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Importance Sampling Review

Let π (x) = γ(x )
Z and q (x) be pdf on X such that

π (x) > 0) q (x) > 0.

IS is based on the identities

π (x) =
w (x) q (x)

Z
, Z =

Z
w (x) q (x) dx ,

where w (x) =
γ (x)
q (x)

∝
π (x)
q (x)

.

Given bqN (x) = 1
N

N

∑
i=1

δX (i ) (x) where X
(i ) i.i.d.� q

then

bZ =
1
N

N

∑
i=1
w
�
X (i )

�
,

bπN (x) =
N

∑
i=1
Wi δX (i ) (x) where Wi ∝ w

�
X (i )

�
,

N

∑
i=1
Wi = 1
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Sequential Importance Sampling

In practice, IS will �work�well if q is close to π; it is di¢ cult to
design such a q if X is an high-dimensional space.

A simple way to come up with reasonably good proposal distributions
consists of building the proposal sequentially; i.e. if x = (x1, ..., xn)
then we propose to build an importance distribution of the form

qn (x1:n) = q1 (x1) q2 (x2j x1) � � � qn (xn j x1:n�1)

The advantage of this approach is that we�ve broken up the original
design problem in n �simpler�models.
Given the fact that

π (x1:n) = πn (x1:n) = πn (x1)πn (x2j x1) � � �πn (xn j x1:n�1) ,

where πn (xk j x1:k�1) ∝ γn (xk j x1:k�1) it seems sensible to take

qk (xk j x1:k�1) � πn (xk j x1:k�1) .
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At time k = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .

At time k � 2

sample X (i )k � qk
�
�jX (i )1:k�1

�
compute wk

�
X (i )1:k

�
= wk�1

�
X (i )1:k�1

� γn

�
X (i )k

���X (i )1:k�1

�
qk
�
X (i )k

���X (i )1:k�1

� .

Clearly at time n we have obtained X (i )1:n � qn and indeed

wn
�
X (i )1:n

�
=

γn

�
X (i )1:n

�
qn
�
X (i )1:n

� .
Although this algorithm is simple, it typically cannot be
implemented as πn (xk j x1:k�1) is unknown even up to a normalizing
constant.

AD () 13th February 2007 5 / 45



At time k = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .
At time k � 2

sample X (i )k � qk
�
�jX (i )1:k�1

�
compute wk

�
X (i )1:k

�
= wk�1

�
X (i )1:k�1

� γn

�
X (i )k

���X (i )1:k�1

�
qk
�
X (i )k

���X (i )1:k�1

� .
Clearly at time n we have obtained X (i )1:n � qn and indeed

wn
�
X (i )1:n

�
=

γn

�
X (i )1:n

�
qn
�
X (i )1:n

� .
Although this algorithm is simple, it typically cannot be
implemented as πn (xk j x1:k�1) is unknown even up to a normalizing
constant.

AD () 13th February 2007 5 / 45



At time k = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .
At time k � 2

sample X (i )k � qk
�
�jX (i )1:k�1

�

compute wk
�
X (i )1:k

�
= wk�1

�
X (i )1:k�1

� γn

�
X (i )k

���X (i )1:k�1

�
qk
�
X (i )k

���X (i )1:k�1

� .
Clearly at time n we have obtained X (i )1:n � qn and indeed

wn
�
X (i )1:n

�
=

γn

�
X (i )1:n

�
qn
�
X (i )1:n

� .
Although this algorithm is simple, it typically cannot be
implemented as πn (xk j x1:k�1) is unknown even up to a normalizing
constant.

AD () 13th February 2007 5 / 45



At time k = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .
At time k � 2

sample X (i )k � qk
�
�jX (i )1:k�1

�
compute wk

�
X (i )1:k

�
= wk�1

�
X (i )1:k�1

� γn

�
X (i )k

���X (i )1:k�1

�
qk
�
X (i )k

���X (i )1:k�1

� .

Clearly at time n we have obtained X (i )1:n � qn and indeed

wn
�
X (i )1:n

�
=

γn

�
X (i )1:n

�
qn
�
X (i )1:n

� .
Although this algorithm is simple, it typically cannot be
implemented as πn (xk j x1:k�1) is unknown even up to a normalizing
constant.

