CPSC 535 Advanced MCMC Methods

AD

March 2007

1 / 35

• Let the target distribution $\pi(x)$ be defined on $\mathcal X$ then practical MCMC algorithms consist of designing a collection of MH moves invariant with respect to π .

AD () March 2007 2 / 35

- Let the target distribution $\pi(x)$ be defined on $\mathcal X$ then practical MCMC algorithms consist of designing a collection of MH moves invariant with respect to π .
- These moves can be trans-dimensional and typically only update a subset of variables.

AD () March 2007 2 / 35

- Let the target distribution $\pi(x)$ be defined on $\mathcal X$ then practical MCMC algorithms consist of designing a collection of MH moves invariant with respect to π .
- These moves can be trans-dimensional and typically only update a subset of variables.
- Every heuristic idea can be "Metropolized" to become theoretically valid.

AD () March 2007 2 / 35

• For complex target distributions, it can be very difficult to design efficient algorithms.

AD () March 2007 3 / 35

- For complex target distributions, it can be very difficult to design efficient algorithms.
- It will always be difficult to explore a multimodal target if nothing is known beforehand about the structure of this distribution.

AD () March 2007 3 / 35

- For complex target distributions, it can be very difficult to design efficient algorithms.
- It will always be difficult to explore a multimodal target if nothing is known beforehand about the structure of this distribution.
- We would like to have generic mechanisms to help us improving the performance of MCMC algorithms.

AD () March 2007 3 / 35

• The key is to notice that although it might be difficult to sample from $\pi(x)$, it could be easier to sample from related distributions.

- The key is to notice that although it might be difficult to sample from $\pi(x)$, it could be easier to sample from related distributions.
- In particular, it should be easier to sample from

$$\overline{\pi}^{\gamma}(x) = \frac{\left[\pi(x)\right]^{\gamma}}{\int \left[\pi(x)\right]^{\gamma} dx} \propto \left[\pi(x)\right]^{\gamma}$$

where $\gamma < 1$.

- The key is to notice that although it might be difficult to sample from $\pi(x)$, it could be easier to sample from related distributions.
- In particular, it should be easier to sample from

$$\overline{\pi}^{\gamma}(x) = \frac{\left[\pi(x)\right]^{\gamma}}{\int \left[\pi(x)\right]^{\gamma} dx} \propto \left[\pi(x)\right]^{\gamma}$$

where $\gamma < 1$.

• For $\gamma < 1$ the target $\overline{\pi}^{\gamma}(x)$ is flatter than $\pi(x)$, hence easier to sample from.

(□) (□) (□) (□) (□) (□) (□)

- The key is to notice that although it might be difficult to sample from $\pi(x)$, it could be easier to sample from related distributions.
- In particular, it should be easier to sample from

$$\overline{\pi}^{\gamma}(x) = \frac{\left[\pi(x)\right]^{\gamma}}{\int \left[\pi(x)\right]^{\gamma} dx} \propto \left[\pi(x)\right]^{\gamma}$$

where $\gamma < 1$.

- For $\gamma < 1$ the target $\overline{\pi}^{\gamma}(x)$ is flatter than $\pi(x)$, hence easier to sample from.
- This is called tempering.

AD () March 2007 4

Figure: Representation of $\pi(x)$ (blue), $\overline{\pi}^{0.5}(x)$ (red) and $\overline{\pi}^{0.01}(x)$ (black)

AD () March 2007 5 / 35

 $\bullet \ \, \mathsf{Consider} \,\, \pi\left(x\right) = \mathcal{N}\left(x; \mathit{m}, \sigma^2\right) \, \mathsf{then} \,\, \overline{\pi}^{\gamma}\left(x\right) = \mathcal{N}\left(x; \mathit{m}, \sigma^2/\gamma\right).$

AD () March 2007 6 / 35

- Consider $\pi(x) = \mathcal{N}(x; m, \sigma^2)$ then $\overline{\pi}^{\gamma}(x) = \mathcal{N}(x; m, \sigma^2/\gamma)$.
- In one considers a simple random walk MH step then

$$\alpha\left(x,x'\right) = \min\left(1,\frac{\overline{\pi}^{\gamma}\left(x'\right)}{\overline{\pi}^{\gamma}\left(x\right)}\right) = \min\left(1,\left(\frac{\pi\left(x'\right)}{\pi\left(x\right)}\right)^{\gamma}\right)$$

and the acceptance ratio

$$\left(rac{\pi\left(x'
ight)}{\pi\left(x
ight)}
ight)^{\gamma}
ightarrow1$$
 as $\gamma
ightarrow0$.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩안

