
tions. The motivation behind this extension is to derive sharp asymptotic and weak
expansions of the law of the first q-genealogical path particles.

For this purpose, we introduce the canonical projection operators (pin)1�i�q and

the collection of selection jump operators (Ci,j)1�i<j�q on Bb(E
q
n) defined for any

Fn ∈ Bb(E
q
n) by the formulae

pin(Fn)(x1
n, . . . , x

q
n) =

∫
En

ηn(dxi
n)Fn(x1

n, . . . , x
i
n, . . . , x

q
n),

Ci,j(Fn)(x1
n, . . . , x

q
n) = Fn(θi,j(x

1
n, . . . , x

q
n))

with the change of coordinate mapping θi,j from Eq
n into itself, defined by θi,j(x

1
n, . . . ,

xq
n)j = xi

n and θi,j(x
1
n, . . . , x

q
n)k = xk

n for k �= j otherwise; i.e., the jth component xj
n

of (x1
n, . . . , x

q
n) is set equal to xi

n, whereas the others are not modified. We also
associate with a given function fn ∈ Bb(En) the q-empirical function f̄q

n ∈ Bb(E
q
n)
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defined by

f̄q
n(x1

n, . . . , x
q
n) =

1

q

q∑
i=1

fn(xi
n).

Finally, let R⊗q
p,n denote the q-tensor product semigroup associated with Rp,n and

defined for any Fn ∈ Bb(E
q
n) and (x1

p, . . . , x
q
p) ∈ Eq

p by

R⊗q
p,n(Fn)(x1

p, . . . , x
q
p) =

∫
Eq

n

Rp,n(x1
p, dx

1
n) · · ·Rp,n(xq

p, dx
q
n)Fn(x1

n, . . . , x
q
n).

We are now in position to state the second main result of this article.
Theorem 1.2. Let ηNn be the particle measures associated with the simple genetic

model. We assume that the state spaces En are locally compact and separable metric
spaces. For any time horizon n � 0, any block size parameter 0 < q � N , and every
function Fn ∈ Cb(Eq

n), we have

lim
N→∞

NE[(ηNn )⊗q(Fn) − η⊗q
n (Fn)] = L(q)

n (Fn),

where the bounded linear operator L(q)
n on Cb(Eq

n) is given by

L(q)
n (Fn) = − q

n−1∑
p=0

η⊗q
p

[
R

q

p,n(1)R⊗q
p,n

(
Fn − η⊗q

n (Fn)
)]

+

n∑
p=0

∑
1�i<j�q

η⊗q
p Ci,jR

⊗q
p,n(Id−pin)(Id−pjn)(Fn).(1.15)

In addition, we have the weak asymptotic propagation-of-chaos estimate

(1.16)

lim
N→∞

N
[
E
(
Fn(ξ1

n, . . . , ξ
q
n)
)
− E

(
(ηNn )⊗q(Fn)

)]
= −

∑
1�i<j�q

η⊗q
n [Ci,j − Id] (Fn).

This theorem readily provides an asymptotic first order expansion of the distri-

bution P
(q,N)
n of the first q particles (ξ1

n, . . . , ξ
q
n). More precisely, combining (1.15)

and (1.17), we find that

(1.17) P(q,N)
n = η⊗q

n + N−1M(q)
n + R(q,N)

n ,

where the remainder linear operator R(q,N)
n on Cb(Eq

n) is such that

lim
N→∞

NE
(
R(q,N)

n (Fn)
)

= 0

and the bounded linear operator M(q)
n on Cb(Eq

n) is defined for any Fn ∈ Cb(Eq
n) by

M(q)
n (Fn) = L(q)

n (Fn) −
∑

1�i<j�q

η⊗q
n [Ci,j − Id] (Fn).

Under appropriate regularity conditions on the Markov transitions Mn, we shall
also prove the uniform estimate

sup
n�0

sup
Fn : ‖Fn‖�1

∣∣M(q)
n (Fn)

∣∣ � Constant × q2.
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The complete proof of Theorem 1.2 is given in subsection 3.3, and the uniform esti-
mates stated above are derived in section 4.

Although this paper is restricted to discrete generation models, the fluctuation
and combinatorial analyses developed here are well suited to the analysis of continu-
ous time Feynman–Kac models and their interacting particle interpretation. For an
account of these continuous models we refer the reader to [2], [6] and the references
therein. The reader will find that the integration of propagation of chaos presented in
section 3 relies entirely on a precise analysis of the combinatorial properties of tensor
product particle measures, and on the fluctuation of the particle approximation mea-
sures around their limiting values. Such observations suggest that these techniques
may apply to any interacting processes as soon as we have some information about
their fluctuations.

Finally, we mention that the weak asymptotic expansions presented in [3] lead to
the conjecture that strong versions, with respect to the total variation distance, exist

with a first order term given by the norm of the operator M(q)
n .

1.3. Some model application areas. Some of the most exciting develop-
ments in applied probability, computational statistics, and engineering sciences are
those centered around the recently established connection between branching and in-
teracting particle systems, nonlinear filtering, and Bayesian methods. For an overview
of the theory and application of this subject, we refer the interested reader to [2], [7]
and references therein.

To motivate the abstract mathematical models discussed in the present article,
we have chosen to illustrate their impact in two applications.

The first is concerned with the analysis of Markov chains with fixed terminal
values. This rather recent subject has also been stimulated by the need to find ef-
ficient simulation techniques for sampling from complex distributions (see [3], [4]).
As we shall see in subsection 1.3.1, for judicious choices of potential functions, the
Feynman–Kac flow introduced in (1.1) can be interpreted as a nonlinear and sta-
tionary Metropolis–Hasting-type model. In this context, the corresponding particle
interpretation can be seen as a genealogical tree-based simulation method.

In subsection 1.3.2, we introduce nonlinear filtering applications. This rapidly
developing area is concerned with estimating the conditional distribution of a given
Markov chain with respect to some observation sequence.

1.3.1. Interacting Metropolis models. One recurrent problem in various
scientific disciplines is obtaining an efficient simulation method to produce random
samples from a given sequence of distributions πn defined on some measurable state
spaces (Fn,Fn). The prototype of these target measures is given by the annealed
Boltzmann–Gibbs measures on some common homogeneous space Fn = F . These
measures are defined by the formula

(1.18) πn(dyn) =
e−βnV (yn)

μ(e−βnV )
μ(dyn).

The parameter βn represents an inverse cooling schedule. The reference measure μ
and the energy function V are chosen such that μ(e−βV ) ∈ (0,∞) for all β > 0. More
generally, another interesting problem is to sample a backward canonical Markov path
sequence (Y0, Y1, . . . , Yn) ∈ (Fn × Fn−1 × · · · × F0) of length n+ 1 starting in Fn and
with initial distribution πn and evolving randomly from Fk+1 into Fk according to a
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given Markov transition Lk. More formally, PL
n,πn

is given by the relation

PL
n,πn

(
d(yn, yn−1, . . . , y0)

)
= πn(dyn)Ln−1(yn, dyn−1) · · ·L0(y1, y0).