AD () 13th February 2007 5 / 45



At time k = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .
At time k � 2

sample X (i )k � qk
�
�jX (i )1:k�1

�
compute wk

�
X (i )1:k

�
= wk�1

�
X (i )1:k�1

� γn

�
X (i )k

���X (i )1:k�1

�
qk
�
X (i )k

���X (i )1:k�1

� .
Clearly at time n we have obtained X (i )1:n � qn and indeed

wn
�
X (i )1:n

�
=

γn

�
X (i )1:n

�
qn
�
X (i )1:n

� .

Although this algorithm is simple, it typically cannot be
implemented as πn (xk j x1:k�1) is unknown even up to a normalizing
constant.

AD () 13th February 2007 5 / 45



At time k = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .
At time k � 2

sample X (i )k � qk
�
�jX (i )1:k�1

�
compute wk

�
X (i )1:k

�
= wk�1

�
X (i )1:k�1

� γn

�
X (i )k

���X (i )1:k�1

�
qk
�
X (i )k

���X (i )1:k�1

� .
Clearly at time n we have obtained X (i )1:n � qn and indeed

wn
�
X (i )1:n

�
=

γn

�
X (i )1:n

�
qn
�
X (i )1:n

� .
Although this algorithm is simple, it typically cannot be
implemented as πn (xk j x1:k�1) is unknown even up to a normalizing
constant.

AD () 13th February 2007 5 / 45



Now consider the following modi�cation where we de�ne a sequence
of intermediate target distributions π1 (x1),
π2 (x1:2) , ...,πn�1 (x1:n�1) to move smoothly towards πn (x1:n) ;
that is at each time k we provide an IS approximation of πk (x1:k ) .

By construction, we know πk (x1:k ) up to a normalizing constant

πk (x1:k ) =
γk (x1:k )

Zk
.

We also use an importance distribution

qn (x1:n) = q1 (x1) q2 (x2j x1) � � � qn (xn j x1:n�1)

= qn�1 (x1:n�1) qn (xn j x1:n�1)

= qk (x1:k )
n

∏
j=k+1

qj (xj j x1:j�1)

but it is now such that

qk (xk j x1:k�1) � πk (xk j x1:k�1) .
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To check that is indeed true, note that

w1 (x1) =
γ1 (x1)
q1 (x1)

and

wk (x1:k ) =
γ1 (x1)
q1 (x1)

k

∏
j=1

γj (x1:j )

γj�1 (x1:j�1) qj (xj j x1:j�1)

=
γk (x1:k )

q1 (x1) q2 (x2j x1) � � � qk (xk j x1:k�1)

=
γk (x1:k )

qk (x1:k )

A key problem remains to be solved, how to select πk (x1:k )?
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Example: Bayesian inference for hidden Markov models

Hidden Markov process: X1 � µ, Xk j (Xk�1 = xk�1) � f ( �j xk�1)

Observation process: Yk j (Xk = xk ) � g ( �j xk )

This class of models appears in numerous areas: statistics, vision,
robotics, econometrics, tracking etc.
Assume we receive y1:n, we are interested in sampling from

πn (x1:n) = p (x1:n j y1:n) =
p (x1:n, y1:n)

p (y1:n)

and estimating p (y1:n) where

γn (x1:n) = p (x1:n, y1:n) = µ (x1)
n

∏
k=2

f (xk j xk�1)
n

∏
k=1

g (yk j xk ) ,

Zn = p (y1:n) =
Z
� � �

Z
µ (x1)

n

∏
k=2

f (xk j xk�1)
n

∏
k=1

g (yk j xk ) dx1:n.
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Sequential Importance Sampling for Hidden Markov Models

If we are interested only in p (x1:n j y1:n) for a �xed n, then the �best�
sequential strategy would be to construct importance distributions

qk (xk j x1:k�1) � πn (xk j x1:k�1) = p (xk j yk :n, xk�1) .

