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Feature space

Most/all of the algorithms we have discussed rely on a �nite
dimensional vector of features Φ (x).
In this way, a model that is linear in x may be made nonlinear by
using a nonlinear mapping Φ (x).
In many situations, we only rely on Φ (x) through the scalar product

k
�
x, x0

�
= ΦT (x)Φ

�
x0
�

This is a symetric function of its arguments

k
�
x, x0

�
= k

�
x0, x

�
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Kernels

A valid kernel is a function k(x, x0) that corresponds to a scalar
(inner) product in some (perhaps in�nite dimensional) feature space,
i.e. k(x, x0) = ΦT (x)Φ (x0).
For example assume x = (x1, x2) and

k
�
x, x0

�
=

�
xTx0

�2
=

�
x1x 01 + x2x

0
2

�2
= x21

�
x 01
�2
+ x22

�
x 02
�2
+ 2x1x 01x2x

0
2

=
�
x21 ,
p
2x1x2, x22

� ��
x 02
�2
,
p
2x 01x

0
2,
�
x 02
�2�

= ΦT (x)Φ
�
x0
�

where
Φ (x) =

�
x21 ,
p
2x1x2, x22

�
.
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Positive Semi-de�nite Kernels

Losely speaking, a kernel k(x, x0) can be written as a scalar product
possibly in an in�nite-dimensional space is it is positive semide�nite;
that is for any n, (x1, ..., xn) 2 X n and (α1, ..., αn) 2 Rn then

∑
i

∑
j

αiαjk (xi , xi ) � 0

Indeed for continuous symetric positive semide�nite kernel, we have
Mercer�s theorem. There exists a positive sequence fλig and
functions Φi (x) such that

k
�
x, x0

�
=

∞

∑
i=1

λiΦi (x)Φi
�
x0
�
.

More later...
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Kernel trick

In many situations, as mentioned earlier, we actually only use Φ (x)
through ΦT (x)Φ (x0) .
Moreover it is often very di¢ cult to design good features Φ (x) .
Wherever we have ΦT (x)Φ (x0) , we can �kernelize�the algorithm
and replace it by k (x, x0) where k (x, x0) is a p.s.d. kernel.
So we can use in�nite number of features.

We can think of k (x, x0) as a similarity measure: it can be easier to
design k (x, x0) than Φ (x) .
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Dual Representation of Linear Regression

Consider

J(w) =
1
2

N

∑
n=1
(wTΦ(xn)� tn)2 +

λ

2
wTw

where λ > 0.

By setting ∂J
∂w = 0 we obtain

w = � 1
λ
(wTΦ(xn)� tn)Φ(xn) =

N

∑
n=1

anΦ(xn) = ΦTa

where an = � 1
λ (w

TΦ(xn)� tn) and Φ is the design matrix

Φ =

0B@ ΦT (x1)
...

ΦT (xN )

1CA
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We now write w = ΦTa and plug this expression in J(w) so

J(a) =
1
2
aTΦΦTΦΦTa� aTΦΦTt+

1
2
tTt� λ

2
aTΦΦTa

=
1
2
aTKKa� aTKt1

2
tTt+

λ

2
aTKa

where K = ΦΦT.

K is the Gram matrix

[K ]i ,j = ΦT(xi )Φ(xj )

Note that by construction, K is a p.s.d. matrix; that is αTKα � α for
all α.
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Solving ∂J
∂a = 0 yields

a = (K + λIN )
�1t

It follows that

y(x,w) = wTΦ(x) = aTΦΦ(x) = k(x)T(K + λIN )
�1t

where
k(x) = (k(x, x1), ..., k(x, xN ))

T

We now have to invert an N �N matrix instead of an M �M matrix
(where Φ(x) 2 RM ).

Now if we let k(x, x0) be a p.s.d. then you can still de�ne y(x,w)
whereas M is in�nite!
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Constructing kernels

Mercer�s theorem reformulated: k (x, x0) is a valid kernel i¤ the Gram
matrix K = [k(xn, xm)] is positive semi de�nite for all possible fxng.
A matrix A is psd i¤ αTAα � 0 for all α.