As noticed in [3], these two problems have a common and natural Feynman–
Kac formulation. To describe these interpretations, we first consider an auxiliary
sequence of Markov transitions Mn+1(yn, dyn+1) from (Fn,Fn) into (Fn+1,Fn+1).
We denote by (πn × Mn+1)1 and (πn+1 × Ln)2, the distributions on the transition
space (Fn × Fn+1) defined by

d(πn ×Mn+1)1(yn, yn+1) = πn(dyn)Mn+1(yn, dyn+1),

d(πn+1 × Ln)2(yn, yn+1) = πn+1(dyn+1)Ln(yn+1, dyn).

We further assume that the mathematical objects (πn,Mn, Ln) are chosen so that
these measures are absolutely continuous with respect to each other, and the corre-
sponding Radon–Nykodim derivatives

Gn =
d(πn+1 × Ln)2
d(πn ×Mn+1)1

are bounded positive functions on (Fn × Fn+1). In this notation, it is immediate to
check the following time reversal formula:

EL
n,πn

(
fn(Yn, Yn−1, . . . , Y0)

)
= EM

π0

(
fn(Y0, Y1, . . . , Yn)

∏
0�p<n

Gp(Yp, Yp+1)

)
(1.19)

for any test function fn ∈ Bb(F0 × · · · × Fn). Here, EM
π0

is the expectation operator
with respect to the distribution PM

π0
of a forward canonical Markov path sequence

(Y0, Y1, . . . , Yn) ∈ (F0 × F1 × · · · × Fn)

starting with an initial distribution π0, and evolving from Fk into Fk+1, according
to the Markov transitions Mk+1. Arguing as in [3], we also prove the Feynman–Kac
functional representation

(1.20)

EL
n,πn

(
fn(Yn, Yn−1, . . . , Y0) | Yn = y0

)
∝ EM

y0

(
fn(Y0, Y1, . . . , Yn)

∏
0�p<n

Gp(Yp, Yp+1)

)
,

where EM
y0

is the expectation operator with respect to the distribution PM
y0

of a for-
ward canonical Markov path sequence starting at Y0 = y0. The genealogical tree
interpretation of the Feynman–Kac model given in (1.21) clearly yields an elegant
backward particle simulation method for sampling Markov paths which are restricted
to having particular terminal values.

These particle approximation models can also be interpreted as a sequence of
interacting Metropolis-type algorithms. We illustrate this observation in the context
of the target Boltzmann–Gibbs measures introduced in (1.18). In this case, we no-
tice that the nth marginal of the Feynman–Kac path measure introduced in (1.19)
coincides with the Boltzmann–Gibbs measure at temperature βn; that is, we have

(1.21) EM
π0

(
ϕn(Yn)

∏
0�p<n

Gp(Yp, Yp+1)

)
= πn(ϕn)
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for any ϕn ∈ Bb(En). In contrast to traditional noninteracting Metropolis models,
we emphasize that the McKean interpretation (1.5) of the flow (1.21) consists of a
nonlinear Markov chain with distribution πn, at each time n. Furthermore, the corre-
sponding particle interpretation clearly behaves as an interacting Metropolis model.
It is also essential to notice that the usual Metropolis rejection mechanism has been
replaced with a selective interacting jump transition. As noticed in [4], one judicious
choice of Markov mutation transition is to take a Markov chain Monte Carlo ker-
nel Mn such that πnMn = πn. In this case, the interaction potential functions are
given by Gn(yn, yn+1) = exp[−(βn+1 − βn)V (yn)] as soon as

Ln(yn+1, dyn) = πn+1(dyn)
dMn+1(yn, •)

dπn+1
(yn+1).

When Mn represents the elementary transition of a simulated annealing model at
temperature βn, the resulting particle model behaves as an interacting simulated
annealing algorithm. At low temperature, the potential function is close to one, and
thus the particles are more likely to not interact.

1.3.2. Nonlinear filtering problems. The filtering problem is to estimate a
stochastic signal process that we cannot directly observe. More precisely, the signal is
partially observed by some noisy sensors. The noise may come from the model uncer-
tainties, or from inherent perturbations such as thermal noise in electronic devices.

The signal/observation pair sequence (Xn, Yn)n�0 is defined as a Markov chain

which takes values in some product of measurable spaces (En × Fn)n�0. We further

assume that the initial distribution ν0 and the Markov transitions Pn of (Xn, Yn) have
the form

ν0(d(x0, y0)) = g0(x0, y0) η0(dx0) q0(dy0),

Pn

(
(xn−1, yn−1), d(xn, yn)

)
= gn(xn, yn)Mn(xn−1, dxn) qn(dyn),

where gn are strictly positive functions on (En×Fn) and qn is a sequence of measures
on Fn. The initial distribution η0 of the signal Xn, and its Markov transitions Mn

from En−1 into En, are assumed known. A version of the conditional distributions
of the signal states given their noisy observations is expressed in terms of Feynman–
Kac formulae of the same type as the ones discussed. More precisely, let Gn be the
nonhomogeneous function on En defined for any xn ∈ En by

(1.22) Gn(xn) = gn(xn, yn).

Note that Gn depends on the observation value yn at time n. In this notation, the
conditional distribution of the signal Xn, given the sequence of observations from the
origin up to time n, has the Feynman–Kac functional representation

E(fn(X0, . . . , Xn) | Y0 = y0, . . . , Yn = yn) ∝ E

(
fn(X0, . . . , Xn)

∏
0�p�n

Gp(Xp)

)
.

In this context, the corresponding genealogical tree-based models can be interpreted
as an adaptive and stochastic grid approximation. Note that the selection transition
is dictated by the likelihood function (1.22); i.e., the current observation delivered
by the sensors. Therefore, the resulting birth and death genetic mechanism gives
more reproductive opportunities to particles evolving in state space regions with high
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conditional probability mass. This filtering problem arises in numerous scientific dis-
ciplines, including financial mathematics, robotics, telecommunications, and tracking;
see, for instance, [2], [7] and references therein.

2. Preliminary results. This section has two separate parts. In subsection 2.1,
we provide a summary of results on the fluctuations of a class of random fields asso-
ciated with the particle occupation measures ηNn introduced in (1.6). The definitions
and results essentially come from Chapter 9 in [2]. We shall simplify and further
extend this study to random field product models. This approach is central to our
method of analyzing the sharp asymptotic propagation of chaos properties. In subsec-
tion 2.2, we provide a transport equation relating a pair of q-tensor product particle
measures. We also mention that weaker versions of this identity are sometimes used
in nonparametric statistics to relate U -statistics to von Mises statistics.

2.1. Fluctuation analysis. The fluctuation analysis of the particle measures ηNn
around their limiting values ηn is essentially based on the asymptotic analysis of the lo-
cal sampling errors associated with the particle approximation sampling steps. These
local errors are expressed in terms of the random fields WN

n , given for any fn ∈ Bb(En)
by the relation

WN
n (fn) =

√
N [ηNn − Ψn−1(η

N
n−1)Mn](fn) =

1√
N

N∑
i=1

[
fn(ξin) −Kn,ηN

n−1
(fn)(ξin−1)

]
.

The next central limit theorem for random fields is pivotal. Its complete proof
can be found in [2, Thm. 9.3.1, Corollary 9.3.1].

