CS 540: Machine Learning

Lecture 8: Kernel Methods

AD

February 2008

February 2008 1/34

Feature space

Most/all of the algorithms we have discussed rely on a finite
dimensional vector of features ® (x).

In this way, a model that is linear in x may be made nonlinear by
using a nonlinear mapping @ (x).
@ In many situations, we only rely on @ (x) through the scalar product

k (x, x') =0l (x) P (x’)

This is a symetric function of its arguments

k (x, x’) =k (x/, x)

February 2008 2 /34

Kernels

@ A valid kernel is a function k(x,x’) that corresponds to a scalar
(inner) product in some (perhaps infinite dimensional) feature space,
ie. k(x,x') =T (x)® (x).

@ For example assume x = (x1, x2) and

k(x,x/) = (xTx’>2
= (X +x0x%)°
= X ()2 43 ()" + 2ax{x0
= (. v2axd) ((4)° V2xix (4)°)
= @' (x)®(X)

where

P (x) = <x12 \@xle,x22> .

February 2008 3/34

Positive Semi-definite Kernels

o Losely speaking, a kernel k(x,x") can be written as a scalar product
possibly in an infinite-dimensional space is it is positive semidefinite;
that is for any n, (x1,...,x,) € X" and (ay,...,a,) € R" then

ZZIK ajk (xj,x;) >0

@ Indeed for continuous symetric positive semidefinite kernel, we have
Mercer's theorem. There exists a positive sequence {A;} and
functions ®; (x) such that

@ More later...

February 2008 4 /34

Kernel trick

@ In many situations, as mentioned earlier, we actually only use ® (x)
through ®T (x) @ (x').
Moreover it is often very difficult to design good features @ (x) .

Wherever we have ®T (x) @ (x'), we can ‘kernelize’ the algorithm
and replace it by k (x,x’) where k (x,x’) is a p.s.d. kernel.

So we can use infinite number of features.

We can think of k (x,x") as a similarity measure: it can be easier to
design k (x,x’) than @ (x) .

February 2008 5/ 34

Dual Representation of Linear Regression

o Consider N
1

(w <I> (Xp) — tn)? —l—%wTw

n:1

where A > 0.
@ By setting g—dl = 0 we obtain

1 N
w = X(W D(x,) — ty)D(x,) = Z an®(x,) =d'a
where a, = —1(wT®(x,) — t,) and P is the design matrix
T (x1)
®= :
@7 (xn)

February 2008 6 /34

o We now write w = ®Ta and plug this expression in J(w) so

1 1 A
J(@@) = 5aT<1><1>T<1>c1>Ta —a Ot + 5tTt - EaTQJCIDTa
1 1 A
= 5aTKKa — aTKtEtTt + §aT Ka

where K = ®®T.

@ K is the Gram matrix
[K];; = @7 (x))@(x))

@ Note that by construction, K is a p.s.d. matrix; that is o' Ka > a for
all «.

AD () February 2008 7/ 34

@ Solving g—; = 0 yields
a=(K+Aly) 't
o It follows that
y(x,w) =w'®(x) =a' dD(x) = k(x)T (K +Aly) "'t

where
k(x) = (k(x,x1), ... k(x,xy))"

@ We now have to invert an N X N matrix instead of an M x M matrix
(where ®(x) € RM).

o Now if we let k(x,x") be a p.s.d. then you can still define y(x, w)
whereas M is infinitel!

AD () February 2008 8 /34

Constructing kernels

@ Mercer's theorem reformulated: k (x,x) is a valid kernel iff the Gram
matrix K = [k(x,,Xm)] is positive semi definite for all possible {x,}.

o A matrix A is psd iff «T Ax > 0 for all «.

@ The corresponding features ®(-) are eigenfunctions of k, i.e.
J k(x,x')Di(x)dx = A;P;(x).

February 2008 9 /34

Example Kernels

Stationary: k(x,x") = k(x —x).

Isotropic: k(x,x") = k(||x —x'||).