This is typically impossible because p (xk j yk :n, xk�1) is unknown even
up to a normalizing constant

p (xk j yk :n, xk�1) ∝ f (xk j xk�1) p (yk :n j xk )
where

p (yk :n j xk ) =
Z
� � �

Z n

∏
j=k+1

f (xj j xj�1)
n

∏
j=k

g (yj j xj ) dxk+1:n

Alternatively, we can simply propose to sample from an intermediate
sequence of distributions πk (x1:k ). In this context, a natural choice
consists of using

πk (x1:k ) = p (x1:k j y1:k ) .

This is only one possibility but very important in practice.
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We pick the proposal distributions such that

qk (xk j x1:k�1) � πk (xk j x1:k�1) = p (xk j yk , xk�1)
∝ f (xk j xk�1) g (yk j xk ) .

We will use the notation q (xk j yk , xk�1) in this context and

q (x1:k j y1:k ) = q (x1j y1) q (x2j y2, x1) � � � q (xk j yk , xk�1)

Note that we will sample X (i )k using only the observation yk available
at time k.
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At time k = 1, sample X (i )1 � q1 (�) and set

w1
�
X (i )1

�
=

µ
�
X (i )1

�
g
�
y1 jX (i )1

�
q
�
X (i )1

���y1� .

At time k � 2

sample X (i )k � q
�
�j yk ,X

(i )
k�1

�
compute

wk
�
X (i )1:k

�
= wk�1

�
X (i )1:k�1

� p
�
X (i )1:k ,y1:k

�
p
�
X (i )1:k�1,y1:k�1

�
q
�
X (i )k

���yk ,X (i )k�1� =
wk�1

�
X (i )1:k�1

� f �X (i )k ���X (i )k�1�g� yk jX (i )k �
q
�
X (i )k

���yk ,X (i )k�1� .

At any time k, we have

X (i )1:k � q (x1:k j y1:k ) , wk
�
X (i )1:k

�
=
p
�
X (i )1:k , y1:k

�
q
�
X (i )1:k

��� y1:k

�
that is an IS approximation of πk (x1:k ) = p (x1:k j y1:k ) and of
Zk = p (y1:k ) .
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This algorithm provides an approximation of ALL the distributions
p (x1:k j y1:k ) for any k � 1.

It can be implemented for real time applications.

The computational complexity at each time step is �xed.
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A �locally�optimal choice consists of selecting

q (xk j y1:k , xk�1) = p (xk j yk , xk�1) =
f (xk j xk�1) g (yk j xk )R
f (xk j xk�1) g (yk j xk ) dxk

which yields

f (xk j xk�1) g (yk j xk )
q (xk j y1:k , xk�1)

=
Z
f (xk j xk�1) g (yk j xk ) dxk .

We might not be able to compute
R
f (xk j xk�1) g (yk j xk ) dxk so we

can either get an unbiased estimate of it or approximate
p (xk j yk , xk�1) using standard techniques (EKF, Unscented...).
The lazy user can simply select

q (xk j y1:k , xk�1) = p (xk j xk�1)

which yields

f (xk j xk�1) g (yk j xk )
q (xk j y1:k , xk�1)

= g (yk j xk ) .
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We present a simple application to stochastic volatility model where

f (xk j xk�1) = N
�
xk ;φxk�1, σ

2� ,
g (yk j xk ) = N

�
yk ;0, β

2 exp (xk )
�
.

We cannot sample from p (xk j yk , xk�1) but it is unimodal and we
can compute numerically its mode mk (xk�1) and use a
t�distribution with 5 degrees of freedom and scale set as the inverse
of the negated second-order of log p (xk j yk , xk�1) evaluated at
mk (xk�1) and given by

σ2k (xk�1) =
�
1

σ2
+
y2k
2β2

exp (�mk (xk�1))
��1

.
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Importance Weights (base 10 logarithm)

Figure: Histograms of the base 10 logarithm of W (i )
n for n = 1 (top), n = 50

(middle) and n = 100 (bottom).

The algorithm performance collapse as n increases... After a few time
steps, only a very small number of particles have non negligible
weights.
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You should not be surprised: This algorithm is nothing but an
implementation of IS where we have restricted the structure of the
importance distribution.