Theorem 2.1. For any fixed time horizon n � 1, the sequence (WN
p )1�p�n

converges in law, as N tends to infinity, to a sequence of n independent Gaussian and
centered random fields (Wp)1�p�n with, for any fp, gp ∈ Bb(Ep) and 1 � p � n,

(2.1) E(Wp(fp)Wp(gp)) = ηp−1Kp,ηp−1

([
fp −Kp,ηp−1(fp)

][
gp −Kp,ηp−1(gp)

])
.

For the McKean selection transition (1.4), with εn = 0, we find that

Kp,ηp−1(xp−1, •) = Ψp−1(ηp−1)Mp.

In this case, the correlation term (2.1) takes the form

E
(
Wp(fp)Wp(gp)

)
= ηp

(
[fp − ηp(fp)][gp − ηp(gp)]

)
.

More generally, for any choice of εn � 0, we have

E
(
Wp(fp)Wp(gp)

)
= ηp

([
fp − ηp(fp)

][
gp − ηp(gp)

])
− ηp−1

(
(εp−1Gp−1)

2
[
Mp(fp) − ηp(fp)

][
Mp(gp) − ηp(gp)

])
= ηp

(
[fp − ηp(fp)][gp − ηp(gp)]

)
− ε2

p−1ηp−1

(
Qp−1,p

[
fp − ηp(fp)

]
Qp−1,p

[
gp − ηp(gp)

])
.

These two observations show that local variances induced by sampling errors are
reduced for the McKean transitions associated with the choice εn > 0.
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These multivariate fluctuations also yield, for any finite collection of functions

(f
(i)
n )1�i�d ∈ Bb(En)d, with d � 1,

(
WN

n (f1
n), . . . ,WN

n (fd
n)
) N→∞−−−−→

(
Wn(f1

n), . . . ,Wn(fd
n)
)
,

where (Wn(f1
n), . . . ,Wn(fd

n)) is a d-dimensional centered Gaussian random variable
with a (d× d)-covariance matrix Σ(f) whose (i, j)-elements Σ(f i

n, f
j
n) are given by

Σ(f i
n, f

j
n) = ηn−1Kn,ηn−1

([
f i
n −Kn,ηn−1

(f i
n)
][
f j
n −Kn,ηn−1(f

j
n)
])

.

We also observe that the unnormalized distributions (γn) can be expressed in
terms of the normalized measures with the product formula γn+1(1) = γn(Gn) =
ηn(Gn) γn(1). This readily implies that, for any fn ∈ Bb(Fn),

(2.2) γn(fn) = ηn(fn)
∏

0�p<n

ηp(Gp).

Mimicking (2.2), the unbiased particle approximation measures γN
n of the unnor-

malized model γn are defined as

γN
n (fn) = ηNn (fn)

∏
0�p<n

ηNp (Gp).

To explain what we have in mind when making these definitions, we now consider the
elementary decomposition

γN
n − γn =

n∑
p=0

[γN
p Qp,n − γN

p−1Qp−1,n].

For p = 0, we take the convention ηN−1Q−1,n = γn. The next important thing to note
is that

γN
p−1Qp−1,p = γN

p−1(Gp−1) Ψp−1(η
N
p−1)Mp and γN

p−1(Gp−1) = γN
p (1).

This decomposition now readily implies that

(2.3) W γ,N
n (fn)

def
=

√
N [γN

n − γn](fn) =

n∑
p=0

γN
p (1)WN

p (Qp,nfn).

Since the random variable γN
p (1) depends only on the flow (ηNk )0�k<p, it is easy

to check that γN
n is an unbiased estimate of γn; in the sense that E(γN

n (fn)) =
γn(fn), for any fn ∈ Bb(En). To take the final step, we recall that the random
sequence (γN

p (1))1�p�n converges in law, as N tends to infinity, to the deterministic

sequence (γp(1))1�p�n (see, for instance, [2]). A simple application of Slutsky’s lemma

implies that the random fields W γ,N
n converge in law, as N tends to infinity, to the

Gaussian random fields W γ
n defined for any fn ∈ Bb(En) by

(2.4) W γ
n (fn) =

n∑
p=0

γp(1)Wp(Qp,nfn).
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In much the same way, the sequence of random fields

W η,N
n (fn)

def
=

√
N [ηNn − ηn](fn) = γN

n (1)−1 ×W γ,N
n

(
fn − ηn(fn)

)
(2.5)

converges in law, as N tends to infinity, to the Gaussian random fields W η
n defined

for any fn ∈ Bb(En) by

(2.6) W η
n (fn) =

n∑
p=1

γp(1)

γn(1)
Wp

(
Qp,n(fn − ηn(fn))

)
.

Our final objective is to analyze the asymptotic behavior of random fields of
product sequences. These properties are one of the stepping stones in the integration
analysis of propagation of chaos used in the further developments of section 3.

We let Poly(Eq
n) be the set of all linear combinations Fn =

∑
k�0 λkF

k
n of

polynomial q-tensor product functions

F k
n = f (k,1)

n ⊗ · · · ⊗ f (k,q)
n with (f (k,i)

n )1�i�q ∈ Bb(En)q,

where
∑

k�0 |λk|‖F k
n‖ < ∞. We are now ready to prove the following proposition.

Proposition 2.1. For any time horizon n � 1, any particle block size parameter
1 � q � N , and any sequence (νi)1�i�d ∈ {γ, η}, the sequence of random fields

(W ν1,N
n ⊗ · · · ⊗ W νq,N

n ) on Poly(Eq
n) converges in law, as N tends to infinity, to

the Gaussian random field (W ν1

n ⊗ · · · ⊗ W νq

n ). In addition, we have for any Fn ∈
Poly(Eq

n),

lim
N→∞

E
((

W ν1,N
n ⊗ · · · ⊗W νq,N

n

)
(Fn)

)
= E

((
W ν1

n ⊗ · · · ⊗W νq

n

)
(Fn)

)
.

Proof. We recall from [2] that for ν ∈ {γ, η}, any fn ∈ Bb(En), and p � 1, we
have the Lp-mean error estimates

(2.7) sup
N�1

E
(∣∣W ν,N

n (fn)
∣∣p)1/p � cp(n)‖fn‖

for some finite constant cp(n), which depends only on the pair of parameters (p, n), and
with the random fields (W γ,N

n ,W η,N
n ) defined in (2.3) and (2.5). By the Borel–Cantelli

lemma this property ensures that the random sequence of pairs (γN
n (fn), ηNn (fn))

converges almost surely to (γn(fn), ηn(fn)), as N tends to infinity. By the definitions
of the random fields (W γ,N

n ,W η,N
n ) given in (2.3) and (2.5), and recalling that the

sequence of random fields (WN
p )1�p�n converges in law, as N tends to infinity, to

a sequence of n independent Gaussian and centered random fields (Wp)1�p�n, one
concludes that

(
W ν1,N

n ⊗ · · · ⊗W νq,N
n

)(
f (k,1)
n ⊗ · · · ⊗ f (k,q)

n

)
=

q∏
i=1

W νi,N
n

(
f (k,i)
n

)
converges in law, as N tends to infinity, to

(
W ν1

n ⊗ · · · ⊗W νq

n

)(
f (k,1)
n ⊗ · · · ⊗ f (k,q)

n

)
=

q∏
i=1

W νi

n

(
f (k,i)
n

)

for any (f
(k,i)
n )1�i�q ∈ Bb(En)q. This clearly ends the proof of the first assertion.
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Using Hölder’s inequality, we can also prove that any polynomial function of a
finite number of terms W ν,N

n (fn), with ν ∈ {γ, η} and fn ∈ Bb(En), forms a uni-
formly integrable collection of random variables (indexed by the size and precision
parameter N � 1). This property, combined with the continuous mapping theorem
and Skorokhod embedding theorem, ends the proof of the proposition.

