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@ Classical “exact” simulation methods.
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@ Classical “exact” simulation methods.

o Accept/Reject.
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@ Classical “exact” simulation methods.
o Accept/Reject.

@ Variations over the Accept/Reject algorithm
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The Monte Carlo principle

o Let 71 (x) be a probability density on X
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The Monte Carlo principle

o Let 71 (x) be a probability density on X

@ Monte Carlo approximation is given by

N ..
Ty (x) = % Y by (x) where X
i=1
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The Monte Carlo principle

o Let 71 (x) be a probability density on X

@ Monte Carlo approximation is given by

N ..
o (x) = Y Sy (x) where X1 28 7,

N i=1
@ Forany ¢ : & =R
1N
=% ; ¢ ( ) Ex (9)
and more precisely
var,
IE{X(,-)} [Ez, (9)] = Ex (9) and varrxmy (Ezy (@) = 7;\/(4))
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o If we could sample from any distribution 7t easily, then everything
would be easy.
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o If we could sample from any distribution 7t easily, then everything
would be easy.

@ Unfortunately, there is no generic algorithm to sample exactly from
any 7T.
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o If we could sample from any distribution 7t easily, then everything
would be easy.

@ Unfortunately, there is no generic algorithm to sample exactly from
any 7T.

@ Today, we discuss simple methods which are the building blocks of
more complex algorithms; i.e. MCMC and SMC.
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Pseudo Random Number Generators

@ All algorithms discussed here rely on the availability of a generator of
independent uniform random variables in [0, 1].
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Pseudo Random Number Generators

@ All algorithms discussed here rely on the availability of a generator of
independent uniform random variables in [0, 1].

@ It is impossible to get such numbers and we only get pseudo-random
numbers which look like they are i.i.d. ¢ [0, 1].
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Pseudo Random Number Generators

@ All algorithms discussed here rely on the availability of a generator of
independent uniform random variables in [0, 1].

@ It is impossible to get such numbers and we only get pseudo-random
numbers which look like they are i.i.d. ¢ [0, 1].

@ There are a few standard very good generators available. We will not
give any detail as their constructions are based on techniques very
different from the ones we address here.
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Inverse CDF Method

o Consider X ={1,2,3} and
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Inverse CDF Method

o Consider X ={1,2,3} and

FX(X):ZH(X:i)]I(iSX)

and its inverse for u € [0, 1]

F)?l(u):inf{xeX:FX(x) > u}
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@ To sample from this discrete distribution, sample U ~ U [O, 1].
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@ To sample from this discrete distribution, sample U ~ U [O, 1].
o Find X = F,' (U).
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@ To sample from this discrete distribution, sample U ~ U [O, 1].

o Find X = F,' (U).

@ The probability of U falling in the vertical interval i is precisely equal
to the probability 77 (X = 1).
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Figure: The distribution and cdf of a discrete random variable
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@ Assume the distribution has a density, then the cdf takes the form

—+o0 X

t(u)l(u< x)du = / 7 (u) du.

—00

Fx (x) = P (X<x) :/

—00
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@ Assume the distribution has a density, then the cdf takes the form

—+o0 X

t(u)l(u< x)du = / 7 (u) du.

—00

Fx (x) = P (X<x) :/

—00

e We would like to use the same algorithm; i.e. U ~ U [0, 1] and set
X =F' (V).
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@ Assume the distribution has a density, then the cdf takes the form

—+o0 X

t(u)l(u< x)du = / 7 (u) du.

—00

Fx (x) = P (X<x) :/

—00

e We would like to use the same algorithm; i.e. U ~ U [0, 1] and set
X =F' (V).
@ Question: Do we have X ~ 717
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@ Proof of validity:
Pr(X <x) = Pr(F¢*(U)<x)
Pr(U < Fx (x)) since Fx is non decreasing
= /Olll(ug Fx (x)) du since U ~ U [0, 1]
= Fx(x)
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@ Proof of validity:
Pr(X <x) = Pr(F¢*(U)<x)
Pr(U < Fx (x)) since Fx is non decreasing
= /Olll(ug Fx (x)) du since U ~ U [0, 1]
= Fx(x)

@ The cdf of X produced by the algorithm above is precisely the cdf of
!
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@ Consider the exponential of parameter 1 then

70 (x) = exp (—x) g o)

thus the cdf of X is
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@ Consider the exponential of parameter 1 then