AD () March 2007 6 / 35

ullet Consider a discrete distribution $\pi\left(x
ight)$ on $\mathcal{X}=\left\{1,...,M\right\}$ then

$$\overline{\pi}^{\gamma}(x) = \frac{\pi^{\gamma}(x)}{\sum_{i=1}^{M} \pi^{\gamma}(i)}$$

and clearly

$$\overline{\pi}^{\gamma}(x) \to \frac{1}{M}$$

as $\gamma \to 0$.

AD () March 2007 7 / 35

ullet Consider a discrete distribution $\pi\left(x
ight)$ on $\mathcal{X}=\left\{1,...,M
ight\}$ then

$$\overline{\pi}^{\gamma}(x) = \frac{\pi^{\gamma}(x)}{\sum_{i=1}^{M} \pi^{\gamma}(i)}$$

and clearly

$$\overline{\pi}^{\gamma}(x) \to \frac{1}{M}$$

as $\gamma \to 0$.

• It is trivial to sample from a uniform distribution

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩안

AD () March 2007 7 / 35

Figure: Representation of $\pi(x)$ (blue), $\overline{\pi}^{0.5}(x)$ (red) and $\overline{\pi}^{0.01}(x)$ (black)

• Instead of using only one auxiliary distribution $\overline{\pi}^{\gamma}(x)$, we will use a sequence of P distribution defined as

$$\pi_k(x) \propto [\pi(x)]^{\gamma_k}$$

where $\gamma_1 = 1$ and $\gamma_k < \gamma_{k-1}$.

9 / 35

• Instead of using only one auxiliary distribution $\overline{\pi}^{\gamma}(x)$, we will use a sequence of P distribution defined as

$$\pi_k(x) \propto [\pi(x)]^{\gamma_k}$$

where $\gamma_1 = 1$ and $\gamma_k < \gamma_{k-1}$.

• In this case $\pi_1(x) = \pi(x)$ and $\pi_k(x)$ is a sequence of distributions increasingly simpler to sample.

(日) (레) (토) (토) (토) (의 (연)

9 / 35

• Assume we run an MCMC algorithm to sample from $\pi_k(x)$, how to use these samples to approximate $\pi(x)$.

10 / 35

- Assume we run an MCMC algorithm to sample from $\pi_k(x)$, how to use these samples to approximate $\pi(x)$.
- The first simple idea consists of using importance sampling, i.e.

$$\pi(x) = \frac{(\pi(x) / \pi_k(x)) \pi_k(x)}{\int (\pi(x) / \pi_k(x)) \pi_k(x) dx}$$

that is

$$\pi^{N}\left(x
ight) = \sum_{i=1}^{N} W_{k}^{\left(i\right)} \delta_{X_{k}^{\left(i\right)}}\left(x
ight) \text{ where } W_{k}^{\left(i\right)} \propto \left(\pi\left(X_{k}^{\left(i\right)}
ight)
ight)^{1-\gamma_{k}}.$$

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩안

AD () March 2007 10 / 35

- Assume we run an MCMC algorithm to sample from $\pi_k(x)$, how to use these samples to approximate $\pi(x)$.
- The first simple idea consists of using importance sampling, i.e.

$$\pi(x) = \frac{(\pi(x) / \pi_k(x)) \pi_k(x)}{\int (\pi(x) / \pi_k(x)) \pi_k(x) dx}$$

that is

$$\pi^{N}\left(x\right) = \sum_{i=1}^{N} W_{k}^{\left(i\right)} \delta_{X_{k}^{\left(i\right)}}\left(x\right) \text{ where } W_{k}^{\left(i\right)} \propto \left(\pi\left(X_{k}^{\left(i\right)}\right)\right)^{1-\gamma_{k}}.$$

• This idea is simple and will work properly if γ_{k} is close to 1.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

AD () March 2007 10 / 35

Simulated tempering

• Alternatively, we could build a target distribution on $\{1,...,p\} \times \mathcal{X}$ defined as

$$\pi(k,x) = \pi(k) \, \pi_k(x)$$

This was suggested by Parisi et al. (199?)