The corresponding features Φ(�) are eigenfunctions of k, i.e.R
k(x, x0)Φi (x)dx = λiΦi (x).
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Example Kernels

Stationary: k(x, x0) = k(x� x0).
Isotropic: k(x, x0) = k(jjx� x0jj).
Monomials of order M: k(x, x0) = (xTx0)M .
Monomials of order up to M: k(x, x0) = (xTx0 + c)M

�Gaussian� k(x, x0) = exp(�jjx� x0jj2/2σ2).

Sigmoid �kernel� (does not satisfy Mercer�s theorem!):
k(x, x0) = tanh(axTx0 + b).
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Combining Kernels

Assume k1(x, x0) and k2(x, x0) are p.s.d. kernels then we can combine
them in multiple ways to obtain new kernels.

For any α, β > 0 k(x, x0) = αk1(x, x0) + βk2(x, x0) is p.s.d.
k(x, x0) = f (x) k1(x, x0)f (x0) is p.s.d.
k(x, x0) = exp (k1(x, x0)) is p.s.d.
k(x, x0) = k1(x, x0)k2(x, x0) is p.s.d.
k(x, x0) = k1(Φ (x) ,Φ (x0)) is p.s.d.
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Gaussian kernel

The Gaussian kernel exp(�jjx� x0jj2/2σ2) might be the more used
kernel in practice.

It is not limited to Euclidean space. Consider that

jjx� x0jj2 =
�
x� x0

�T �x� x0�
= xTx+ x0Tx0 � 2xTx0

then we can consider a nonlinear kernel where

jjx� x0jj2  ! k1 (x, x) + k1
�
x, x0

�
� 2k1

�
x, x0

�
We then consider the kernel

k(x, x0) = exp
�
� 1
2σ2

�
k1 (x, x) + k1

�
x, x0

�
� 2k1

�
x, x0

�
)
��

Any algorithm where a distance appears can be kernelized...
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Kernels on graphs, sets, strings etc

Over the past few years, there has been a lot of work on de�ning
kernels between non-Euclidean objects.

The aim is to come up with a p.s.d. kernel.

It is not though because a kernel is p.s.d. that it is a �good�measure
of similarity.
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Kernels derived from probabilistic models

Generative models (eg HMMs) provide a way to deal with
variable-dimension objects (eg strings of di¤erent lengths).

We can then use these for discriminative learning by de�ning kernels.

For example for a generative model p (x), we could de�ne

k(x, x0) = p (x) p
�
x0
�

or
k(x, x0) =

Z
p (xj θ) p

�
x0
�� θ
�
p (θ) dθ
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Fisher Kernel

Consider a parametric generative model p (xj θ) .
We introduce the kernel which uses a feature vector of size jθj

k(x, x0) = g (θ, x) F�1g
�
θ, x0

�
where

g (θ, x) = rθ log p (xj θ)
F = Ex[g (θ, x)

T g
�
θ, x0

�
]

F is the Fisher information matrix, the kernel is invariant to the
parametrization of θ.
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Gaussian Processes

A stochastic process is a collection of RVs indexed by the input vector
x. A Gaussian Process is a stochastic process for which
(y(x1), . . . , y(xn)) is jointly Gaussian for any fxng.
A GP can be characterized by its mean function m(x) (often assumed
0) and its covariance function k(x, x0); i.e.

E [y(x)] = m (x) , cov
�
y(x), y(x0)

�
= k(x, x0)

For any fxng, we have

y(x1:n) � N (m(x1:n),K (x1:n))

where y(x1:n) = (y(x1), . . . , y(xn))T,
m(x1:n) = (m(x1), . . . ,m(xn))T,

[K (x1:n)]i ,j = k(xi , xj ).