70 (x) = exp (—x) g o)

thus the cdf of X is

X 0 if x<0
FX(X):/wn(u)du:{ l—exp(—x) ifx>0

@ Thus the inverse cdf is

l—exp(—x)=u&ex=—log(l—u)=Fy'(u).
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@ Consider the exponential of parameter 1 then

70 (x) = exp (—x) g o)

thus the cdf of X is

X 0 if x<0
FX(X):/wn(u)du:{ l—exp(—x) ifx>0

@ Thus the inverse cdf is
l—exp(—x)=u&ex=—log(l—u)=Fy'(u).

o Inverse method: U ~ U [0, 1] then X = —log (1 — U) ~ 7t and
X =—log(U) ~ m.
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@ Assume you have P >> 1 i.i.d. real-valued rv X; ~ fx (cdf Fx) and
you are interested in sampling realizations from the distribution of

Z = max (Xl, ...,Xp) .
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Assume you have P >> 1 i.i.d. real-valued rv X; ~ fx (cdf Fx) and
you are interested in sampling realizations from the distribution of

Z = max (Xl, ...,Xp) .

Brute force direct method. Sample Xi, ..., Xp ~ f then compute
Z = max (Xl, ...,Xp) .
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@ Assume you have P >> 1 i.i.d. real-valued rv X; ~ fx (cdf Fx) and
you are interested in sampling realizations from the distribution of

Z = max (Xl, ...,Xp) .

o Brute force direct method. Sample Xi, ..., Xp ~ f then compute
Z = max (Xl, ...,Xp) .

@ Indirect method. We have

Fz(z) = Pr(X1<z..,Xp<2z)

is distributed according to fz
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@ Simple method to sample univariate distributions.
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@ Simple method to sample univariate distributions.

@ This method is only limited to simple cases where the inverse cdf
admits a closed form or can be tabulated.
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@ Simple method to sample univariate distributions.

@ This method is only limited to simple cases where the inverse cdf
admits a closed form or can be tabulated.

@ In practice, it is really very limited.
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Change of Variables

@ ‘ldea’: Using the fact that 7t is related to other distributions easier to
sample.
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Change of Variables

@ ‘ldea’: Using the fact that 7t is related to other distributions easier to
sample.

o This is very specific!
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Change of Variables

@ ‘ldea’: Using the fact that 7t is related to other distributions easier to

sample.
o This is very specific!
o If Xj ~ Exp (1) then

Y

Y
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e Consider X; ~ N (0,1) and X, ~ N (0, 1) then its polar coordinates
(R, 0) are independent and distributed according to

R? = X?4+X3~Exp(1/2),
6 ~ U0, 2mn].
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e Consider X; ~ N (0,1) and X, ~ N (0, 1) then its polar coordinates
(R, 0) are independent and distributed according to

R? = X?4+X3~Exp(1/2),
6 ~ U[0,2m].

o It is simple to simulate R = \/—2log (U1) and 6 = 27tU, where
U, Uy ~U [0, 1] then

X1 = Rcosf = 4/—2log (Uy)cos (2tls),
Xo = Rsinf = /—2log(U;)sin(21tls).
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e Consider X; ~ N (0,1) and X, ~ N (0, 1) then its polar coordinates
(R, 0) are independent and distributed according to

R? = X?4+X3~Exp(1/2),
6 ~ U[0,2m].

o It is simple to simulate R = \/—2log (U1) and 6 = 27tU, where
U, Uy ~U [0, 1] then

X1 = Rcosf = 4/—2log (Uy)cos (2tls),
Xo = Rsinf = /—2log(U;)sin(21tls).

e By construction X; and X are two independent A (0, 1) rvs.
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Sampling via Composition

@ Assume we have

(x) = /

where it is easy to sample from 7T (x, y) but difficult/impossible to

compute 7T (x) .
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Sampling via Composition

@ Assume we have

(x) = /

where it is easy to sample from 7T (x, y) but difficult/impossible to

compute 7T (x) .

e In this case, it is sufficient to sample (X, Y) ~ 7T = X ~ 7.

AD () 6th February 2007 17 / 42



Sampling via Composition

@ Assume we have

(x) = /

where it is easy to sample from 7T (x, y) but difficult/impossible to
compute 7T (x) .