Monomials of order M: k(x,x') = (xTx')M.
Monomials of order up to M: k(x,x') = (x"x' + ¢)M
“Gaussian” k(x,x') = exp(—||x — X'[|*/20?).

Sigmoid “kernel” (does not satisfy Mercer's theorem!):
k(x,x") = tanh(ax"x’ + b).

February 2008

Combining Kernels

Assume ki(x,x") and ky(x,x’) are p.s.d. kernels then we can combine
them in multiple ways to obtain new kernels.

For any a, B > 0 k(x,x') = aky (x,x") + Bka(x,x) is p.s.d.
k(x,x") = f (x) ki (x,x")f (x) is p.s.d.

() = exp (ks (x,) is p.s.d

k(x,x") = ki (x,x") ka(x,x') is p.s.d.

K(x,X) = (@ (x),® (x)) is p.s..

February 2008 11 / 34

Gaussian kernel

@ The Gaussian kernel exp(—||x — x||?/20?) might be the more used

kernel in practice.
@ It is not limited to Euclidean space. Consider that

I|x = x|]> = (x—x’)T(x—x')
= x'x + x'Tx' —2xTx
then we can consider a nonlinear kernel where

[— X[|> e« ki (x,x) + ki (x,X") — 2k (x,x')

@ We then consider the kernel
(ki (x,x) + ki (x,x") — 2ky (x,x'))))

k(x,x') = exp (57

@ Any algorithm where a distance appears can be kernelized...

February 2008 12 / 34

Kernels on graphs, sets, strings etc

@ Over the past few years, there has been a lot of work on defining
kernels between non-Euclidean objects.

@ The aim is to come up with a p.s.d. kernel.

@ It is not though because a kernel is p.s.d. that it is a ‘good’ measure
of similarity.

February 2008 13 / 34

Kernels derived from probabilistic models

@ Generative models (eg HMMs) provide a way to deal with
variable-dimension objects (eg strings of different lengths).

@ We can then use these for discriminative learning by defining kernels.

@ For example for a generative model p (x), we could define
K(x,x) = p () p (¥)

or

k(x,x/):/ (x]0) p (x| 0) p(6) dO

February 2008 14 / 34

Fisher Kernel

o Consider a parametric generative model p (x| 0) .

@ We introduce the kernel which uses a feature vector of size |6
k(x,x") = g (0,x) Flg (0, x’)
where

g(0,x) = Vglogp(x|0)
F =]Ex[g(G,x)Tg(G,x’)]

@ F is the Fisher information matrix, the kernel is invariant to the
parametrization of 6.

February 2008 15 / 34

Gaussian Processes

@ A stochastic process is a collection of RVs indexed by the input vector
x. A Gaussian Process is a stochastic process for which
(y(x1),..., y(x,)) is jointly Gaussian for any {x,}.

@ A GP can be characterized by its mean function m(x) (often assumed
0) and its covariance function k(x,x’); i.e.

Ely(x)] = m(x), cov[y(x),y(x)] = k(x,x)
e For any {x,}, we have

y(x1:0) ~ N (m(x1:0), K(x1:0))

[K(xlin)]i,j = k(xi,x;).

@ A GP gives a prior on the space of functions.

February 2008

Samples from the prior for Matern covariance

covariance function sample functions
L — n=1/2
— n=1

w —~~
2 n=2 g
o =
5 0.5 3
g g
o >
o o -

0 =

0 1 2 3 -5 0 5

input distance input, x

Covariance function ky,(x,x") = k,(r) = 21 - < 2/‘”) K, (‘ﬁ) for
|Ix — x'|| = r (left) and sample paths (rlght)

February 2008 17 / 34

Samples from the prior for a periodic covariance

' '
N = o = N w
L % § L L L
' '
N = o = N w

'
'
Nw

'
'
Noo

Sample paths from the prior for / > 1 (left) and / < 1 (right) where
ky(x,x) = exp (—2sin® (7 (x = X)) /%)

February 2008

18 / 34

Samples from the prior with a Gaussian covariance

[

TVALKONN
77 N\
’//1{{'0’0“‘\“‘\\ .