A GP gives a prior on the space of functions.
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Samples from the prior for Matern covariance
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Samples from the prior for a periodic covariance
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Sample paths from the prior for l > 1 (left) and l < 1 (right) where
kν(x, x0) = exp

�
�2 sin2 (π (x� x0)) /l2

�
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Samples from the prior with a Gaussian covariance
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Function drawn at random from a Gaussian Process with Gaussian covariance
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Bayesian linear regression & Gaussian Processes

Consider the linear regression model where

y (x,w) = wTΦ(x)

and we set w �N (0, α�1I ).
y (x,w) is a linear combination of Gaussians rvs so it is a GP with

E [y (x,w)] = E
h
wT
i

Φ(x) = 0

and

cov
�
y (x,w) , y

�
x0,w

��
= ΦT(x)E

h
wwT

i
Φ(x)

= α�1ΦT(x)Φ(x0).

Instead of introducing a prior on y (x) by de�ning a prior on w and
introducing a �nite dimensional vector of features, we can directly
introduce a GP prior on y (x).
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Bayesian regression with Gaussian Processes

Consider the data D = fxn, tngNn=1 where

tn = t (xn) = y (xn) + εn where εn � N
�
0, σ2

�
and

y (x) � GP
�
m (x) = 0, k

�
x, x0

��
We have

y (x)jD � GP
�
mpost (x) , kpost

�
x, x0

��
where

mpost (x) = k (x, x1:N )
�
K (x1:N , x1:N ) + σ2I

��1 t1:N ,

kpost
�
x, x0

�
= k

�
x, x0

�
�

k (x, x1:N )
�
K (x1:N , x1:N ) + σ2I

��1
k
�
x1:N , x0

�
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From the prior to the posterior
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Random draws from the prior (left) and the posterior (right): The shaded
area represents the pointwise mean +/- twice the standard deviation.
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Predictive distribution and Interpretation

Given x�, we have

p ( t�j x1:N , t1:N , x�) = N
�
t�; µ (x�) , σ2 (x�)

�
where

µ (x�) = k (x�, x1:N )
�
K (x1:N , x1:N ) + σ2I

��1 t1:N ,

σ2 (x�) = k (x�, x�) + σ2

�k (x�, x1:N )
�
K (x1:N , x1:N ) + σ2I

��1
k (x1:N , x�)

The mean µ (x�) is linear in two ways

µ (x�) =
n

∑
i=1
ai ti =

n

∑
i=1
biK (x�, xi )

The variance is of the form

σ2 (x�) = prior variance - positive terms dependent on x1:N

Remark: the variance is independent of the observations t1:N .
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Computational Complexity

The central computation operation in using GP involves inverting a
N �N matrix. Standard methods requires O

�
N3
�
operations.

In the �nite basis function model with M basis, we have to invert a
M �M matrix.

So if the number M of basis functions is smaller than N then we are
better o¤ with the standard method.

If the kernel considered corresponds to an in�nite M, we do not have
the choice!

Several techniques have been developed to perform approximate
inference.
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Learning the hyperparameters

In practice, we often parametrize the kernel by some parameters θ.

To estimate θ, we can maximize the marginal log-likelihood

log p (t1:N j θ, x1:N ) = �
1
2
log
���K θ
N

���� 1
2
tT1:N

h
K θ
N

i�1
t1:N �

N
2
log 2π

using
�
K θ
N

�
i ,j = K

θ (xi , xj ).
The gradient of the log-likelihood is given by

∂ log p (t1:N j θ, x1:N )

∂θi
= �1

2
Tr

 h
K θ
N

i�1 ∂K θ
N

∂θi

!

+
1
2
tT1:N

h
K θ
N

i�1 ∂K θ
N

∂θi

h
K θ
N

i�1
t1:N

The log-likelihood is typically not concave in θ.
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Example: Fitting the length scale parameter

Parameterized covariance function: k (x, x0) = ν exp
�
� kx�x

0k2
l

�
.