@ In this case, it is sufficient to sample (X,Y) ~7T = X ~ 7.
@ One can sample from 7T (x,y) = 7 (y) 7 (x| y) by

Y ~Tthen X|Y ~7(:]Y).
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Applications to Scale Mixture of Gaussians

@ A very useful application of the composition method is for scale
mixture of Gaussians; i.e.

m(x) = /./\/'(X;O,l/y)ﬁ(y) dy.
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Applications to Scale Mixture of Gaussians

@ A very useful application of the composition method is for scale
mixture of Gaussians; i.e.

m(x) = /./\/'(X;O,l/y)ﬁ(y) dy.

@ For various choices of the mixing distributions 77 (y), we obtain
distributions 7t (x) which are t-student, a—stable, Laplace, logistic.

AD () 6th February 2007 18 / 42



Applications to Scale Mixture of Gaussians

@ A very useful application of the composition method is for scale
mixture of Gaussians; i.e.

m(x) = /./\/'(X;O,l/y)ﬁ(y) dy.

@ For various choices of the mixing distributions 77 (y), we obtain
distributions 7t (x) which are t-student, a—stable, Laplace, logistic.

o Example: If
Y ~x2and X|Y ~N(0,v/y)

then X is marginally distributed according to a t-Student with v
degrees of freedom.
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Applications to Scale Mixture of Gaussians

@ A very useful application of the composition method is for scale
mixture of Gaussians; i.e.

m(x) = /./\/'(X;O,l/y)ﬁ(y) dy.

@ For various choices of the mixing distributions 77 (y), we obtain
distributions 7t (x) which are t-student, a—stable, Laplace, logistic.

o Example: If
Y ~x2and X|Y ~N(0,v/y)
then X is marginally distributed according to a t-Student with v
degrees of freedom.

o Conditional upon Y, X is Gaussian: This structure will be used to
develop later efficient MCMC algorithms.
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Sampling finite mixture of distributions

@ Assume one wants to sample from
P
7T (X) = Z TT;. 7T (X)
i=1

where 71; >0, Y7, 7t; = 1 and 7 (x) >0, [ 71j (x) dx = 1.
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Sampling finite mixture of distributions

@ Assume one wants to sample from

= il TT;. 7T (X)

where 71; > 0, Zp . i =1and 7 (x) >0, fﬂ;(x)dx:l.
e We can introduce Y € {1,..., p} and introduce ()
X

T (x,y) =y X 1My (x) = [7 (Xi/)d)zi:(y):ﬁy
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Sampling finite mixture of distributions

@ Assume one wants to sample from

= il TT;. 7T (X)

where 71; >0, Y7, 7t; = 1 and 7 (x) >0, [ 71j (x) dx = 1.

e We can introduce Y € {1,..., p} and introduce )
X

T(x,y) =1y X 7y (X) = fnf(:, ifx)c}; i:(y) =Ty

e To sample from 77 (x), then sample Y ~ 77 (discrete distribution such
that Pr (Y = k) = m4) then

X|Y ~7(-|Y) = my.
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Sampling infinite mixture of distributions

@ Assume you are interested in sampling from the discrete distribution
[ee]
m(x) =Y mimi(x)
i=1

where 71; >0, Y72, 71; = 1 and 71 (x) >0, [ 71j (x) dx = 1.
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Sampling infinite mixture of distributions

@ Assume you are interested in sampling from the discrete distribution
m(x) =Y mimi(x)
i=1
where 71; >0, Y72, 71; = 1 and 71 (x) >0, [ 71j (x) dx = 1.

@ If you try to sample from this distribution by composition, you need
to sample from a discrete distribution with infinite support.
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Sampling infinite mixture of distributions

@ Assume you are interested in sampling from the discrete distribution

= i TT;. 7T (X)
i=1

where 71; >0, Y72, 71; = 1 and 71 (x) >0, [ 71j (x) dx = 1.

@ If you try to sample from this distribution by composmon, you need
to sample from a discrete distribution with infinite support.

@ Remember that you will set Y =jif

Z?‘C/<U<Z7‘[/
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Sampling infinite mixture of distributions

@ Assume you are interested in sampling from the discrete distribution

= i TT;. 7T (X)
i=1

where 71; >0, Y72, 71; = 1 and 71 (x) >0, [ 71j (x) dx = 1.

@ If you try to sample from this distribution by composmon, you need
to sample from a discrete distribution with infinite support.