2.2. Combinatorial properties of tensor product measures. This section
is concerned with a precise combinatorial analysis of the particle measures on Eq

n

defined by the formulae

(ηNn )⊗q =
1

Nq

∑
β∈〈N〉〈q〉

δ
(ξ

β(1)
n ,...,ξ

β(q)
n )

and (ηNn )�q =
1

(N)q

∑
β∈〈q,N〉

δ
(ξ

β(1)
n ,...,ξ

β(q)
n )

,(2.8)

where 〈N〉〈q〉 represents the set of all mappings from 〈q〉 = {1, . . . , q} into 〈N〉,
and 〈q,N〉 the subset of all (N)q = N !/(N − q)! one-to-one mappings from the set 〈q〉
into 〈N〉. More precisely, the aim of this short section is to express (ηNn )⊗q as a linear
transport of the measure (ηNn )�q, with respect to some Markov transition. As we shall
see in the further developments of section 3, this property allows us direct transfer of
several asymptotic results on the q-tensor product measures (ηNn )⊗q to the random
measures (ηNn )�q.

Let P(q, p) be the set of all partitions of the set 〈q〉 into p blocks equipped with
the order relation on the subsets A,B of 〈q〉 given by

A � B ⇐⇒ inf{i : i ∈ A} � inf{i : i ∈ B}.

Finally, we associate with a given partition π = (πi)1�i�p ∈ P(q, p) of p increasing

blocks the mapping βπ ∈ 〈q,N〉 defined by βπ =
∑p

i=1 β(i) 1πi . In this notation, we
have for any Fn ∈ Bb(E

q
n)

(2.9)
(
ηNn
)�q

(Fn) =
1

(N)q

∑
β∈〈q,N〉

(Fn)
(
ξβ(1)
n , . . . , ξβ(q)

n

)

and

(2.10)
(
ηNn
)⊗q

(Fn) =
1

Nq

q∑
p=1

∑
π∈P(q,p)

∑
β∈〈p,N〉

Fn

(
ξβπ(1)
n , . . . , ξβπ(q)

n

)
.

The latter formula is reasonably well known (for a complete proof we refer the reader
to [2, subsection 8.6, p. 267]). For symmetric test functions Fn, if we replace the ran-
dom sequence (ξin)1�i�N with a sequence of independent and identically distributed
random variables, then these two quantities are known as the U -statistics, and the
V -statistics (or the von Mises statistics), of degree q with kernel Fn. These two objects
appear in a natural way in generalized mean valued statistics analysis. The simplest
nontrivial example often used is the 2-tensor product measure. In this case, we have

P(2, 1) = {π} with π = {π1, π2} and π1 = {1} � π2 = {2},

P(2, 2) = {π} with π = π1 = {1, 2}.

Thus, (2.9) and (2.10) for q = 2 take the simplest form

(
ηNn
)�2

(Fn) =
1

N(N − 1)

∑
β∈〈2,N〉

Fn

(
ξβ(1)
n , ξβ(2)

n

)
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and (
ηNn
)⊗2

(Fn) =
1

N2

∑
β∈〈1,N〉

Fn

(
ξβ(1)
n , ξβ(1)

n

)
+

1

N2

∑
β∈〈2,N〉

Fn

(
ξβ(1)
n , ξβ(2)

n

)
.

In a more general setup, we observe that the qth term in the right-hand side of (2.10) is

given by N−q
∑

β∈〈q,N〉 Fn(ξ
β(1)
n , . . . , ξ

β(q)
n ). For p = q− 1, the set P(q, q− 1) consists

of all q(q−1)/2 partitions π with one block of two elements, and (q−2) blocks of one
element. For instance, for π = {π1, . . . , πq−1}, with π1 = {1, 2} � π2 = {3} � · · · �
πq−1 = {q} we find that∑

β∈〈q−1,N〉
Fn

(
ξβπ(1)
n , . . . , ξβπ(q)

n

)
=

∑
β∈〈q−1,N〉

Fn

(
ξβ(1)
n , ξβ(1)

n , ξβ(2)
n , . . . , ξβ(q−1)

n

)
.

To go one step further in our discussion, we observe that, for any p � q, we have

Fn

(
ξβπ(1)
n , . . . , ξβπ(q)

n

)
= Cp,q

π (Fn)
(
ξβ(1)
n , . . . , ξβ(p)

n

)
,

with the Markov operator Cp,q
π from Ep

n into Eq
n defined by

Cp,q
π (Fn)(x1, . . . , xp) = Fn

(
p∑

i=1

xi 1πi
(1), . . . ,

p∑
i=1

xi 1πi
(q)

)
.

We extend Cp,q
π to a Markov operator C

(p,q)
π from Eq

n into itself by setting

C(p,q)
π (Fn)(x1, . . . , xq) = Cp,q

π (Fn)(x1, . . . , xp).

The operator C
(p,q)
π has the following interpretation: Let π be a partition of q ele-

ments into p increasing blocks π1, . . . , πp of respective sizes b1, . . . , bp. Sampling a

configuration according to C
(p,q)
π ((x1, . . . , xq), •) consists of duplicating the xi indi-

viduals bi times, where 1 � i � p. In this sense, C
(p,q)
π can also be interpreted as

a selection jump operator. By construction, an elementary calculation provides the
following identities:

1

(N)p

∑
β∈〈p,N〉

Fn

(
ξβπ(1)
n , . . . , ξβπ(q)

n

)
=
(
ηNn
)�p

Cp,q
π Fn =

(
ηNn
)�q

C(p,q)
π Fn.

Using (2.10), it is straightforward to prove the following Markov transport equation.
Proposition 2.2. For any block size parameter 1 � q � N , we have the

decomposition

(2.11) (ηNn )⊗q =
1

Nq

q∑
p=1

S(q, p)(N)p(η
N
n )�qC(p,q),

where S(q, p) is the Stirling number of the second kind,1 and the Markov selection-
jump-type operator C(p,q) from Eq

n into itself is given by

C(p,q) =
1

S(q, p)

∑
π∈P(q,p)

C(p,q)
π .

1S(q, p) corresponds to the number of partitions of q elements in p blocks.
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In our context, the special attractiveness of decomposition (2.11) comes from the

fact that it connects in a natural way the distribution P
(q,N)
n of the first q particles

(ξ1
n, . . . , ξ

q
n) with the mean value of the q-tensor product measures (ηNn )⊗q. More

precisely, by the exchangeability property of the particle model, we have the following
transport equation:

E
[
(ηNn )⊗q(Fn)

]
=

1

Nq

q∑
p=1

S(q, p)(N)pP
(q,N)
n

(
C(p,q)(Fn)

)
= P(q,N)

n C(q,N)(Fn)

for any Fn ∈ Bb(E
q
n), with the Markov transition from Eq

n into itself given by

C(q,N) def
=

1

Nq

q∑
p=1

S(q, p)(N)p C
(p,q).