As the dimension of the target p (x1:n j y1:n) increases over time, the
problem is becoming increasingly di¢ cult. In practice, the discrepancy
between the target and the IS distribution q (x1:n j y1:n) can only also
increase (on average).

As n increases the variance of the weights increases (typically
geometrically) and the IS approximation collapses.

You can use any IS distribution you want (even the locally optimal
one), the algorithm will collapse.

These negative remarks also hold for the general case and not only for
hidden Markov models.
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Summary

Sequential Importance Sampling is an attractive idea: sequential and
parallelizable, only requires designing low-dimensional proposal
distributions.

Sequential Importance Sampling can only work for moderate size
problems.

Is there a way to partially �x this problem?
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Resampling

Intuitive KEY idea: As the time index k increases, the variance of the
unnormalized weights

n
wk
�
X (i )1:k

�o
increases and all the mass is

concentrated on a few random samples/particles. We propose to reset
the approximation by getting rid in a principled way of the particles
with low weights W (i )

k (relative to 1/N) and multiply the particles
with high weights W (i )

k (relative to 1/N).

The main reason is that if a particle at time n has a low weight then
typically it will still have a low weight at time n+ 1 (though I can
easily give you a counterexample).

You want to focus your computational e¤orts on the �promising�
parts of the space.
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At time k, IS provides the following approximation of πk (x1:k )

bπk (x1:k ) =
N

∑
i=1
W (i )
k δ

X (i )1:k
(x1:k ) .

The simplest resampling schemes consists of sampling N timeseX (i )1:k � bπk (x1:k ) to build the new approximation

eπk (x1:k ) =
1
N

N

∑
i=1

δeX (i )1:k
(x1:k ) .

The new resampled particles
neX (i )1:k

o
are approximately distributed

according to πk (x1:k ) but statistically dependent. This is
theoretically much more di¢ cult to study.
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Note that we can rewrite

eπk (x1:k ) =
N

∑
i=1

N (i )k
N

δ
X (i )1:k
(x1:k )

where
�
N (1)k , ...,N (N )k

�
�M

�
N;W (1)

k , ...,W (N )
k

�
thus

E
h
N (i )k

i
= NW (i )

k , var
h
N (1)k

i
= NW (i )

k

�
1�W (i )

k

�
.

It follows that the resampling step is an unbiased operation

E [ eπk (x1:k )j bπk (x1:k )] = bπk (x1:k )

but clearly it introduces some errors �locally� in time. That is for any
test function, we have

vareπk [ϕ (X1:k )] � varbπk [ϕ (X1:k )]

Better resampling steps can be designed such that E
h
N (i )k

i
= NW (i )

k

but var
h
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A popular alternative to multinomial resampling consists of selecting

U1 � U
�
0,
1
N

�
and for i = 2, ...,N

Ui = U1 +
i � 1
N

= Ui�1 +
1
N
.

Then we set

N (i )k = #

(
Uj :

i�1
∑
m=1

W (m)
k � Uj <

i

∑
m=1

W (m)
k

)

where ∑0
m=1 = 0.

It is trivial to check that E
h
N (i )k

i
= NW (i )

k .
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Degeneracy Measures

Resampling at each time step is harmful. We should resample only
when necessary.

To measure the variation of the weights, we can use the E¤ective
Sample Size (ESS) or the coe¢ cient of variation CV

ESS =

 
N

∑
i=1

�
W (i )
n

�2!�1
, CV =

 
1
N

N

∑
i=1

�
NW (i )

n � 1
�2!1/2

We have ESS = N and CV = 0 if W (i )
n = 1/N for any i .

We have ESS = 1 and CV =
p
N � 1 if W (i )

n = 1 and W (j)
n = 1 for

j 6= i .
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We can also use the entropy

Ent = �
N

∑
i=1
W (i )
n log2

�
W (i )
n

�

We have Ent = log2 (N) if W
(i )
n = 1/N for any i . We have Ent = 0

if W (i )
n = 1 and W (j)

n = 1 for j 6= i .
Dynamic Resampling: If the variation of the weights as measured by
ESS, CV or Ent is too high, then resample the particles.
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Generic Sequential Monte Carlo Scheme

At time k = 1, sample X (i )1 � q1 (�) and set w1
�
X (i )1

�
=

γ1

�
X (i )1

�
q1
�
X (i )1

� .