@ Remember that you will set Y =jif

Z?‘C/<U<Z7‘[/

@ No need to truncate: sample U and then find j such that the above
condition is satisfied.
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Accept-Reject Method

@ The rejection method allows one to sample according to a distribution
7t defined on X only known up to a proportionality constant, say
7T o 7T,
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Accept-Reject Method

@ The rejection method allows one to sample according to a distribution
7t defined on X only known up to a proportionality constant, say
7T o 7T,

o It relies on samples generated from a proposal distribution g on X. g
might as well be known only up to a normalising constant, say g « g*.
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Accept-Reject Method

@ The rejection method allows one to sample according to a distribution
7t defined on X only known up to a proportionality constant, say
7T o 7T,

o It relies on samples generated from a proposal distribution g on X. g
might as well be known only up to a normalising constant, say g « g*.

@ We need g* to ‘dominate’ 77%; i.e.

C = sup (%)
xeX q* <X>

< o0
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Accept-Reject Method

@ The rejection method allows one to sample according to a distribution
7t defined on X only known up to a proportionality constant, say
7T o 7T,

o It relies on samples generated from a proposal distribution g on X. g
might as well be known only up to a normalising constant, say g « g*.

@ We need g* to ‘dominate’ 7t*; i.e.

C = sup (%)
xeX q* <X>

< o0

@ This implies 77%(x) > 0 = ¢*(x) > 0 but also that the tails of ¢*(x)
must be thicker than the tails of 77%(x).
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Consider C" > C. Then the accept/reject procedure proceeds as follows.

@ Sample Y~qg and U ~ U [0,1].
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Consider C" > C. Then the accept/reject procedure proceeds as follows.
@ Sample Y~qg and U ~ U [0,1].

QIfU< < E( )) then return Y'; otherwise return to step 1.
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Figure: The idea behind the rejection method for
=C.

7(x) = 7 (x) = Be (x:15,5), 4 (x) = 4 (x) = U (x), C'

6th February 2007 23/




0
|

15
|

T T T T T
—a —= o 2 a

Figure: Sampling from
7 (x) o< exp (—x2/2) (sin (6x)2 + 3 cos (x)? sin (4x)? + 1)
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@ We now prove that Pr(Y < x| Y accepted) = Pr (X < x).
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@ We now prove that Pr(Y < x| Y accepted) = Pr (X < x).

o We have for any x € X
Pr(Y <xand Y accepted)

= // ( < T (}(/))>q(y)><1dydu
= /_ooC’q*(y)q(y)dy

Slom

c qu dy
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@ We now prove that Pr(Y < x| Y accepted) = Pr (X < x).

o We have for any x € X
Pr(Y <xand Y accepted)

= // ( < T (}(/))>q(y)><1dydu
= /_ooC’q*(y)q(y)dy

S
C’fxq dy

@ The probability of being accepted is the marginal of
Pr(Y < x and Y accepted)

Jaumt
Pr(Y ted —.
(Y accepted) = C’ qu dy
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@ Thus

Pr(Y < x and Y accepted)
Pr (Y accepted)

S () dy /X

Pr(Y < x|Y accepted) =
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@ Thus

Pr(Y < x and Y accepted)
Pr (Y accepted)

S () dy /X

Pr(Y < x|Y accepted) =

e Example: We want to sample from Be (x;a, B) & x* 71 (1 — x)P1
using U [0, 1]. One can find

a—1 1— g—-1
sup > (1—x)

x€[0,1] 1

analytically for «, B > 1! We do not need the normalizing constant of

Be.

AD () 6th February 2007 26 / 42



@ You do not lose anything by not knowing the normalizing constant of
*

q .
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@ You do not lose anything by not knowing the normalizing constant of
*

q*.
o Example: The target 7T is given by

() s () = o0 (5 ) o)

where m (x) < M for any x € X.
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@ You do not lose anything by not knowing the normalizing constant of
*

q*.
o Example: The target 7T is given by

T o () = exp (g ) m(x

where m (x) < M for any x € X.
o If we use g (x) = ¢* (x) = (271) 2 exp (—X2—2> then we have

" (%)

q* (x)

3

fx T (y) dy.

<G = (271’)1/2 M and Pr (Y accepted) = c
1
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@ You do not lose anything by not knowing the normalizing constant of
*

q*.
o Example: The target 7T is given by

() s () = o0 (5 ) o)

where m (x) < M for any x € X.
o If we use g (x) = ¢* (x) = (271) 2 exp (—X2—Q> then we have

" (%)

q* (x)

3

<G = (271)1/2 M and Pr (Y accepted) = fx

C1

o If we use ¢* (x) = exp (—X;) then we have 7;*((;()) < G =M and

Pr (Y accepted) = x7 (y)l/zyz Jx T (y) dy
C2 (27‘[) C1
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@ The acceptance probability Pr (Y accepted) is a measure of efficiency.
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@ The acceptance probability Pr (Y accepted) is a measure of efficiency.