3. Asymptotic propagation of chaos properties. The main objective of
this section is to prove the theorems stated in subsection 1.2.

Subsection 3.1 provides a weak asymptotic expansion of the distribution P
(q,N)
n of

the first q particles (ξin)1�i�q on tensor product functions. We analyze a general class

of McKean selection models (1.4). The study has two parts. First, we examine the
bias of the tensor product particle measures (ηNn )⊗q using the random field fluctuation

analysis presented in subsection 2.1. Then we transfer this result to P
(q,N)
n with the

help of the combinatorial transport equation developed in subsection 2.2.
In subsection 3.3, we extend the weak asymptotic expansions derived in subsec-

tion 3.1 to the class of continuous and bounded functions on product spaces. This
analysis is restricted to a simple genetic particle model evolving on locally compact
and separable metric spaces. We recall that these genetic models correspond to the
McKean selection transition (1.4) with εn = 0. Our strategy consists of analyzing
the tensor product bias, and the asymptotic first order quantities as linear functional
operators. This integration of a propagation of chaos interpretation, combined with

a density argument, allows us to derive an asymptotic expansion P
(q,N)
n .

3.1. General McKean particle models. As we mentioned above, Proposi-
tion 2.1 is pivotal in the analysis of the bias of the path-particle models. To illustrate
our approach, we present an elementary consequence of Proposition 2.1. We first
rewrite (2.5) as

W η,N
n (fn) = γn(1)−1W γ,N

n

(
fn − ηn(fn)

)
+
(
γN
n (1)−1 − γn(1)

−1)×W γ,N
n

(
(fn − ηn(fn))

)
= γn(1)−1W γ,N

n

(
fn − ηn(fn)

)
− 1√

N

[
γN
n (1) γn(1)

]−1
W γ,N

n

(
fn − ηn(fn)

)
W γ,N

n (1).

This readily yields that

NE
(
ηNn (fn) − ηn(fn)

)
= −E

([
γN
n (1) γn(1)

]−1
W γ,N

n

(
fn − ηn(fn)

)
W γ,N

n (1)
)
.

Note that the random sequence (1/(γn(1) γN
n (1)))N�1 is uniformly bounded and it

converges in law to γn(1)−2 as N tends to infinity. Now using Proposition 2.1 we find
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the sharp asymptotic bias estimate

lim
N→∞

NE(ηNn (fn) − ηn(fn)) = −γn(1)−2E
(
W γ

n (1)W γ
n

(
fn − ηn(fn)

))

= −
n∑

p=0

(
γp(1)

γn(1)

)2

E
(
Wp

(
Qp,n(1)

)
Wp

(
Qp,n[fn − ηn(fn)]

))
.(3.1)

The next technical proposition extends this result to the tensor empirical mea-
sures (ηNn )⊗q.

Proposition 3.1. For any n, q � 1 and every sequence of functions f
(k)
n ∈

Bb(En) with ηn(f
(k)
n ) = 1 and 1 � k � q, we have

lim
N→∞

NE

[
q∏

k=1

ηNn (f (k)
n ) − 1

]

= −
q∑

i=1

γn(1)−2E
(
W γ

n (1)W γ
n

(
f (i)
n − 1

))
+

∑
1�i<j�q

E
(
W η

n (f (i)
n )W η

n (f (j)
n )

)
.

Proof. We use the decomposition

q∏
i=1

ai − 1 =
∑

1�p�q

∑
1�j1<···<jp�q

p∏
l=1

(ajl − 1)

which is valid for any q � 0 and any collection of real numbers (ai)1�i�q. Using (2.7)
and Hölder’s inequality we readily find that∣∣∣∣∣E

[
q∏

p=1

(ηNn (f (p)
n ) − 1)

]∣∣∣∣∣ �
q∏

p=1

E
[
|ηNn (f (p)

n ) − 1|q
]1/q � cq(n)

Nq/2

[
q∏

p=1

‖f (p)
n ‖

]

for some finite constant cq(n), which depends only on the pair of parameters (q, n).

If we take ai = ηNn (f
(i)
n ) in the above decomposition, then we obtain

(3.2)

q∏
p=1

ηNn (f (p)
n ) − 1 =

∑
1�p�q

∑
1�j1<···<jp�q

N−p/2

[
p∏

l=1

W η,N
n (f (jl)

n )

]

from which we conclude that

E

[
q∏

k=1

ηNn (f (k)
n ) − 1

]
=

q∑
i=1

E
[
(ηNn (f (i)

n ) − 1)
]

+
∑

1�i<j�q

E
[
(ηNn (f (i)

n ) − 1)(ηNn (f (j)
n ) − 1)

]
+ O

(
1

N
√
N

)
.

The end of the proof is now a straightforward consequence of (3.1) and Proposition 2.1.
The statement of Proposition 3.1 corresponds to the first part of Theorem 1.1.

Indeed, by the definitions of the random fields (W γ
n ,W

η
n ) given in (2.4) and (2.6) and

for every sequence of functions f
(k)
n ∈ Bb(En) with ηn(f

(i)
n ) = 1 and 1 � i � q, we
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have that

E
(
W γ

n (1)W γ
n (f (i)

n − 1)
)

=

n∑
p=0

n∑
q=0

γp(1) γq(1)E
[
Wp

(
Qp,n(1)

)
Wq

(
Qq,n(f (i)

n − 1)
)]

=

n−1∑
p=0

γp(1)2 E
[
Wp

(
Qp,n(1)

)
Wp

(
Qp,n(f (i)

n − 1)
)]

and

E
(
W η

n (f (i)
n )W η

n (f (j)
n )

)
=

n∑
p=0

(
γp(1)

γn(1)

)2

E
[
Wp

(
Qp,n(f (i)

n − 1)
)
Wp

(
Qp,n(f (j)

n − 1)
)]

=

n∑
p=0

E
[
Wp

(
Rp,n(f (i)

n − 1)
)
Wp

(
Rp,n(f (j)

n − 1)
)]
.

This implies that

lim
N→∞

NE

[
q∏

k=1

ηNn (f (k)
n ) − 1

]

= −
q∑

i=1

n−1∑
p=0

γp(1)2E
(
Wp(Qp,n1)Wp(Qp,n[f (i)

n − 1])
)

+
∑

1�i<j�q

n∑
p=0

E
(
Wp

(
Rp,n(f (i)

n − 1)
)
Wp

(
Rp,n(f (j)

n − 1)
))

.

The end of the proof of the theorem is now a clear consequence of the following
proposition.

Proposition 3.2. For any time horizon n � 1, any particle block size parameter

1 � q � N , and every sequence of functions f
(k)
n ∈ Bb(En) with ηn(f

(k)
n ) = 1 and

1 � k � q, we have

lim
N→∞

N
[
E
(
f (1)
n (ξ1

n) · · · f (q)
n (ξqn)

)
− 1
]

= −
q∑

i=1

γn(1)−2E
(
W γ

n (1)W γ
n (f (i)

n − 1)
)

+
∑

1�i<j�q

[
E
(
W η

n (f (i)
n )W η

n (f (j)
n )

)
+
(
1 − ηn(f (i)

n f (j)
n )

)]
.