Resample
n
X (i )1 ,W

(i )
1

o
to obtain new particles also denoted

n
X (i )1

o
At time k � 2

sample X (i )k � qk
�
�jX (i )1:k�1

�
compute wk

�
X (i )1:k

�
=

γk

�
X (i )1:k

�
γk�1

�
X (i )1:k�1

�
qk
�
X (i )k

���X (i )1:k�1

� .

Resample
n
X (i )1:k ,W

(i )
k

o
to obtain new particles also denoted

n
X (i )1:k

o
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At any time k, we have two approximation of πk (x1:k )

bπk (x1:k ) =
N

∑
i=1
W (i )
k δ

X (i )1:k
(x1:k ) (before resampling)

eπk (x1:k ) =
1
N

N

∑
i=1

δ
X (i )1:k
(x1:k ) (after resampling).

We also have dZk
Zk�1

=
1
N

N

∑
i=1
wk
�
X (i )1:k

�
.
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Sequential Monte Carlo for Hidden Markov Models

At time k = 1, sample X (i )1 � q1 (�) and set

w1
�
X (i )1

�
=

µ
�
X (i )1

�
g
�
y1 jX (i )1

�
q
�
X (i )1

���y1� .

Resample
n
X (i )1 ,W

(i )
1

o
to obtain new particles also denoted

n
X (i )1

o
At time k � 2

sample X (i )k � q
�
�j yk ,X

(i )
k�1

�
compute wk

�
X (i )1:k

�
=

f
�
X (i )k

���X (i )k�1�g� yk jX (i )k �
q
�
X (i )k

���yk ,X (i )k�1� .

Resample
n
X (i )1:k ,W

(i )
k

o
to obtain new particles also denoted

n
X (i )1:k

o
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Example: Linear Gaussian model

X1 � N (0, 1) , Xn = αXn�1 + σvVn,

Yn = Xn + σwWn

where Vn � N (0, 1) and Wn � N (0, 1).

We know that p (x1:n j y1:n) is Gaussian and its parameters can be
computed using Kalman techniques. In particular p (xn j y1:n) is also a
Gaussian which can be computed using the Kalman �lter.

We apply the SMC method with
q (xk j yk , xk�1) = f (xk j xk�1) = N

�
xk ; αxn�1, σ2v

�
.
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Importance Weights (base 10 logarithm)

Figure: Histograms of the base 10 logarithm of W (i )
n for n = 1 (top), n = 50

(middle) and n = 100 (bottom).

By itself this graph does not mean that the procedure is e¢ cient!
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Figure: p (x1 j y1) and bE [X1 j y1 ] (top) and its particle approximation (bottom)
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Figure: p (x1 j y1) , p (x2 j y1:2)and bE [X1 j y1 ] , bE [X2 j y1:2 ] (top) and particle
approximation of p (x1:2 j y1:2) (bottom)

AD () 13th February 2007 31 / 45



5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

Figure: p (xk j y1:k ) and bE [Xk j y1:k ] for k = 1, 2, 3 (top) and particle
approximation of p (x1:3 j y1:3) (bottom)
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Figure: p (xk j y1:k ) and bE [Xk j y1:k ] for k = 1, .., 4 (top) and particle
approximation of p (x1:4 j y1:4) (bottom)
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Figure: p (xk j y1:k ) and bE [Xk j y1:k ] for k = 1, ..., 5 (top) and particle
approximation of p (x1:5 j y1:5) (bottom)
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Figure: p (xk j y1:k ) and bE [Xk j y1:k ] for k = 1, ..., 10 (top) and particle
approximation of p (x1:10 j y1:10) (bottom)
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Figure: p (xk j y1:k ) and bE [Xk j y1:k ] for k = 1, ..., 15 (top) and particle
approximation of p (x1:15 j y1:15) (bottom)
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Figure: p (xk j y1:k ) and bE [Xk j y1:k ] for k = 1, ..., 20 (top) and particle
approximation of p (x1:20 j y1:20) (bottom)
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Figure: p (xk j y1:k ) and bE [Xk j y1:k ] for k = 1, ..., 24 (top) and particle
approximation of p (x1:24 j y1:24) (bottom)
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This SMC strategy performs remarkably well in terms of estimation of
the marginals p (xk j y1:k ) . This is what is only necessary in many
applications thankfully.