@ The number of trials before accepting a candidate follows a geometric
distribution

Pr (kth proposal accepted> = (1- p)ki1 0

where p = < fX 7 y) dy )

C' [ya* (y)dy
thus its expected value is

1 1

- k=11
k‘;k(l 2 p_Q_Pr(Yaccepted)'
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@ The acceptance probability Pr (Y accepted) is a measure of efficiency.

@ The number of trials before accepting a candidate follows a geometric
distribution

Pr (kth proposal accepted> = (1-p) 1y

where p = < fX 7 ) dy )

C' [ya* (y)dy
thus its expected value is

1 1

= k=11
kgok(l 2 p_Q_Pr(Yaccepted)'

@ This is important to better understand the Metropolis-Hastings
algorithm.
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o Consider a Bayesian model: prior 77 (6) and likelihood f (x| 6) .
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o Consider a Bayesian model: prior 77 (6) and likelihood f (x| 6) .
@ The posterior distribution is given by

(0] x) = %mn*(ﬂx)

where 77 (0] x) = 7w () f (x|6).
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o Consider a Bayesian model: prior 77 (6) and likelihood f (x| 6) .
@ The posterior distribution is given by

_ __m(O)f(x6) *
(0| x) = m o 7% (0] x)

where 77 (0] x) = 7w () f (x|6).

@ We can use the prior distribution as a candidate distribution
q(0) =q*(0) = (0) as long as
(6] x)

sup———= = supf (x|0) < C.
oco q* (0) 0@ (x18)
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o Consider a Bayesian model: prior 77 (6) and likelihood f (x| 6) .
@ The posterior distribution is given by

_ __m(O)f(x6) *
(0| x) = m o 7% (0] x)

where 77 (0] x) = 7w () f (x|6).

@ We can use the prior distribution as a candidate distribution
q(0) =q*(0) = (0) as long as

(6] x)

sup———= =supf (x|0) < C
oco q* (0) 0@ (x18)

@ In many applications, the likelihood is bounded so one can use the
rejection procedure and it is accepted with proba
f® f(x|6)de/cC.
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Consider a Bayesian model: prior 77 (6) and likelihood f (x| 6).
@ The posterior distribution is given by
— __7(0)f(x]6) x
7 (01%) = 1 @rcaaas * 77 (61%)
where 77 (0] x) = 7w () f (x|6).

We can use the prior distribution as a candidate distribution
q(0) =q*(0) = (0) as long as

(6] x)

sup———= =supf (x|0) < C

oco q* (0) 0@ (x18)

In many applications, the likelihood is bounded so one can use the
rejection procedure and it is accepted with proba

f® f(x|6)de/cC.

Moreover, if we have g* (0) = 71 (0) then expected value before

acceptance
Cc

f®7r(9)f(x]9) d
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Limitations of Accept-Reject

o Consider the case where X=R"

1 n g2
m(0) = ———exp | ==L

(0) = ot ex _Lia 67 i
LA (2m0?)"? P 202

and
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Limitations of Accept-Reject

o Consider the case where X=R"

1 n g2
m(0) = ———exp | ==L

(0) = ot ex _Lia 67 i
LA (2m0?)"? P 202

@ We have for any o > 1
n©) _ r ( 1>

=0c"exp| =) 05 (1—— < ¢" for any 0
@ ©) p( L1 5 y

1
Pr (Y accepted) = on

and

and
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Limitations of Accept-Reject

o Consider the case where X=R"

1 Y67
0= Gamee(-57%)

and

(0) = ot ex _Lia 67 i
LA (2m0?)"? P 202

@ We have for any o > 1
n©) _ r ( 1>

=0c"exp| =) 05 (1—— < ¢" for any 0
@ ©) p( L1 5 y

1
Pr (Y accepted) = —

0—”

and

@ Despite having a very good proposal then the acceptance probability
decreases exponentially fast with the dimension of the problem.
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Advantages.

@ Rather universal, and compared to the inverse cdf method requires
less algebraic properties.

Drawbacks.
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@ Rather universal, and compared to the inverse cdf method requires
less algebraic properties.

