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@ Let the target distribution 7 (x) be defined on X’ then practical
MCMC algorithms consist of designing a collection of MH moves
invariant with respect to 7.
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@ Let the target distribution 7 (x) be defined on X’ then practical
MCMC algorithms consist of designing a collection of MH moves
invariant with respect to 7.

@ These moves can be trans-dimensional and typically only update a
subset of variables.

@ Every heuristic idea can be “Metropolized” to become theoretically
valid.
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@ For complex target distributions, it can be very difficult to design
efficient algorithms.
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@ For complex target distributions, it can be very difficult to design
efficient algorithms.

o It will always be difficult to explore a multimodal target if nothing is
known beforehand about the structure of this distribution.

@ We would like to have generic mechanisms to help us improving the
performance of MCMC algorithms.
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@ The key is to notice that although it might be difficult to sample from
7T (x), it could be easier to sample from related distributions.
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@ The key is to notice that although it might be difficult to sample from
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@ In particular, it should be easier to sample from
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@ The key is to notice that although it might be difficult to sample from
7T (x), it could be easier to sample from related distributions.

@ In particular, it should be easier to sample from

() = =2 e

J I (9] dx

where ¢ < 1.

@ For ¢ < 1 the target 77" (x) is flatter than 77 (x), hence easier to
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@ The key is to notice that although it might be difficult to sample from
7T (x), it could be easier to sample from related distributions.

@ In particular, it should be easier to sample from

iy = T CI]
T (x) = T 0] dx o [t (x)]”
where ¢ < 1.

@ For ¢ < 1 the target 77" (x) is flatter than 77 (x), hence easier to
sample from.

@ This is called tempering.
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Figure: Representation of 77 (x) (blue), 720> (x) (red) and 72°% (x) (black)
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o Consider 7 (x) = N (x;m,0?) then T (x) = N (x; m, 02 /) .
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o Consider 7 (x) = N (x;m,0?) then T (x) = N (x; m, 02 /) .
@ In one considers a simple random walk MH step then

) () o1 (550))

and the acceptance ratio
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o Consider a discrete distribution 77 (x) on X = {1, ..., M} then

¥
() =
Yty 7 (i)
and clearly
1
7Y ll
7 (x) > o
as vy — 0.
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o Consider a discrete distribution 77 (x) on X = {1, ..., M} then

v
T () = )
Yty 7 (i)
and clearly
1
Ll Bl
7 (x) > o
as vy — 0.

@ It is trivial to sample from a uniform distribution
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Figure: Representation of 77 (x) (blue), 77%% (x) (red) and 72901 (x) (black)




o Instead of using only one auxiliary distribution 777 (x), we will use a
sequence of P distribution defined as

7 (x) o< [T (x)]

where v; =1 and 7, < 7,_4.
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o Instead of using only one auxiliary distribution 777 (x), we will use a
sequence of P distribution defined as

7 (x) o< [T (x)]

where v; =1 and 7, < 7,_4.

@ In this case 711 (x) = 7 (x) and 714 (x) is a sequence of distributions
increasingly simpler to sample.
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@ Assume we run an MCMC algorithm to sample from 774 (x), how to
use these samples to approximate 77 (x) .
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@ Assume we run an MCMC algorithm to sample from 774 (x), how to
use these samples to approximate 77 (x) .

@ The first simple idea consists of using importance sampling, i.e.

(7t (x) /i (x)) 71x ()
J (7t (x) /7 (%)) 7 (x) dx

T (x) =

that is
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@ Assume we run an MCMC algorithm to sample from 774 (x), how to
use these samples to approximate 77 (x) .

@ The first simple idea consists of using importance sampling, i.e.

(7t (x) /i (x)) 71x ()
J (7t (x) /7 (%)) 7 (x) dx

T (x) =
that is
N L0 (0 () )27
™ (x) = ; W, 5Xk(,-> (x) where W,/ o <7‘[ <Xk )) .