AD () March 2007 11 / 35

Simulated tempering

• Alternatively, we could build a target distribution on $\{1,...,p\} imes \mathcal{X}$ defined as

$$\pi(k,x) = \pi(k) \, \pi_k(x)$$

This was suggested by Parisi et al. (199?)

ullet Then we could proposed deterministic moves like jumping from dimension k to 1 accepted with probability

$$\min\left(1,\frac{\pi\left(1,x\right)}{\pi\left(k,x\right)}\right)$$

AD () March 2007 11 / 35

Simulated tempering

• Alternatively, we could build a target distribution on $\{1,...,p\} imes \mathcal{X}$ defined as

$$\pi(k,x) = \pi(k) \, \pi_k(x)$$

This was suggested by Parisi et al. (199?)

• Then we could proposed deterministic moves like jumping from dimension k to 1 accepted with probability

$$\min\left(1,\frac{\pi\left(1,x\right)}{\pi\left(k,x\right)}\right)$$

• Unfortunately, we don't know the normalizing constants of $\pi_k(x)$! For example, if we were selecting

$$\pi(k, x) \propto [f(x)]^{\gamma_k}$$
 where $\pi(x) \propto f(x)$

then it means that you might biased unnecessarily the time spent in high temperatures as

$$\pi(k) \propto \int [f(x)]^{\gamma_k} dx.$$

Parallel Tempering

• A more computationally intensive consists of building an MCMC on \mathcal{X}^P of invariant distribution (Geyer & Thompson 1991)

$$\overline{\pi}(x_1,...,x_P) = \pi_1(x_1) \times ... \times \pi_P(x_P)$$

AD () March 2007 12 / 35

Parallel Tempering

• A more computationally intensive consists of building an MCMC on \mathcal{X}^P of invariant distribution (Geyer & Thompson 1991)

$$\overline{\pi}(x_1,...,x_P) = \pi_1(x_1) \times ... \times \pi_P(x_P)$$

• This seems to be a more difficult problem as the dimension of the new target is higher and includes $\pi_1(x_1) = \pi(x_1)$ as a marginal.

Parallel Tempering

• A more computationally intensive consists of building an MCMC on \mathcal{X}^P of invariant distribution (Geyer & Thompson 1991)

$$\overline{\pi}(x_1,...,x_P) = \pi_1(x_1) \times ... \times \pi_P(x_P)$$

- This seems to be a more difficult problem as the dimension of the new target is higher and includes $\pi_1(x_1) = \pi(x_1)$ as a marginal.
- The advantage is that we can design clever moves and use sample from "hot" chains to feed the "cold" chain.

• We can have a simple update kernel which updates each component of the Markov chain $\left(X_1^{(i)},...,X_P^{(i)}\right)$ independently using

$$K(x_{1:P}, x'_{1:P}) = \prod_{k=1}^{P} K_i(x_i, x'_i)$$

where K_i is an MCMC kernel of invariant distribution π_i .

AD () March 2007 13 / 35

• We can have a simple update kernel which updates each component of the Markov chain $\left(X_1^{(i)},...,X_P^{(i)}\right)$ independently using

$$K(x_{1:P}, x'_{1:P}) = \prod_{k=1}^{P} K_i(x_i, x'_i)$$

where K_i is an MCMC kernel of invariant distribution π_i .

• We can pick two chains associated to π_i and π_j and propose to swap their components, i.e. we propose

$$x'_{-i,j} = x_{-i,j}, \ x'_i = x_j \ \text{and} \ x'_j = x_i.$$

This is accepted to

$$\alpha\left(x_{1:P},x_{1:P}'\right)=\min\left(1,\frac{\overline{\pi}\left(x_{1:P}'\right)}{\overline{\pi}\left(x_{1:P}\right)}\right)=\min\left(1,\frac{\pi_{i}\left(x_{j}\right)\pi_{j}\left(x_{i}\right)}{\pi_{i}\left(x_{i}\right)\pi_{j}\left(x_{i}\right)}\right).$$

AD () March 2007 13 / 35

Tempered Transitions

• The idea is to propose to sample from π by using the following MCMC move of invariant distribution $\pi = \pi_0$ (Neal, 1996). The proposal is given by first tempering and then annealing

$$\begin{array}{lll} X_{1}' & \sim & K_{1}\left(X_{0}',\cdot\right), \ X_{2}' \sim K_{2}\left(X_{1}',\cdot\right),..., \ X_{P}' \sim K_{P}\left(X_{P-1}',\cdot\right) \\ X_{P-1}^{*} & \sim & K_{P}\left(X_{P}',\cdot\right), \ X_{P-2}^{*} \sim K_{P-1}\left(X_{P-1}^{*},\cdot\right),...,X_{0}^{*} \sim K_{1}\left(X_{1}^{*},\cdot\right) \end{array}$$

where we assume here that K_i is π_i -reversible.