@ Neither normalisation constant of 7t nor that of g are needed.

Drawbacks.
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Advantages.

@ Rather universal, and compared to the inverse cdf method requires
less algebraic properties.

@ Neither normalisation constant of 7t nor that of g are needed.
Drawbacks.

@ How to construct the proposal g (x) automatically?
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Advantages.

@ Rather universal, and compared to the inverse cdf method requires
less algebraic properties.

@ Neither normalisation constant of 7t nor that of g are needed.
Drawbacks.

@ How to construct the proposal g (x) automatically?

@ Typically the performance of the method decrease exponentially with
the dimension of the problem.
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Beyond Standard Accept Reject

@ In the standard Rejection algorithm, the candidate is sampled before
U. This is not necessary.
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Beyond Standard Accept Reject

@ In the standard Rejection algorithm, the candidate is sampled before
U. This is not necessary.

o Proposition: Let (Y}, /,),-; be a sequence of i.i.d. rvs taking values
in X'x {0,1} such that Y; ~ g and

Prih=1v=y) = 2

Define T =min{i > 1:/; = 1}, then Y; ~ 7.
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Beyond Standard Accept Reject

@ In the standard Rejection algorithm, the candidate is sampled before
U. This is not necessary.

o Proposition: Let (Y}, /,),-; be a sequence of i.i.d. rvs taking values
in X'x {0,1} such that Y; ~ g and

Pr(l1 :1|Y1:y):

Define T =min{i > 1:/; = 1}, then Y; ~ 7.

@ This result is useful if there are ways of constructing condition for
the acceptance or rejection of the current proposed element Y from
minimal information about it.
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Envelop Accept Reject

@ Squeeze principle: Assume we have
gl (x) <7 (x) < Cg" (x)

then we can modify the algorithm as follows.
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Envelop Accept Reject

@ Squeeze principle: Assume we have
Gi (x) < 7 (x) < Cq" (x)
then we can modify the algorithm as follows.
@ Sample Y~qg and U~ U (0,1).

QIfU< & g(\),) then return Y;
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Envelop Accept Reject

@ Squeeze principle: Assume we have
Gi (x) < 7 (x) < Cq" (x)
then we can modify the algorithm as follows.

@ Sample Y~qg and U~ U (0,1).

QIf UL o ﬁ()) then return Y;

© Otherwise, accept X if U < Z ((\2) otherwise return to step 1.
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Adaptive Rejection Sampling

@ Consider the class of univariate log-concave densities; i.e. we have

02 log 7 (x)
dx?

where 7 (x) = f (x) / [ f (x) dx.

<0
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Adaptive Rejection Sampling

@ Consider the class of univariate log-concave densities; i.e. we have

02 log 7 (x)

2 <0

where 7T (x) = f (x /ff

@ The idea is to construct automatlcally an piecewise linear upper (and
lower) bound for the target.
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Adaptive Rejection Sampling

@ Consider the class of univariate log-concave densities; i.e. we have

02 log 7 (x)

2 <0

where 7T (x) = f (x /ff

@ The idea is to construct automatlcally an piecewise linear upper (and
lower) bound for the target.

o Let S, be a set of points {x;}/7, in the support of 7t (x) such that
h(x;) = log f (x;).
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@ Because of concavity, the line L; 1 going through (x;, h(x;)) and
(Xi+1, h (xi+1)) is below the graph of hin [x;, xi+1] and is above this
graph outside this interval.

/ log f(x)
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o We define h, (x) = min {LJ—L" (x), Lit1,i42 (x)}, hn (x) = Lijit1 (x)
[where h, (x) = —co and h, (x) = min{Lo1 (x), Lpnt+1(x)} on

[x0, Xn+1] so that B
hy (x) < h(x) < hy (x)
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o We define h, (x) = min {5_1,; (x), Lit1,i42 (x)}, hn (x) = Lijit1 (x)
[where h, (x) = —co and h, (x) = min{Lo1 (x), Lpnt+1(x)} on
[x0, Xn+1] so that

IN

hy (x)

@ Therefore we have for f, (x) =

h(x) < h, (x)
X n (x) = exp hy (x)

x),?

—~

exp h,
fo(x) =exph,(x) <7(x) < fn(x) =Wnagn(x)

where it is easy to compute W, and easy to sample from g, (x) .
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@ Initialize n =0 and Sy

At iteration n > 1
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@ Initialize n =0 and Sy
At iteration n > 1

O Generate Y ~ g,.
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@ Initialize n =0 and Sy
At iteration n > 1

@ Generate Y ~ g,.