Proof. After some elementary manipulations and using (2.11), we prove that

(3.3)

E
(
(ηNn )⊗q

(
f (1)
n ⊗ · · · ⊗ f (q)

n

))
− 1 =

(N)q
Nq

I(1,N)
n (f) +

(N)q−1

Nq
I(2,N)
n (f) + O

(
1

N2

)

with

I(1,N)
n (f) = E

((
ηNn
)�q(

f (1)
n ⊗ · · · ⊗ f (q)

n

))
− 1 = E

(
f (1)
n (ξ1

n) · · · f (q)
n (ξqn)

)
− 1
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and

I(2,N)
n (f) =

∑
π∈P(q,q−1)

E
((

ηNn
)�(q−1)

Cq−1,q
π

((
f (1)
n ⊗ · · · ⊗ f (q)

n ) − 1
))

=
∑

1�i<j�q

[
E

(
(f (i)

n f (j)
n )(ξin)

[ ∏
k∈{1,...,q}−{i,j}

f (k)
n (ξkn)

])
− 1

]
.

Meanwhile, by (1.9) we observe that limN→∞ I
(1,N)
n (f) = 0, and since we have

N

[
1 − (N)q

Nq

]
� N

[
1 −

(
1 − q − 1

N

)q−1]
� (q − 1)2

we also find that limN→∞ N(1− (N)qN
−q) I

(1,N)
n (f) = 0. In much the same way, we

have

lim
N→∞

I(2,N)
n (f) = I(2)

n (f)
def
=

∑
1�i<j�q

[
ηn(f (i)

n f (j)
n ) − 1

]
.

This clearly yields that limN→∞(N)q−1N
−(q−1)I

(2,N)
n (f) = I

(2)
n (f). These estimates

together with (3.4) imply that

lim
N→∞

N I(1,N)
n (f) = −I(2)

n (f) + lim
N→∞

NE

[
q∏

k=1

ηNn (f (k)
n ) − 1

]
.

The end of the proof is now a straightforward consequence of Proposition 3.1.

3.2. Fluctuations of the particle tensor product measures. Before going
into further detail, it is important to make a couple of remarks. We first observe
that (3.2) can be used to analyze the fluctuations of the particle tensor product
measures (ηNn )⊗q on the set of test functions Poly(Eq

n). Indeed, a simple argument

shows that the random sequence
√
N [
∏q

k=1 η
N
n (f

(k)
n )−1] converges in law, as N → ∞,

to the centered Gaussian sum
∑q

k=1 W
η
n (f

(k)
n ). More formally, if we set Fn = (f

(1)
n ⊗

· · · ⊗ f
(q)
n ), then we obtain the fluctuations of the U -statistics associated with an

interacting particle model; that is, we have

(3.4) lim
N→∞

√
N
[(
ηNn
)⊗q − η⊗q

n

]
(Fn) =

q∑
k=1

(
η⊗(k−1)
n ⊗W η

n ⊗ η⊗(q−k)
n

)
(Fn)

with the Gaussian random fields W η
n introduced in (2.6). To check (3.4), we simply

notice from (3.2) that

[(
ηNn
)⊗q − η⊗q

n

]
(Fn) =

q∏
p=1

ηNn
(
f (p)
n

)
−

q∏
p=1

ηn
(
f (p)
n

)

=
∑

1�p�q

∑
1�j1<···<jp�q

[
p∏

l=1

(
ηNn − ηn

)(
f (jl)
n

)][ ∏
k∈{1,...,q}−{j1,...,jp}

ηn
(
f (k)
n

)]

=
∑

1�p�q

∑
1�j1<···<jp�q

N−p/2

[
p∏

l=1

W η,N
n

(
f (jl)
n

)][ ∏
k∈{1,...,q}−{j1,...,jp}

ηn
(
f (k)
n

)]
.
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By linearity arguments, we also prove that the above convergence also holds for any
Fn ∈ Poly(Eq

n).
Using (3.2) again, we have the second order fluctuations

lim
N→∞

N

{
(ηNn )⊗q − η⊗q

n −
q∑

k=1

[
η⊗(k−1)
n ⊗ (ηNn − ηn) ⊗ η⊗(q−k)

n

]}
(Fn)

=
∑

1�k<l�q

[
η⊗(k−1)
n ⊗W η

n ⊗ η⊗(l−k−1)
n ⊗W η

n ⊗ η⊗(q−l)
n

]
(Fn)(3.5)

for any Fn ∈ Poly(Eq
n). These asymptotic results clearly enhance and strengthen the

weak expansions in Proposition 3.1.
We end this section with a discussion of the fluctuations of (ηNn )�q. Using the

combinatorial transport equation (2.11), we first observe that

[
(ηNn )⊗q − η⊗q

n

]
=

(N)q
Nq

[
(ηNn )�q − η⊗q

n

]
+

(N)q−1

Nq
S(q, q − 1)

[
(ηNn )�qCq−1,q − η⊗q

n

]
+ ε(N,q)

n (Fn)

with a remainder term ε
(N,q)
n such that supN�1 N

2|ε(N,q)
n (Fn)| < ∞. Using (3.4)

and taking (3.5) into account, we can verify the following central limit theorem for
nondegenerate von Mises-type statistics.

Theorem 3.1. For any time horizon n � 1, any particle block size parameter
1 � q � N , and for any Fn ∈ Poly(Eq

n), we have the following convergence in law:

lim
N→∞

√
N
[
(ηNn )�q − η⊗q

n

]
(Fn) =

q∑
j=1

(
η⊗(j−1)
n ⊗W η

n ⊗ η⊗(q−j)
n

)
(Fn).

Finally, we also find that for the second order fluctuations

lim
N→∞

N

{
(ηNn )�q − η⊗q

n −
q∑

j=1

[
η⊗(j−1)
n ⊗ (ηNn − ηn) ⊗ η⊗(q−j)

n

]}
(Fn)

= −S(q, q − 1) η⊗q
n [Cq−1,q − Id] (Fn)

+
∑

1�k<l�q

[
η⊗(k−1)
n ⊗W η

n ⊗ η⊗(l−k−1)
n ⊗W η

n ⊗ η⊗(q−l)
n

]
(Fn).

3.3. Simple genetic particle models. In this section, we analyze the simple
genetic particle model associated with the McKean interpretation (1.4), with εn = 0.
We also restrict our analysis to locally compact and separable metric spaces En.

Definition 3.1. Let (L(q,N)
n ,M(q,N)

n ) be the pair of linear operators on Bb(E
q
n)

defined for any Fn ∈ Bb(E
q
n) by the formulae

L(q,N)
n (Fn) = NE

[
(ηNn )⊗q(Fn) − η⊗q

n (Fn)
]
,

M(q,N)
n (Fn) = NE

[
(ηNn )�q(Fn) − η⊗q

n (Fn)
]
,

where the pair of particle measures ((ηNn )⊗q, (ηNn )�q) on Eq
n is defined in (2.8).