­ 10 ­ 8 ­ 6 ­ 4 ­ 2 0 2 4 6 8 10
­ 0.5

0

0.5

1

1.5
observations
too short
good length scale
too long

The mean posterior predictive distribution is plotted for 3 di¤erent
length scales (the green curve corresponds to optimizing the
likelihood). Note that we can get an almost perfect �t for a small
length scale but the marginal likelihood does not favour it.
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Using a �nite number of basis functions can be dangerous
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Automatic Relevance Determination

We can extend the technique described before to select automatically
the relevant input variables; i.e. say

k
�
x, x0

�
= ν20 exp

 
�∑D

i=1 (xi�x 0i )
2

2ν2i

!
where θ =

�
ν20, ν

2
1, ..., ν

2
D

�
.

We have
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Gaussian Processes for Binary Class�cation

The input is given by x and the output t 2 f0, 1g with

Pr ( t = 1j x) = σ (a (x)) .

We model a (x) through a Gaussian process de�ne by

E [a (x)] = 0 and cov
�
a (x) a

�
x0
��
= k

�
x, x0

�
= m

�
x, x0

�
+ νδ

�
x� x0

�
We are interested in computing

p ( t�j x1:N , t1:N , x�) =
Z
p ( t�j a (x�)) p (a (x�)j t1:N ) da (x�)

=
Z

σ (a (x�)) p (a (x�)j t1:N ) da (x�)
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Laplace Approximation

We have

p (a (x�)j t1:N ) =
Z
p (a (x�) , a (x1:N )j t1:N ) da (x1:N )

=
Z
p (a (x�)j a (x1:N )) p (a (x1:N )j t1:N ) da (x1:N )

We have

p (a (x�)j a (x1:N )) = N (a (x�) ; kT (x�, x1:N )K
�1
N a (x1:N ) ,

k (x, x)� kT (x�, x1:N )K
�1
N k (x�, x1:N ))

We make a Gaussian approximation of p (a (x1:N )j t1:N ) using
Laplace.
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The unnormalized posterior is given by

log p (a (x1:N ) , t1:N )

= log p (a (x1:N ) , t1:N ) + log p (t1:N j a (x1:N ))

= �1
2
aT (x1:N )K

�1
N a (x1:N )�

N
2
log (2π)� 1

2
log jKN j

+tT1:Na (x1:N )�
N

∑
n=1

log (1+ exp a (xN )) + cst

as σ (a)t (1� σ (a))1�t = exp (at) σ (�a)
We perform a Taylor expansion of the log p (a (x1:N ) , t1:N ) around its
mode which can be computed using a Newton-Raphson method where

r log p (a (x1:N ) , t1:N ) = t1:N � σ1:N �K�1N a (x1:N )

and
rr log p (a (x1:N ) , t1:N ) = �WN �K�1N

where WN =diag(σ (a (xN )) (1� σ (a (xN )))) .
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The Newton-Raphson formula takes the form

a(k+1) (x1:N ) = KN (I +WNKN )
�1 ft1:N � σ1:N +WNa (x1:N )g

Once the mode a� (x1:N ) has been found, we compute the associated

H = �rr log p (a (x1:N ) , t1:N ) = WN +K
�1
N

The Gaussian approximation is given by

q (a (x1:N )) = N (a (x1:N ) ; a
� (x1:N ) ,H)

It follows that we obtain a Gaussian approximation of p (a (x�)j t1:N )
with

E (a (x�)j t1:N ) = k (x�, x1:N ) (t1:N � σ1:N ) ,

V (a (x�)j t1:N ) = k (x�, x�)

�kT (x�, x1:N )
�
W�1N +KN

��1
k (x�, x1:N )
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Now we �nally use the approximation combining logistic and Gaussian

p ( t�j x1:N , t1:N , x�) =
Z

σ (a (x�)) p (a (x�)j t1:N ) da (x�)

which states thatZ
σ (a)N

�
a; µ, σ2

�
da ' σ

�
µp

1+ πσ2/8

�
The Laplace approximation also yields an approximation of the
log-marginal likelihood

log p (t1:N ) ' log p (a� (x1:N ) , t1:N )�
1
2
jH j+ N

2
log (2π)
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Example of Binary Classi�cation using GP

Left: Optimal decision boundary (green) and GP classi�er (black).
Right: predicted posterior proba for the blue and red classes
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