QIfU<L Wﬁn"?(n)(/\)/) then return Y'; otherwise set Sp11 =S, U{Y}.
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e Consider n data (x;, Y;)
Yi| xi ~ P (a+ bx).
and we set the prior

7 (a, b) =N (a;0,0°) N (b; 0, 7%)
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e Consider n data (x;, Y;)
Yi| xi ~ P (a+ bx;) .
and we set the prior
7 (a, b) =N (a;0,0°) N (b; 0, 7%)
@ We have

log 77 (a| X1:n, Y1:n, b) =cst+aYy; — e? Y 5P — 2% /202

92| o Y1in b . _
N ogn(g\:zL yimb) _ —eaZeX'b—(T 2 - .
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e Consider n data (x;, Y;)
Yi| xi ~ P (a+ bx;) .
and we set the prior
7 (a, b) =N (a;0,0°) N (b; 0, 7%)
@ We have

log 77 (a| X1:n, Y1:n, b) =cst+aYy; — e? Y 5P — 2% /202

9?1 Y1 b . _
= ogﬂ(g‘a);L Y1i:n,b) — _eazex,b_o. 2 < 0.

@ Thus 77 (a| X1:n, y1:n, b) is log-concave, similarly 77 ( b| x1:n, y1:n, @) is
log-concave.
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Monahan's Accept Reject Algorithm

@ We want to sample from the cdf
_H(=6(x)

F(x) H 1)

where G (x) is a given cdf and

H(x) = i apx”
n=1

with 1 =a; > a, > --- > 0. We only want to use samples from G
and U [0, 1]
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Monahan's Accept Reject Algorithm

@ We want to sample from the cdf
_H(=6(x)
POy
where G (x) is a given cdf and

[ee]
x) =) apx"
n=1

with 1 =a; > a, > --- > 0. We only want to use samples from G
and U [0, 1]
o Example: Assume you are interested in sampling from
F(x) =1—cos (%) where 0 < x < 1. You could do it through
inversion with Earccos(U) but this requires evaluating a complex
(transcendental) function. Alternatively we have G (x) = x? and
2 4 2i-2

7T 7T
Hx) = x4 =X+ 3 o+

48" " 5760 23 o T

AD () 6th February 2007 39 / 42



e Repeat
e Generate X ~ G and set K « 1.
e Repeat
e Generate U ~ G and V ~ U [0, 1].
elf U< X and V < ag—;l then K «+ K + 1, otherwise stop.
Until K odd, return X.
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o We define the event A, by X = max (X, Ui, ..., U,) and
Z1 = -+ = Z, = 1 where the U;s are the rvs generated in the inner
loop and the Z;s are Bernoulli rvs equal to consecutives values
I

V< IK+L
S
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o We define the event A, by X = max (X, Ui, ..., U,) and
Z1 = -+ = Z, = 1 where the U;s are the rvs generated in the inner
loop and the Z;s are Bernoulli rvs equal to consecutives values
I

V<KL
<%
@ We have
P(X<x,A) = a,G(x)",
P(X Sx,An,Af,H) = P(X<x,A)—P(X<x,Ap A1)

anG (x)" — 3,416 (x)".
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o We define the event A, by X = max (X, Ui, ..., U,) and
Z1 = -+ = Z, = 1 where the U;s are the rvs generated in the inner
loop and the Z;s are Bernoulli rvs equal to consecutives values
I

V<KL
<%
@ We have
P(X<xA,) = a,G(x)",
P(X <x,AnA) = PX<xA)—P(X<x Ap A1)

= 3,G(x)"—ap11G (x)".

@ The proba that X is accepted is

[ee]

(K odd) Z )" = H(-1)

and the returned X has distribution function

Yo a6 ()" (=1 H(G(=x))
H(-1) H(-1)

Fx)=P(X <x)=
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@ There exists standard techniques to sample from classical
distributions.
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@ There exists standard techniques to sample from classical
distributions.

@ Rejection is useful for small non-standard distributions but collapses
for most “interesting” problems.
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@ There exists standard techniques to sample from classical
distributions.

@ Rejection is useful for small non-standard distributions but collapses
for most “interesting” problems.

@ These algorithms will be building blocks of more complex Monte
Carlo algorithms.
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