Tempered Transitions

• The idea is to propose to sample from π by using the following MCMC move of invariant distribution $\pi=\pi_0$ (Neal, 1996). The proposal is given by first tempering and then annealing

$$\begin{array}{lll} X_{1}' & \sim & K_{1}\left(X_{0}',\cdot\right), \ X_{2}' \sim K_{2}\left(X_{1}',\cdot\right),..., \ X_{P}' \sim K_{P}\left(X_{P-1}',\cdot\right) \\ X_{P-1}^{*} & \sim & K_{P}\left(X_{P}',\cdot\right), \ X_{P-2}^{*} \sim K_{P-1}\left(X_{P-1}^{*},\cdot\right),...,X_{0}^{*} \sim K_{1}\left(X_{1}^{*},\cdot\right) \end{array}$$

where we assume here that K_i is π_i -reversible.

• The acceptance rate for the candidate X'_{2P-1} is given by

$$\min(1, \frac{\pi_1\left(X_1'\right)}{\pi_0\left(X_0'\right)} \times \dots \times \frac{\pi_P\left(X_{P-1}'\right)}{\pi_{P-1}\left(X_{P-1}'\right)} \times \frac{\pi_{P-1}\left(X_{P-1}^*\right)}{\pi_P\left(X_{P-1}^*\right)} \times \dots \times \frac{\pi_0\left(X_0^*\right)}{\pi_1\left(X_0^*\right)})$$

AD () March 2007 14 / 35

• The proof of validity relies on the fact that π -reversibility can easily be checked. Let's write $X_P^* = X_{P-1}'$ then the proposal distribution is

$$\pi_{0}\left(X_{0}'\right) \prod_{k=1}^{P} K_{k}\left(X_{k-1}', X_{k}'\right) \prod_{k=1}^{P} K_{k}\left(X_{k}^{*}, X_{k-1}^{*}\right)$$

$$= \pi_{0}\left(X_{0}'\right) \prod_{k=1}^{P} \frac{\pi_{k}\left(X_{k}'\right)}{\pi_{k}\left(X_{k-1}'\right)} K_{k}\left(X_{k}', X_{k-1}'\right) \prod_{k=1}^{P} \frac{\pi_{k}\left(X_{k-1}^{*}\right)}{\pi_{k}\left(X_{k}^{*}\right)} K_{k}\left(X_{k-1}', X_{k-1}'\right)$$

$$= \pi_{0}\left(X_{0}^{*}\right) \prod_{k=1}^{P} K_{k}\left(X_{k-1}^{*}, X_{k}^{*}\right) \prod_{k=1}^{P} K_{k}\left(X_{k}', X_{k-1}'\right)$$

$$\times \frac{\pi_{0}\left(X_{0}'\right)}{\left(X_{0}'\right)} \times \cdots \times \frac{\pi_{P-1}\left(X_{P-1}'\right)}{\left(X_{N}'\right)} \frac{\pi_{P}\left(X_{P-1}'\right)}{\left(X_{N}'\right)} \times \cdots \times \frac{\pi_{1}\left(X_{0}^{*}\right)}{\left(X_{N}'\right)}$$

$$\times \frac{\pi_{0}(X'_{0})}{\pi_{1}(X'_{0})} \times \cdots \times \frac{\pi_{P-1}(X'_{P-1})}{\pi_{P}(X'_{P-1})} \frac{\pi_{P}(X'_{P-1})}{\pi_{P-1}(X'_{P-1})} \times \cdots \times \frac{\pi_{1}(X^{*}_{0})}{\pi_{0}(X^{*}_{0})}$$