I'OO‘Q\\\\\ 7

o R

"{“\\\\\\ AN
R

o
IR
1¢{ “\‘\\“\\\

[

NP ORN®WROIODN ®

@ |

/1]
11 \
2 \\\
S

February 2008

Bayesian linear regression & Gaussian Processes

o Consider the linear regression model where
y (x,w) = w'®(x)

and we set w ~A\ (0, a1/).

@ y (x,w) is a linear combination of Gaussians rvs so it is a GP with
Ely (xw)] = E [w| &(x) =0
and
covy(xw),y (xX,w)] = & (x)E [WWT] d(x)
= a T (x)D(X).

e Instead of introducing a prior on y (x) by defining a prior on w and
introducing a finite dimensional vector of features, we can directly
introduce a GP prior on y (x).

February 2008 20 / 34

Bayesian regression with Gaussian Processes

o Consider the data D = {x,, tn}rl)lzl where

th = t(xn) =y (xn) + €, where e, ~ N (0.(72)

and
y(x) ~ GP (m(x) =0,k (x,x))
@ We have
y (X)| D~ GP (mpost (X)) kpost (X, X/))
where
Mpost (X) =k (%, x0:n) [K (xe:w, x0en) + 021] by,
kpost (x,X') = k(x,x') —

k (X, Xl:N) [K (XlszXl:N) +Uzl] ! k (XlzNyX/)

February 2008 21 /34

From the prior to the posterior

2
z z
] <
I=3 g
>3 >
o o
-5 0 5 -5 0 5
input, x input, x

Random draws from the prior (left) and the posterior (right): The shaded
area represents the pointwise mean + /- twice the standard deviation.

February 2008 22 /34

Predictive distribution and Interpretation

@ Given x*, we have

p (' xun, tron, X7) = N (7 (x7), 0* (x7))

where
* * -1
p(x) = k(x* xun) [K (xun,xen) + 02 to,
o (x*) = k(x*,x*)+0?

-1
—k (x*,x1.n) [K (xt:n, x0on) + 021 K (xpn, xF)
@ The mean i (x*) is linear in two ways
n n
12 (X*) = Za,-t,- = Z b,‘K(X*,X,')
i=1 i=1
@ The variance is of the form

o? (x*) = prior variance - positive terms dependent on x;.y

@ Remark: the variance is independent of the observations ty.y.

February 2008 23 /34

Computational Complexity

@ The central computation operation in using GP involves inverting a
N X N matrix. Standard methods requires O (N*) operations.

@ In the finite basis function model with M basis, we have to invert a
M x M matrix.

@ So if the number M of basis functions is smaller than N then we are
better off with the standard method.

@ If the kernel considered corresponds to an infinite M, we do not have
the choice!

@ Several techniques have been developed to perform approximate
inference.

February 2008 24 / 34

Learning the hyperparameters

@ In practice, we often parametrize the kernel by some parameters 6.

@ To estimate 6, we can maximize the marginal log-likelihood

1 1 -1 N
log p (t1.n] 0, x1:8) = D) log)K,f\),‘ - §tI:N [Km tin — log 27T

using [Kmij = K% (x;,x;).
@ The gradient of the log-likelihood is given by

dlogp (tun|0 x1v) _ 1 011 0K},
20, = T[] S
1 -1 9K? -1
oty (K] SEt [KE] e

@ The log-likelihood is typically not concave in 6.

February 2008 25 / 34

Example: Fitting the length scale parameter

/|12
e Parameterized covariance function: k (x,x’) = vexp (—M)

1.5

-+ observations
—— too short
—— good length scale | _|
—— too long

@ The mean posterior predictive distribution is plotted for 3 different
length scales (the green curve corresponds to optimizing the
likelihood). Note that we can get an almost perfect fit for a small
length scale but the marginal likelihood does not favour it.