@ This idea is simple and will work properly if 7y, is close to 1.
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Simulated tempering

o Alternatively, we could build a target distribution on {1, ..., p} x X
defined as
7t (k, x) = 7 (k) 774 (X)
This was suggested by Parisi et al. (1997)
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Simulated tempering

o Alternatively, we could build a target distribution on {1, ..., p} x X
defined as
7 (k,x) = 7t (k) 1t (x)
This was suggested by Parisi et al. (1997)
@ Then we could proposed deterministic moves like jumping from
dimension k to 1 accepted with probability

i (1.202)
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Simulated tempering

o Alternatively, we could build a target distribution on {1, ..., p} x X
defined as
7 (k,x) = 7t (k) 1t (x)
This was suggested by Parisi et al. (1997)
@ Then we could proposed deterministic moves like jumping from
dimension k to 1 accepted with probability

i (1.202)

e Unfortunately, we don’t know the normalizing constants of 77 (x)!
For example, if we were selecting

7t (k, x) o [f (x)]"* where 71 (x) o f (x)

then it means that you might biased unnecessarily the time spent in
high temperatures as

7T (K) o / [F (x)]™ d.
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Parallel Tempering

@ A more computationally intensive consists of building an MCMC on
XP of invariant distribution (Geyer & Thompson 1991)

ﬁ(Xl, ...,XP) =70 (Xl) X ... XTp (XP)
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Parallel Tempering

@ A more computationally intensive consists of building an MCMC on
XP of invariant distribution (Geyer & Thompson 1991)

ﬁ(Xl, ...,XP) =70 (Xl) X ... XTp (XP)

@ This seems to be a more difficult problem as the dimension of the
new target is higher and includes 711 (x1) = 77 (x1) as a marginal.

@ The advantage is that we can design clever moves and use sample
from “hot” chains to feed the “cold” chain.
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@ We can have a simple update kernel which updates each component
of the Markov chain (Xf’), x,g>) independently using

P
KX]_PX]_P H

where K; is an MCMC kernel of invariant distribution 7t;
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@ We can have a simple update kernel which updates each component
of the Markov chain (Xf’), X,Q)) independently using

P
K (XlszX{ P H XI' I

where K; is an MCMC kernel of invariant distribution 7t;.

@ We can pick two chains associated to 71; and 71; and propose to swap
their components, i.e. we propose

XZjj = X—ij, X; = X and xj = x;.

This is accepted to

(o ) = min (1, Z820) — i (1, DT,
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Tempered Transitions

@ The idea is to propose to sample from 7t by using the following
MCMC move of invariant distribution 77 = 71o (Neal, 1996). The
proposal is given by first tempering and then annealing

X~ K (X)) X Ko (XY o Xb e K (Xbys-)
Xp1 ~ Kp(Xp,), Xp_g~ Kpo1 (Xp_1,0) o Xo ~ Ki (X))

where we assume here that K; is 7t;—reversible.
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Tempered Transitions

@ The idea is to propose to sample from 7t by using the following
MCMC move of invariant distribution 77 = 71o (Neal, 1996). The
proposal is given by first tempering and then annealing

X{ o~ K (X)) X5~ Ko (X[,0) o Xp ~ Kp (Xpoy,0)
Xpy ~ Kp(Xp,), Xp o~ Kpo1 (Xp_y,0) . Xg ~ Ko (X[)

where we assume here that K; is 7t;—reversible.

@ The acceptance rate for the candidate X3, ; is given by

(X)) e (Xp_1) 5 [P-1 (Xp_1) oy O (X3)

min(1, o (X)) X - X T (Xb ) e (X5, 8 ys (X(;k))
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@ The proof of validity relies on the fact that 7t-reversibility can easily
be checked.Let’s write X = X},_; then the proposal distribution is
P P

o (Xo) TT Kie (i1 Xe) TT K (X Xiy)
k=1 k=1

P X/) P Tk (X*_ )
= X)) TT 7 X) e oxr xo k=1 g (XX
”0( 0) Ll (Xzi—1) ( k k—l)g T (X,j) k( k=117
P P
= 7o (Xg) [T Ke (X¢0. X0 TT Kie (Xi Xi—1)
k=1 k=1
7o (Xp) mp-1 (Xp_y) 7P (Xp_y) 1 (X5)
X X oo X X e X
71 (Xp) e (Xp_1) mp-1 (Xp 1) 7o (X7)
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@ Multiplying by the acceptance probability we have

7o (X§) TTh=1 Kie (X)_1, X0) Tl K (X, Xi_y)

(L, B oo S < S i
= 7m0 O6) Tl K (X0, X0) Tl K (6 X
<l 2

x min(1, Z;&% X HZPI(E()’/;:?) X n;l(g;?ﬁ) e :igg;)
= 70 (X§) TTE-1 Kic (X3, X0) TTEy Ko (X4 XE )

x min(1, Zigﬁg ST, ”;;(E();Pj) HZPSE(;;?) W X Z;Eig’:g)
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With Regular Metropolis With Si Annealing With Tempered T

Figure: MH (left), Parallel Tempering (center) and Tempered transitions (right)
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Figure: Mixture of 4 Gaussians (Neal, 1996)
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@ Parallel tempering and Tempered transitions are generic and powerful
methods for sampling in complex problems.
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@ Parallel tempering and Tempered transitions are generic and powerful
methods for sampling in complex problems.