However, the joint distribution p (x1:k j y1:k ) is poorly estimated when
k is large; i.e. we have in the previous example

bp (x1:11j y1:24) = δX1:11 (x1:11) .

The same conclusion holds for most sequences of distributions
πk (x1:k ).

Resampling only solves partially our problems.
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Figure: SMC estimates of the marginal distributions p (xn j y1:n).

Stochastic volatility model revisited using SMC.
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Convergence of Sequential Monte Carlo

Establishing convergence results for SMC is beyond the scope of this
course but many results are available (e.g. Del Moral, 2004).

In particular we have for any bounded function ϕ and any p > 1

E

�����Z ϕ (x1:n) (bπn (x1:n)� πn (x1:n)) dx1:n

����p�1/p

� Cn kϕk∞
N

.

It looks like a nice result... but it is rather useless as Cn increases
polynomially/exponentially with time.

To achieve a �xed precision, this would require to use a
time-increasing number of particles N.
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One cannot hope to estimate with a �xed precision a target
distribution of increasing dimension.

So at best, we can expect results of the following form

E

�����Z ϕ (xn�L+1:n) (bπn (xn�L+1:n)� πn (xn�L+1:n)) dxn�L+1:n

����p�1/p

� ML kϕk∞
N

if the model has nice forgetting/mixing properties, i.e.Z ��πn (xn j x1)� πn
�
xn j x 01

��� dxn � λn�1

with 0 � λ < 1.

In the HMM case, it means thatZ ��p (xn j y1:n, x1)� p
�
xn j y1:n, x 01

��� dxn � λn�1
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We can have also a CLT. For the standard IS,
p
N (Ebπn (ϕ (Xn))�Eπn (ϕ (Xn)))) N

�
0, σ2IS ,n (ϕ)

�
where σ2IS ,n (ϕ) =

R π2n(x1:n)
qn(x1:n)

(ϕ (xn)�Eπn (ϕ (Xn)))
2 dx1:n.

For SMC, we have
p
N
�R

ϕ (xn) (bπn (xn)� πn (xn)) dxn
�
) N

�
0, σ2SMC ,n (ϕ)

�
where σ2SMC ,n (ϕ) =

R π2n(x1)
q1(x1)

�R
ϕ (xn)πn (xn j x1) dxn �Eπn (ϕ (Xn))

�2 dx1
+∑n�1

k=2

R πn(xk�1,xk )
2

πk�1(xk�1)qk ( xk jxk�1)
�R

ϕ (xn)πn (xn j xk ) dxn �Eπn (ϕ (Xn))
�2 dxk�1:k

+
R πn(xn�1,xn)

2

πn�1(xn�1)qn( xn jxn�1) (ϕ (xn)�Eπn (ϕ (Xn)))
2 dxn�1:n.
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These results also demonstrate that one cannot expect to obtain
good performance if the model has static parameters, i.e. if we have

X1 � µ, Xk j (Xk�1 = xk�1) � fθ ( �j xk�1) ,

Yk j (Xk = xk ) � gθ ( �j xk ) .
where θ � π (θ) and we want to estimate p (x1:n, θj y1:n) .

Indeed the dynamic model Zn = (Xn, θ) is not ergodic as

f
�
x 0, θ0

�� x , θ� = δθ

�
θ0
�
fθ
�
x 0
�� x� .

This is intuitive! At time 1, we sample N particles θ(i ) and these
values are never ever modi�ed later on.
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At �rst glance, this is really bad news. SMC appears unable to deal
with static parameters

A dirty solution consists of adding noise to a �xed parameter to
transform it as a time-varying parameter

θn = θn�1 + εn.

This is not clean and we will discuss later on a rigorous approach
which requires a �deeper�understanding of SMC.
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