AD () March 2007 15 / 35 Multiplying by the acceptance probability we have

$$\begin{split} &\pi_{0}\left(X_{0}'\right)\prod_{k=1}^{P}K_{k}\left(X_{k-1}',X_{k}'\right)\prod_{k=1}^{P}K_{k}\left(X_{k}^{*},X_{k-1}^{*}\right) \\ &\times \min(1,\frac{\pi_{1}(X_{1}')}{\pi_{0}(X_{0}')}\times\cdots\times\frac{\pi_{P}(X_{P-1}')}{\pi_{P-1}(X_{P-1}')}\times\frac{\pi_{P-1}(X_{P-1}^{*})}{\pi_{P}(X_{P-1}^{*})}\times\cdots\times\frac{\pi_{0}(X_{0}^{*})}{\pi_{1}(X_{0}^{*})}) \\ &=\pi_{0}\left(X_{0}^{*}\right)\prod_{k=1}^{P}K_{k}\left(X_{k-1}^{*},X_{k}^{*}\right)\prod_{k=1}^{P}K_{k}\left(X_{k}',X_{k-1}'\right) \\ &\times\frac{\pi_{0}(X_{0}')}{\pi_{1}(X_{0}')}\times\cdots\times\frac{\pi_{P-1}(X_{P-1}')}{\pi_{P}(X_{P-1}')}\frac{\pi_{P}(X_{P-1}')}{\pi_{P-1}(X_{P-1}')}\times\cdots\times\frac{\pi_{1}(X_{0}^{*})}{\pi_{0}(X_{0}^{*})} \\ &\times\min(1,\frac{\pi_{1}(X_{1}')}{\pi_{0}(X_{0}')}\times\cdots\times\frac{\pi_{P}(X_{P-1}')}{\pi_{P-1}(X_{P-1}')}\times\frac{\pi_{P-1}(X_{P-1}^{*})}{\pi_{P}(X_{P-1}^{*})}\times\cdots\times\frac{\pi_{0}(X_{0}^{*})}{\pi_{1}(X_{0}^{*})}) \\ &=\pi_{0}\left(X_{0}^{*}\right)\prod_{k=1}^{P}K_{k}\left(X_{k-1}^{*},X_{k}^{*}\right)\prod_{k=1}^{P}K_{k}\left(X_{k}',X_{k-1}'\right) \\ &\times\min(1,\frac{\pi_{0}(X_{0}')}{\pi_{1}(X_{0}')}\times\cdots\times\frac{\pi_{P-1}(X_{P-1}')}{\pi_{P}(X_{P-1}')}\frac{\pi_{P}(X_{P-1}')}{\pi_{P}(X_{P-1}')}\times\cdots\times\frac{\pi_{1}(X_{0}^{*})}{\pi_{0}(X_{0}^{*})}) \end{split}$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

16 / 35

Figure: Artificial Target Distribution on $(-1,1) \times (-1,1)$

Figure: MH (left), Parallel Tempering (center) and Tempered transitions (right)

AD ()

March 2007 18 / 35

Figure: Mixture of 4 Gaussians (Neal, 1996)

• Parallel tempering and Tempered transitions are generic and powerful methods for sampling in complex problems.

AD () March 2007 20 / 35

- Parallel tempering and Tempered transitions are generic and powerful methods for sampling in complex problems.
- Selection of the number P of proposals and $\{\gamma_k\}$ is complex.

(ロ) (個) (注) (注) (注) つくぐ

AD () March 2007 20 / 35

- Parallel tempering and Tempered transitions are generic and powerful methods for sampling in complex problems.
- Selection of the number P of proposals and $\{\gamma_k\}$ is complex.
- Various rules of thumb have been derived and preliminary runs are also often used.

(ロ) (個) (注) (注) (注) つくぐ

AD () March 2007 20 / 35₁

Simulated Annealing

• An idea closely related to tempering is annealing.

AD () March 2007 21 / 35,

Simulated Annealing

- An idea closely related to tempering is annealing.
- We have seen that

$$\overline{\pi}^{\gamma}(x) \propto [\pi(x)]^{\gamma}$$

is a flattened version of $\pi(x)$ when $\gamma < 0$.

Simulated Annealing

- An idea closely related to tempering is annealing.
- We have seen that

$$\overline{\pi}^{\gamma}(x) \propto [\pi(x)]^{\gamma}$$

is a flattened version of $\pi(x)$ when $\gamma < 0$.

• On the contrary, $\overline{\pi}^{\gamma}(x)$ is a peakened version of the target as γ increases.

AD ()

• Under regularity conditions, it can be shown that the support of $\overline{\pi}^{\gamma}(x)$ concentrates itself on the set of global maxima of $\pi(x)$.