The next technical proposition is the main result of this section. It provides the
key asymptotic expansion needed for proving Theorem 1.2.
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Proposition 3.3. For any time horizon n � 0, any function Fn ∈ Cb(Eq
n), and

any particle block size parameter 1 � q � N , we have the convergence

lim
N→∞

L(q,N)
n (Fn) = L(q)

n (Fn)

with the linear operator L(q)
n defined by

L(q)
n (Fn) = − q

n−1∑
p=0

η⊗q
p

[
R

q

p,n(1)R⊗q
p,n(Fn − η⊗q

n (Fn))
]

+

n∑
p=0

∑
1�i<j�q

η⊗q
p Ci,jR

⊗q
p,n(Id−pin)(Id−pjn)(Fn).

Before giving more details about the proof of this proposition, it is useful for us
to examine some direct consequences. Arguing as in the beginning of the proof of
Proposition 3.2, we first observe that

E
[
(ηNn )⊗q(Fn) − η⊗q

n (Fn)
]

=
(N)q
Nq

E
[
(ηNn )�q(Fn) − η⊗q

n (Fn)
]

+
(N)q−1

Nq
S(q, q − 1)E

[
(ηNn )�qC(q−1,q)(Fn) − η⊗q

n (Fn)
]
+ O(N−2).

The propagation-of-chaos estimate presented in (1.9), combined with the exchange-
ability property of the particle configurations, implies that

N
∣∣∣E((ηNn )�qC(p,q)(Fn)

)
− η⊗q

n C(p,q)(Fn)
∣∣∣ � q2c(n)‖Fn‖,

for any 1 � p � q � N , and any function Fn ∈ Bb(E
q
n). From these estimates we also

deduce that

L(q)
n (Fn) = M(q)

n (Fn) +
q(q − 1)

2
η⊗q
n [C(q−1,q) − Id](Fn),

where the bounded linear operator M(q)
n on Bb(E

q
n) is given by

M(q)
n (Fn)

def
= lim

N→∞
NE

[
(ηNn )�q(Fn) − η⊗q

n (Fn)
]
.

Moreover, using (1.9) again, we find that |M(q)
n (Fn)| � c(n) q2‖Fn‖. In conclusion,

for any Fn ∈ Cb(Eq
n), n � 1, and 1 � q � N , we have proved that

lim
N→∞

NE
[
Fn(ξ1

n, . . . , ξ
q
n) − η⊗q

n (Fn)
]

= M(q)
n (Fn),

where the bounded linear operator Mn on Cb(Eq
n) is given by

M(q)
n (Fn) = L(q)

n (Fn) −
∑

1�i<j�q

η⊗q
n [Ci,j − Id](Fn),

where L(q)
n is the operator defined in (3.7). This clearly ends the proof of Theorem 1.2.

We are now in a position to prove the announced proposition.
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Proof of Proposition 3.3. By (2.11), we have that

L(q,N)
n (Fn) =

(N)q
Nq

M(q,N)
n (Fn)

+
1

Nq−1

q−1∑
p=1

S(q, p)(N)p E
[
(C(p,q) − Id)Fn(ξ1

n, . . . , ξ
q
n)
]
.

By the propagation of chaos estimates presented in (1.9), we have the bounds

(3.6) sup
N�1

sup
‖Fn‖�1

{∣∣L(q,N)
n (Fn)

∣∣ ∨ ∣∣M(q,N)
n (Fn)

∣∣} � c(n)

(
q2 +

q−1∑
p=1

S(q, p)

)
.

In other words, (L(q,N)
n )N�1 and (M(q,N)

n )N�1 are uniformly bounded sequences of

linear operators on Bb(E
q
n). On the other hand, for polynomial functions of the form

Fn = f
(1)
n ⊗ · · · ⊗ f

(q)
n with (f

(k)
n )1�k�q ∈ Bb(E

q), we have, from Proposition 3.1,

lim
N→∞

NE
[
(ηNn )⊗q(Fn) − η⊗q

n (Fn)
]

= L(q)
n (Fn)

def
= L(q),1

n (Fn) + L(q),2
n (Fn),(3.7)

where the pair of linear operators (L(q),1
n ,L(q),2

n ) are defined by

L(q),1
n (Fn) = −

q∑
i=1

γn(1)−2E
[
W γ

n (1)W γ
n

(
f (i)
n − ηn(f (i)

n )
)][ ∏

1�j�q, j 
=i

ηn(f (j)
n )

]
,

L(q),2
n (Fn) =

∑
1�i<j�q

E
(
W η

n (f (i)
n )W η

n (f (j)
n )

)[ ∏
1�k�q, k 
∈{i,j}

ηn(f (k)
n )

]
.

By the definition of the random field W η
n given in (2.4), we find that

γn(1)−2E
[
W γ

n (1)W γ
n

(
f (i)
n − ηn(f (i)

n )
)]

=

n∑
p=0

ηp

[
Rp,n(1)Rp,n

(
f (i)
n − ηn(f (i)

n )
)]

=

n∑
p=0

ηp

[
Rp,n(1)Rp,n(f (i)

n )
]
− ηn(f (i)

n )

n∑
p=0

ηp[Rp,n(1)2].

From these observations, we obtain the operator decomposition

L(q),1
n (Fn) =

n∑
p=0

L(q),1
p,n (Fn)

with the collection of linear operators L(q),1
p,n given by

L(q),1
p,n (Fn) = −

q∑
i=1

ηp

[
Rp,n(1)Rp,n(f (i)

n )
][ ∏

1�j�q, j 
=i

ηpRp,n(f (j)
n )

]

+ qηp[Rp,n(1)2] η⊗q
n (Fn).

By the definition of the renormalized semigroup Rp,n given in (1.12), we recall that
ηpRp,n = ηn. This implies that

L(q),1
p,n (Fn) = −qη⊗q

p

[
R

q

p,n(1)R⊗q
p,n(Fn)

]
+ qη⊗q

p

[
R

q

p,n(1)R⊗q
p,n(1)]η⊗q

n (Fn)
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with the collection of functions R
q

p,n(1) on Eq
n given by

R
q

p,n(1)(x1
n, . . . , x

q
n) =

1

q

q∑
i=1

Rp,n(1)(xi
n).

The above arguments show that

L(q),1
p,n (Fn) = −qη⊗q

p

[
R

q

p,n(1)R⊗q
p,n

(
Fn − η⊗q

n (Fn)
)]
.

In much the same way, we have the operator decomposition

L(q),2
n (Fn) =

n∑
p=0

L(q,N),2
p,n (Fn),

with the collection of linear operators L(q,N),2
p,n given by

L(q),2
p,n (Fn) =

∑
1�i<j�q

ηp

[
Rp,n

(
f (i)
n − ηn(f (i)

n )
)
Rp,n

(
f (j)
n − ηn(f (j)

n )
)]

×
[ ∏

1�k�q, k 
∈{i,j}

ηn(f (k)
n )

]
=

∑
1�i<j�q

η⊗q
p Ci,jR

⊗q
p,n(I − pin)(I − pjn)(Fn).