@ Selection of the number P of proposals and {7} is complex.
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@ Parallel tempering and Tempered transitions are generic and powerful
methods for sampling in complex problems.

@ Selection of the number P of proposals and {7} is complex.

@ Various rules of thumb have been derived and preliminary runs are
also often used.
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Simulated Annealing

@ An idea closely related to tempering is annealing.
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Simulated Annealing

@ An idea closely related to tempering is annealing.

@ We have seen that
7 (x) o [ (x)]"

is a flattened version of 77 (x) when ¢ < 0.
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Simulated Annealing

@ An idea closely related to tempering is annealing.
@ We have seen that
7T (x) o< [ (x)]"
is a flattened version of 77 (x) when ¢ < 0.

@ On the contrary, 7T (x) is a peakened version of the target as y
increases.
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@ Under regularity conditions, it can be shown that the support of
7T (x) concentrates itself on the set of global maxima of 77 (x).
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@ Under regularity conditions, it can be shown that the support of
7T (x) concentrates itself on the set of global maxima of 77 (x).

@ In the discrete case, let us write the unique maximum
x* =argmax{m(x) :x € X}

then
Ly ey
vlinooﬂ (x")=1
as for any x # x*

im 2 =i, () o

AD () March 2007 PES
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@ Similarly in the continuous case, one can show that

o
(o § |-2loem )
19X

(o]
LA x*eX*

d(x)

x*
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@ Similarly in the continuous case, one can show that

_82 log 7t (x)|

0X;0X; 5(x)

lim T (x) o< )

(o]
— x*eX*

x*

e If one could sample from 7T7 (x) for large v (asymptotically 7 — o0)
then we could solve any global optimization problem! Indeed
maximizing any function g : X — IR would be equivalent to sample

7T (x) o [exp (g (x))]”

where we have 7 — oo,
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@ Similarly in the continuous case, one can show that

_82 log 7t (x)|

0X;0X; 5(x)

lim T (x) o< )

(o]
— x*eX*

x*

e If one could sample from 7T7 (x) for large v (asymptotically 7 — o0)
then we could solve any global optimization problem! Indeed
maximizing any function g : X — IR would be equivalent to sample

7T (x) o [exp (g (x))]”

where we have 7 — oo,

@ As v increases, sampling from 7t7 (x) is becoming harder. If it was
simple, global optimization problem could be solved easily.

AD () March 2007 WS
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Figure: Representation of 77 (x) (red), 7719 (x) (blue) and 772%° (x) (black)
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@ To sample from 7T (x) for a large 7y, we could use the same idea as
parallel tempering where we would consider a sequence of distribution
7k (x) with a decreasing sequence {y,} such that 7; >> 1.
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e To sample from 77 (x) for a large vy, we could use the same idea as
parallel tempering where we would consider a sequence of distribution
7k (x) with a decreasing sequence {y,} such that 7; >> 1.

@ However, this could be very expensive so an alternative simpler
technique is used known as simulated annealing (highly popular
method proposed in 1982)
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e To sample from 77 (x) for a large vy, we could use the same idea as
parallel tempering where we would consider a sequence of distribution
7k (x) with a decreasing sequence {y,} such that 7; >> 1.

@ However, this could be very expensive so an alternative simpler
technique is used known as simulated annealing (highly popular
method proposed in 1982)

@ Basic idea: Sample an nonhomogeneous Markov chain at each time k
with transition kernel Kj (x, x") of invariant distribution 7t4.
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@ The MH can be modified straightforwardly to perform global
optimization! Just consider now a sequence of nonhomogeneous
targets.
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@ The MH can be modified straightforwardly to perform global
optimization! Just consider now a sequence of nonhomogeneous
targets.

@ To ensure that this nonhomogeneous Markov chain converges towards
TTeo S k — 00 you need to have conditions such as

Ky (x,x') > 5kyk (x') and v, = Clog (k + ko) .
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The MH can be modified straightforwardly to perform global
optimization! Just consider now a sequence of nonhomogeneous
targets.

To ensure that this nonhomogeneous Markov chain converges towards
TTeo S k — 00 you need to have conditions such as

Ky (x,x') > 5kyk (x') and v, = Clog (k + ko) .