- Under regularity conditions, it can be shown that the support of $\overline{\pi}^{\gamma}(x)$ concentrates itself on the set of global maxima of $\pi(x)$.
- In the discrete case, let us write the unique maximum

$$x^* = \arg\max\left\{\pi\left(x\right) : x \in \mathcal{X}\right\}$$

then

$$\lim_{\gamma \to \infty} \overline{\pi}^{\gamma} \left(x^* \right) = 1$$

as for any $x \neq x^*$

$$\lim_{\gamma \to \infty} \frac{\overline{\pi}^{\gamma}\left(x\right)}{\overline{\pi}^{\gamma}\left(x^{*}\right)} = \lim_{\gamma \to \infty} \left(\frac{\pi\left(x\right)}{\pi\left(x^{*}\right)}\right)^{\gamma} = 0.$$

|□▶◀∰▶◀불▶◀불▶ | 불 | 쒼९♡

22 / 35

Figure: Representation of $\pi(x)$ (top), $\overline{\pi}^{10}(x)$ (middle) and $\overline{\pi}^{100}(x)$ (bottom)

AD ()

March 2007

23 / 35

Similarly in the continuous case, one can show that

$$\lim_{\gamma \to \infty} \overline{\pi}^{\gamma}(x) \propto \sum_{x^* \in \mathcal{X}^*} \left| -\frac{\partial^2 \log \pi(x)}{\partial x_i \partial x_j} \right|_{x^*}^{-1/2} \delta(x)$$

Similarly in the continuous case, one can show that

$$\lim_{\gamma \to \infty} \overline{\pi}^{\gamma}(x) \propto \sum_{x^* \in \mathcal{X}^*} \left| -\frac{\partial^2 \log \pi(x)}{\partial x_i \partial x_j} \right|_{x^*}^{-1/2} \delta(x)$$

• If one could sample from $\overline{\pi}^{\gamma}(x)$ for large γ (asymptotically $\gamma \to \infty$) then we could solve any global optimization problem! Indeed maximizing any function $g: \mathcal{X} \to \mathbb{R}$ would be equivalent to sample

$$\overline{\pi}^{\gamma}(x) \propto [\exp(g(x))]^{\gamma}$$

where we have $\gamma \to \infty$.

AD () March 2007 2

Similarly in the continuous case, one can show that

$$\lim_{\gamma \to \infty} \overline{\pi}^{\gamma}(x) \propto \sum_{x^* \in \mathcal{X}^*} \left| -\frac{\partial^2 \log \pi(x)}{\partial x_i \partial x_j} \right|_{x^*}^{-1/2} \delta(x)$$

• If one could sample from $\overline{\pi}^{\gamma}(x)$ for large γ (asymptotically $\gamma \to \infty$) then we could solve any global optimization problem! Indeed maximizing any function $g: \mathcal{X} \to \mathbb{R}$ would be equivalent to sample

$$\overline{\pi}^{\gamma}(x) \propto [\exp(g(x))]^{\gamma}$$

where we have $\gamma \to \infty$.

• As γ increases, sampling from $\overline{\pi}^{\gamma}(x)$ is becoming harder. If it was simple, global optimization problem could be solved easily.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

AD ()

Figure: Representation of $\pi(x)$ (red), $\overline{\pi}^{10}(x)$ (blue) and $\overline{\pi}^{100}(x)$ (black)

March 2007

25 / 35

AD ()

• To sample from $\overline{\pi}^{\gamma}(x)$ for a large γ , we could use the same idea as parallel tempering where we would consider a sequence of distribution $\pi_k(x)$ with a decreasing sequence $\{\gamma_k\}$ such that $\gamma_1 >> 1$.

AD ()

March 2007 26 / 35

- To sample from $\overline{\pi}^{\gamma}(x)$ for a large γ , we could use the same idea as parallel tempering where we would consider a sequence of distribution $\pi_k(x)$ with a decreasing sequence $\{\gamma_k\}$ such that $\gamma_1 >> 1$.
- However, this could be very expensive so an alternative simpler technique is used known as simulated annealing (highly popular method proposed in 1982)

AD () March 2007 26 / 35

- To sample from $\overline{\pi}^{\gamma}(x)$ for a large γ , we could use the same idea as parallel tempering where we would consider a sequence of distribution $\pi_k(x)$ with a decreasing sequence $\{\gamma_k\}$ such that $\gamma_1 >> 1$.
- However, this could be very expensive so an alternative simpler technique is used known as simulated annealing (highly popular method proposed in 1982)
- Basic idea: Sample an nonhomogeneous Markov chain at each time k with transition kernel $K_k(x, x')$ of invariant distribution π_k .