Since L(q)
n is a bounded linear operator, (L(q,N)

n )N�1 is a sequence of uniformly
bounded operators, and recalling that the set of linear combinations of polynomial
functions is dense in Cb(Eq

n), we easily prove the first assertion of Theorem 1.2. First,
an elementary calculation yields

(3.8)
∣∣L(q)

n (Fn)
∣∣ � c(n) q2‖Fn‖

for any Fn ∈ Cb(Eq
n), and for some finite constant c(n) < ∞, whose values do not

depend on Fn. Let (F ε
n)ε�0 be an ε-approximation of Fn ∈ Cb(Eq

n), by linear com-

binations of polynomial functions F ε
n. If we use (3.6) and (3.8), then we get the

estimate∣∣L(q,N)
n (Fn) − L(q)

n (Fn)
∣∣ � c(n) q2‖Fn − F ε

n‖ +
∣∣L(q,N)

n (F ε
n) − L(q)

n (F ε
n)
∣∣.

We end the proof of the proposition by letting N → ∞ and then ε → 0.

4. First order uniform estimations. The asymptotic propagation-of-chaos
expansions stated in Theorem 1.2 are expressed in terms of Feynman–Kac tensor
product semigroups. Except in particular situations, such as finite state space models,
these functional semigroups are rather complex and difficult to solve analytically.
The aim of this section is to estimate these quantities. More precisely, we design an
original contraction semigroup technique for estimating the norm of the first order

operators M(q)
n introduced in (1.17).

Before proceeding, we briefly recall the definition of the Dobrushin coefficient
and provide some key properties. We recall that the total variation distance between
two probability measures μ, ν on some measurable space (E, E) can alternatively be
defined by

‖μ− ν‖tv = 2−1 sup
(A,B)∈E2

(
μ(A) − ν(B)

)
= sup

{∣∣μ(f) − ν(f)
∣∣; f ∈ osc(E)

}
,
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where osc(E) represents the set of measurable functions f on E such that

osc(f)
def
= sup

(x,y)∈E2

∣∣f(x) − f(y)
∣∣ � 1.

The Dobrushin contraction coefficient β(M) of a Markov operator M from E into
another measurable space (F,F) is the quantity defined by

β(M) = sup
(x,y)∈E2

∥∥M(x, •) −M(y, •)
∥∥

tv
.

The coefficient β(M) can also be seen as the largest constant satisfying one of the
two inequalities for any bounded measurable function f or for any probability mea-
sures μ, ν

‖μM − νM‖tv � β(M)‖μ− ν‖tv and osc(M(f)) � β(M) osc(f).

We end this brief reminder by recalling that ‖μ⊗q − ν⊗q‖tv � q‖μ− ν‖tv, from which
we readily find the rather crude estimate β(M⊗q) � q β(M).

We are now in position to estimate the norm of the pair operators (L(q)
n ,M(q)

n )
introduced in (1.15) and (1.17). Let Pp,n be the renormalized Feynman–Kac semi-
group from Ep into En defined for any fn ∈ Bb(En) by the formula Pp,n(fn) =
Qp,n(fn)/Qp,n(1).

Proposition 4.1. For any time horizon n � 1, any particle block size parameter
1 � q � N , and any function Fn ∈ Bb(E

q
n) with osc(Fn) � 1, we have the estimates

∣∣M(q)
n (Fn)

∣∣ �
∣∣L(q)

n (Fn)
∣∣+ 1

2
q(q − 1)

and

∣∣L(q)
n (Fn)

∣∣ � 3

2
q2

n∑
p=0

β
(
Pp,n

)
ηp
(
Rp,n(1)

)2
.

Before discussing the details of the proof of the above result, we give a taste of the
uniform properties that can be deduced from Proposition 4.1 on simple genetic models
with sufficiently regular mutations. The forthcoming analysis is rather well known.
For more details and refined estimates we refer the interested reader to Chapter 4
in [2] and the references therein.

If we set

rp,n = sup
(xp,yp)∈E2

p

Qp,n(1)(xp)

Qp,n(1)(yp)
,

then recalling that ηpRp,n = ηn we conclude that

(4.1) |M(q)
n (Fn)| � 3

2
q2

n∑
p=0

rp,nβ(Pp,n) +
1

2
q(q − 1).

When the mutation transitions Mn satisfy a Doeblin-type mixing condition, it is
well known that the summation term in the right-hand side of (4.1) is uniformly
bounded with respect to the time parameter. For instance, let us assume that for
some constants ε > 0 and r < ∞ the following pair condition is met:

Mn+1(xn, •) � εMn+1(yn, •) and Gn(xn) � rGn(yn)
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for any time horizon n � 0 and for any pair of states (xn, yn) ∈ E2
n. In this case, we

have the rather crude estimates

rp,n � r

ε
and β(Pp,n) � (1 − ε2)(n−p) =⇒

n∑
p=0

rp,n β(Pp,n) � r

ε3

from which we conclude that |M(q)
n (Fn)| � (3/2) q2 r/ε3 + q(q − 1)/2.

Now we come to the proof of the proposition.
Proof of Proposition 4.1. First, we observe that

R⊗q
p,n(Fn)

R⊗q
p,n(1)

= P⊗q
p,n(Fn)

for any pair of test functions (fn, Fn) ∈ (Bb(En) × Bb(E
q
n)). After some elementary

calculations, we find that for any 0 � p � n and Fn ∈ Bb(E
q
n), with osc(Fn) � 1,∣∣∣η⊗q

p

[
R

q

p,n(1)R⊗q
p,n

(
Fn − η⊗q

n (Fn)
)]∣∣∣ � qηp

(
Rp,n(1)2

)
β(Pp,n).

To estimate the second term in the right-hand side of (1.15), with some obvious abuse
of notation, we observe

P⊗q
p,n(Id−pin)(Fn)(x1

p, . . . , x
q
p)

=

∫ [ ∏
1�k�q, k 
=i

Pp,n(xk
p, dy

k
n)

]{∫
Pp,n(xi

p, dy
i
n)Fn(y1

n, . . . , y
q
n)

−
∫

ηpPp,n(dy′in)Fn(y1
n, . . . , y

′i
n , . . . , y

q
n)

}
.

This yields that ‖P⊗q
p,n(Id−pin)(Fn)‖ � β(Pp,n) osc(Fn). In much the same way, we

find ∥∥P⊗q
p,n(Id−pin) pjn(Fn)

∥∥ � β(Pp,n) osc(pjnFn) � β(Pp,n) osc(Fn).

These two estimates readily imply that∥∥P⊗q
p,n(Id−pin)(Id−pjn)(Fn)

∥∥ � β(Pp,n) osc(Fn)

from which we conclude that∣∣η⊗q
p Ci,jR

⊗q
p,n(Id−pin)(Id−pjn)(Fn)

∣∣ � β(Pp,n) η⊗q
p Ci,jR

⊗q
p,n(1) = β(Pp,n) ηp

(
Rp,n(1)

)2
when osc(Fn) � 1. This clearly yields the following formula:

∣∣L(q)
n (Fn)

∣∣ � 3

2
q2

n∑
p=0

β(Pp,n) ηp
(
Rp,n(1)

)2
.

The remainder of the proof of the proposition is now clear.
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