The second condition is not realistic, 7y, increases too slowly and in
practice we select 7y, growing faster.
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Hybrid Monte Carlo

@ Alternative approaches consists of increasing the target distributions
with auxiliary variables.
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Hybrid Monte Carlo

@ Alternative approaches consists of increasing the target distributions
with auxiliary variables.

e Hybrid Monte Carlo: Define

7 (x,y) &< 7 (x) exp (—ByTy)

March 2007 28 / 35



Hybrid Monte Carlo

@ Alternative approaches consists of increasing the target distributions
with auxiliary variables.

e Hybrid Monte Carlo: Define

7 (x,y) &< 7 (x) exp (—ByTy)

@ Basis: It is possible to move approximately on the manifold defined by
7T (X, y) =cst. See tutorial paper by Stoltz & al.
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Slice Sampling

o Consider the target 77 (x) o f (x). We consider the extended target

T(x,u)x1{(x,u);0<u<f(x)}
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Slice Sampling

o Consider the target 77 (x) o f (x). We consider the extended target
T(x,u)x1{(x,u);0<u<f(x)}
@ By construction, we have

/ﬁ(x ) dus = J1{(x,u);0<u<f(x)}du _ f(x)
' JJ1H{(xu);0<u<f(x)}dudx [ f(x)dx
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Slice Sampling

o Consider the target 77 (x) o f (x). We consider the extended target
T(x,u)x1{(x,u);0<u<f(x)}
@ By construction, we have

J1{(x,u);0<u<f(x)}du __fx)
JJ1H{(xu);0<u<f(x)}dudx [ f(x)dx

/ﬁ(x, u) du =

@ Note that the same representation was implicitly used in Rejection
sampling.
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e To sample from 77 (x, u) hence from 7 (x), we can use Gibbs
sampling

T(xlu) = U({{x:u<F(¥)}),
T(ulx) = U{u:u<TFf(x)}).
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e To sample from 77 (x, u) hence from 7 (x), we can use Gibbs
sampling

T(xlu) = U({{x:u<F(¥)}),
T(ulx) = U{u:u<TFf(x)}).

e Sampling from 7T (u| x) is trivial but 7T (x| u) can be complex!
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e To sample from 77 (x, u) hence from 7 (x), we can use Gibbs
sampling
T(xlu) = U({x:u<TF(x)}),
T(ulx) = U{u:u<TFf(x)}).

e Sampling from 7T (u| x) is trivial but 7T (x| u) can be complex!

@ MH step can be used to sample from 7T (u| x) .
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e Example: 7 (x) o %exp (—\/§) can be sampled using

Ulx ~ U <o, Lexp (_\/;)>

and
1
u< 5 &P (—vx) © 0 < x < [log (2u)]2

then
X|u~ U (0 [log (2u)]?)
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@ In practice, the slice sampler is not really useful per se but can be
straightforwardly extended when

k
N(X)“f(X)ZEf/(X)

where f; (x) > 0.
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@ In practice, the slice sampler is not really useful per se but can be
straightforwardly extended when

k
N(X)“f(X)ZEf/(X)

where f; (x) > 0.
@ We built the extended target

k
7 (0 ) o T [1{(x,0):0 < 1 < £ (x)}

which satisfies
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@ In this case the Gibbs sampler satisfies

k
T (uk| x) = HU({U/:U/S f(x)})
T(xju) = Ux:u <A (X),.ou <fi(x)}).
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@ In this case the Gibbs sampler satisfies

k
T (uk| x) = HZ/{({U/:U/S f(x)})
T(xju) = Ux:u <A (X),.ou <fi(x)}).

@ Example: Sample from

7T (X) o (1 + sin? (3x)) (1 + cos? (5x))exp <_X2>

fi(x) f(x) v
f3(x)
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@ We need to sample uniformly from the set
{x: sin® (3x) > 1— u N {x:cos* (5x) > 1—u}

ﬂ{x: x| < \/—2|ogU3}
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@ Suppose we have X ~ N (0,1) and

Y| X ~ Poisson (exp (X))
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@ Suppose we have X ~ N (0,1) and
Y| X ~ Poisson (exp (X))
@ The posterior is

7T (x) o< exp (yx — exp (x)) exp (—0.5X2) .
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@ Suppose we have X ~ N (0,1) and

Y| X ~ Poisson (exp (X))
@ The posterior is

7T (x) o< exp (yx — exp (x)) exp (—0.5x?) .

We introduce the following joint density where u € (0, o)

7T (x, u) o exp (—u) I (u > exp (x)) exp (—0.5 (x* — 2yx))
which yields

S Al

(ulx) o exp(—u)I(u>exp(x)),
(u

,x) o exp(—0.5(x* —2yx)) I (x < logu).
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