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ ___ 쒼٩♡

AD () March 2007 26 / 35

 The MH can be modified straightforwardly to perform global optimization! Just consider now a sequence of nonhomogeneous targets.

AD () March 2007 27 / 35

- The MH can be modified straightforwardly to perform global optimization! Just consider now a sequence of nonhomogeneous targets.
- To ensure that this nonhomogeneous Markov chain converges towards π_{∞} as $k \to \infty$ you need to have conditions such as

$$K_k(x, x') \ge \delta^k \mu_k(x')$$
 and $\gamma_k = C \log(k + k_0)$.

AD ()

- The MH can be modified straightforwardly to perform global optimization! Just consider now a sequence of nonhomogeneous targets.
- To ensure that this nonhomogeneous Markov chain converges towards π_{∞} as $k \to \infty$ you need to have conditions such as

$$K_{k}\left(x,x'
ight)\geq\delta^{k}\mu_{k}\left(x'
ight)$$
 and $\gamma_{k}=C\log\left(k+k_{0}
ight)$.

• The second condition is not realistic, γ_k increases too slowly and in practice we select γ_k growing faster.

March 2007

Hybrid Monte Carlo

• Alternative approaches consists of increasing the target distributions with auxiliary variables.

AD () March 2007 28 / 35

Hybrid Monte Carlo

- Alternative approaches consists of increasing the target distributions with auxiliary variables.
- Hybrid Monte Carlo: Define

$$\pi(x, y) \propto \pi(x) \exp(-\beta y^{\mathrm{T}} y)$$

28 / 35

Hybrid Monte Carlo

- Alternative approaches consists of increasing the target distributions with auxiliary variables.
- Hybrid Monte Carlo: Define

$$\pi(x, y) \propto \pi(x) \exp(-\beta y^{T} y)$$

• Basis: It is possible to move approximately on the manifold defined by $\pi\left(x,y\right)=$ cst. See tutorial paper by Stoltz & al.

March 2007

28 / 35

Slice Sampling

• Consider the target $\pi(x) \propto f(x)$. We consider the extended target

$$\overline{\pi}(x, u) \propto 1\{(x, u); 0 \leq u \leq f(x)\}$$

29 / 35

Slice Sampling

• Consider the target $\pi(x) \propto f(x)$. We consider the extended target

$$\overline{\pi}(x, u) \propto 1\{(x, u); 0 \leq u \leq f(x)\}$$

By construction, we have

$$\int \overline{\pi}(x, u) du = \frac{\int 1\{(x, u); 0 \le u \le f(x)\} du}{\int \int 1\{(x, u); 0 \le u \le f(x)\} du dx} = \frac{f(x)}{\int f(x) dx}$$

March 2007

AD ()

Slice Sampling

• Consider the target $\pi(x) \propto f(x)$. We consider the extended target

$$\overline{\pi}(x, u) \propto 1\{(x, u); 0 \leq u \leq f(x)\}$$

By construction, we have

$$\int \overline{\pi}(x, u) \, du = \frac{\int 1\{(x, u); 0 \le u \le f(x)\} \, du}{\int \int 1\{(x, u); 0 \le u \le f(x)\} \, du dx} = \frac{f(x)}{\int f(x) \, dx}$$

 Note that the same representation was implicitly used in Rejection sampling.

(□) (□) (□) (□) (□) (□)

AD () March 2007 29 / 35

• To sample from $\overline{\pi}(x, u)$ hence from $\pi(x)$, we can use Gibbs sampling

$$\overline{\pi}(x|u) = \mathcal{U}(\{x : u \le f(x)\}),$$

 $\overline{\pi}(u|x) = \mathcal{U}(\{u : u \le f(x)\}).$

AD ()

• To sample from $\overline{\pi}(x, u)$ hence from $\pi(x)$, we can use Gibbs sampling

$$\overline{\pi}(x|u) = \mathcal{U}(\{x : u \le f(x)\}),$$

 $\overline{\pi}(u|x) = \mathcal{U}(\{u : u \le f(x)\}).$

• Sampling from $\overline{\pi}(u|x)$ is trivial but $\overline{\pi}(x|u)$ can be complex!