February 2008 26 / 34

Using a finite number of basis functions can be dangerous

-2 0 2 4 6 8 10

February 2008 27 / 34

matic Relevance Determination

@ We can extend the technique described before to select automatically
the relevant input variables; i.e. say

D EVAY:
K (x.x) = 12 e (xi—x])
(x X) Vg exp 202

where § = (v3,v1,...,v3).
@ We have
vi=v2=1 vi=v2=0.32 v1=0.32 and v2=1

7 I N . .) I
AAOMO [A il l

i ,,l;,' it M‘o‘ﬂ :l‘l\\\\\\‘\‘ i “&‘.Z’!‘ A il i //////////W/’I(

Ul & Wi X

‘;‘., "l:,l’l,//l,/:,’: Iy ‘((

s

0 0
X2 -2 -2 xi X2 -2 -2 xi

Gaussian Processes for Binary Classfication

@ The input is given by x and the output t € {0,1} with
Pr(t=1|x) =0 (a(x)).
@ We model a (x) through a Gaussian process define by
E[a(x)] =0and cov [a(x)a(X)] =k (x,x") = m(x,x) +v6 (x — X)
@ We are interested in computing
Pt xin tin, X)) = /p(t*l a(x*))p(a(x")|trn) da(x?)

- /‘T(a(X*))p(a(X*)!tlzN)da(x*)

February 2008 29 / 34

Laplace Approximation

@ We have
plax)tin) = [p(a(x').aCxan)|tun) da (xin)
= [p(a(x) 2 xun)) p(a (xun)| trn) da (xsn)
@ We have

p(a(x*)a(xin)) = N(a(x*);k" (x*, xi:n) Kyta (xn),
k(x,x)—kT(x*,xlzN)K,_llk(x*,xlzN))

@ We make a Gaussian approximation of p (a(xq.y)|ti.n) using
Laplace.

February 2008 30 / 34

@ The unnormalized posterior is given by

|ng (a (xlzN) vtlzN)
= logp(a(xun), tin)+logp (tin]a(xin))
1 B N 1
= 52" (xaw) Ky'a (xun) = 3 log (271) — - log | Kiv|

N

+t{ya(xin) — Y log (14 expa(xy)) + cst
n=1

as o (a) (1—0(a)) " = exp (at) o (—a)
@ We perform a Taylor expansion of the log p (a (x1.n), t1:n) around its
mode which can be computed using a Newton-Raphson method where

\Y |0gp (3 (Xl:N) :tl:N) =ty — 01N — Klvla (XI:N)

and
VVlogp(a(xin), tin) = —Wy — Ky*

where Wy =diag(c (a(xn)) (1 —0c(a(xn)))) -

AD () February 2008 31/ 34

The Newton-Raphson formula takes the form

alk+y) (x1:n) = Kn (1 + WNKN)il {tinv —o1.nv + Wya(xin) }

Once the mode a* (x;.n) has been found, we compute the associated
H=—-VVliogp(a(xin), tin) = Wy + K,\jl

@ The Gaussian approximation is given by

q(a(xun)) =N (a(xwn)ia” (xun), H)

o It follows that we obtain a Gaussian approximation of p (a (x*)|ty.n)

with
]E(a(X*)|t1:N) = k(X*rxl:N) (t].IN_O-llN)v
V(a(x")|tiy) = k(x*x)

_ 1
—k" (", xen) (Wt + Kn) k(X xn)

February 2008 32 /34

@ Now we finally use the approximation combining logistic and Gaussian
p ("] XN tiy, X) = /U(a(X*))P(a(X*)\tlsN) da (x)
which states that

/a(a)/\/’ (ap.0?)da~ o <\/1+P711#/8>

@ The Laplace approximation also yields an approximation of the
log-marginal likelihood

. 1 N
log p (t1.n) =~ log p (3" (x1:n) , trn) — 5 |H| + 5 log (277)

February 2008 33 /34

Example of Binary Classification using GP

[BE]

2 I 1

Left: Optimal decision boundary (green) and GP classifier (black).
Right: predicted posterior proba for the blue and red classes

AD () February 2008 34 / 34