30 / 35

• To sample from $\overline{\pi}(x, u)$ hence from $\pi(x)$, we can use Gibbs sampling

$$\overline{\pi}(x|u) = \mathcal{U}(\{x : u \le f(x)\}),$$

 $\overline{\pi}(u|x) = \mathcal{U}(\{u : u \le f(x)\}).$

- Sampling from $\overline{\pi}(u|x)$ is trivial but $\overline{\pi}(x|u)$ can be complex!
- MH step can be used to sample from $\overline{\pi}(u|x)$.

30 / 35

• Example: $\pi(x) \propto \frac{1}{2} \exp(-\sqrt{x})$ can be sampled using

$$U|x \sim \mathcal{U}\left(0, \frac{1}{2} \exp\left(-\sqrt{x}\right)\right)$$

and

$$u \le \frac{1}{2} \exp\left(-\sqrt{x}\right) \Leftrightarrow 0 \le x \le \left[\log\left(2u\right)\right]^2$$

then

$$X|u \sim \mathcal{U}\left(0, \left[\log\left(2u\right)\right]^2\right)$$

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ · ㅌ · 쒸٩@

AD () March 2007 31 / 35

 In practice, the slice sampler is not really useful per se but can be straightforwardly extended when

$$\pi(x) \propto f(x) = \prod_{i=1}^{k} f_i(x)$$

where $f_i(x) > 0$.

AD () March 2007 32 / 35

• In practice, the slice sampler is not really useful per se but can be straightforwardly extended when

$$\pi(x) \propto f(x) = \prod_{i=1}^{k} f_i(x)$$

where $f_i(x) > 0$.

• We built the extended target

$$\overline{\pi}(x, u_{1:k}) \propto \prod_{i=1}^{k} 1\{(x, u); 0 \leq u_i \leq f_i(x)\}$$

which satisfies

$$\int \cdots \int \overline{\pi}(x, u_{1:k}) du_{1:k} = \pi(x).$$

AD () March 2007 32 / 35

• In this case the Gibbs sampler satisfies

$$\overline{\pi} (u_{1:k} | x) = \prod_{i=1}^{k} \mathcal{U} (\{u_i : u_i \leq f(x)\})
\overline{\pi} (x | u) = \mathcal{U} (\{x : u_1 \leq f_1(x), ..., u_k \leq f_k(x)\}).$$

33 / 35

• In this case the Gibbs sampler satisfies

$$\overline{\pi} (u_{1:k} | x) = \prod_{i=1}^{k} \mathcal{U} (\{u_i : u_i \leq f(x)\})
\overline{\pi} (x | u) = \mathcal{U} (\{x : u_1 \leq f_1(x), ..., u_k \leq f_k(x)\}).$$

• Example: Sample from

$$\pi(x) \propto \underbrace{\left(1 + \sin^2(3x)\right)\left(1 + \cos^4(5x)\right)}_{f_1(x)} \underbrace{\exp\left(-\frac{x^2}{2}\right)}_{f_3(x)}$$

33 / 35

• We need to sample uniformly from the set

$$\{x : \sin^2(3x) \ge 1 - u_1\} \cap \{x : \cos^4(5x) \ge 1 - u_2\}$$
$$\cap \{x : |x| \le \sqrt{-2\log u_3}\}$$

AD () March 2007 34 / 35

ullet Suppose we have $X \sim \mathcal{N}\left(0,1
ight)$ and

$$Y|X \sim Poisson(\exp(X))$$

35 / 35

ullet Suppose we have $X \sim \mathcal{N}\left(0,1
ight)$ and

$$Y | X \sim Poisson (exp(X))$$

• The posterior is

$$\pi(x) \propto \exp(yx - \exp(x)) \exp(-0.5x^2)$$
.

35 / 35

ullet Suppose we have $X \sim \mathcal{N}\left(0,1
ight)$ and

$$Y | X \sim Poisson (exp(X))$$

The posterior is

$$\pi(x) \propto \exp(yx - \exp(x)) \exp(-0.5x^2)$$
.

• We introduce the following joint density where $u \in (0, \infty)$

$$\overline{\pi}(x, u) \propto \exp(-u) \mathbb{I}(u > \exp(x)) \exp(-0.5(x^2 - 2yx))$$

which yields

$$\overline{\pi} \left(\left. u \right| x \right) \quad \propto \quad \exp \left(-u \right) \mathbb{I} \left(u > \exp \left(x \right) \right),$$

$$\overline{\pi} \left(u, x \right) \quad \propto \quad \exp \left(-0.5 \left(x^2 - 2yx \right) \right) \mathbb{I} \left(x < \log u \right).$$

AD () March 2007 35 / 35