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@ Bayesian Model Selection
@ Metropolis-Hastings on a General State-Space

@ Trans-dimensional Markov chain Monte Carlo.
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@ Most Bayesian models discussed until now: prior p (6) and likelihood
p(y|0). Using MCMC, we sample from

p() (y]0)

p(0ly) = Tr(@)p(y]0)do
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@ Most Bayesian models discussed until now: prior p (6) and likelihood
p(y|0). Using MCMC, we sample from

p() (y]0)
(@) p(y|6)do

@ We discuss several examples where the model under study is fully
specified.

p(0ly) =
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@ Most Bayesian models discussed until now: prior p (6) and likelihood

p(y|0). Using MCMC, we sample from

p() (y]0)
p(0ly) = TP (0)p(y]6)d0

@ We discuss several examples where the model under study is fully
specified.

@ In practice, we might have a collection of candidate models. This
class of problems include cases where “the number of unknowns is
something you don't know" (Green, 1995).
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Bayesian Model Selection

@ Assume we have a (countable) set I of candidate models then an
associated Bayesian model is such that
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Bayesian Model Selection

@ Assume we have a (countable) set I of candidate models then an
associated Bayesian model is such that

o k denotes the model and has a prior probability p (k).
e 0 € Oy is the unknown parameter associated to model k of prior

p (k| k).
o The likelihood is p (y| k,8y) .
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Bayesian Model Selection

@ Assume we have a (countable) set I of candidate models then an
associated Bayesian model is such that

o k denotes the model and has a prior probability p (k).
e 0 € Oy is the unknown parameter associated to model k of prior

p (k| k).
o The likelihood is p (y| k,8y) .

@ You can think of it as a “standard” Bayesian model of parameter

(k,0k) € Uiex ({1} x ©;).
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The Bayes' rule gives the posterior

p(k)p (Gk\k) (y[ k 0x)
2:61&[@ 9’) (y|i,9,-)d9,-

defined on Ujexc ({i} x ©;) .

p(k Okly) =
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@ The Bayes' rule gives the posterior

p(k)p (lek) (ylk 0k)
2:61&[@ 9’) (y|i,9,-)d9,-

defined on Ujexc ({i} x ©;) .

@ From this posterior, we can compute

p(k Okly) =

p(ylk) p(kly) p(j)
pkly) and T = 2 Gly) p(K)

or performing Bayesian model averaging

p(y'|y) = 2/ y'[i,6;) p(i,0i|y)do
ek
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Example: Autoregression

@ The model k € I = {1, ..., kmax } is given by an AR of order k
K i
Yo=Y a;Yo i+ 0V, where V, < N (0,1)
i=1

and we have 6y = (a1, 0°) € R x RT.
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Example: Autoregression

@ The model k € I = {1, ..., kmax } is given by an AR of order k
K i
Yo=Y a;Yo i+ 0V, where V, < N (0,1)
i=1

and we have 6y = (a1, 0°) € R x RT.
@ We need to defined a prior p (k,0x) = p (k) p (6«| k), say
p (k)
p(Oklk) =

kol for k € K,

0 252 2.Y0 Yo
N(alzk,O,UcS Ik)IQ (0’, > 2).
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Example: Autoregression

@ The model k € I = {1, ..., kmax } is given by an AR of order k
K i
Yo=Y a;Yo i+ 0V, where V, < N (0,1)
i=1

and we have 6y = (a1, 0°) € R x RT.
@ We need to defined a prior p (k,0x) = p (k) p (6«| k), say

p(k) = k. forkek,

maXx
v
P (9k| k) = N (alzk;O, (7'2(52//() IQ (0’2; ?0, %) .
@ One should be careful, the parameters denoted similarly can have a
different “meaning” so that computing say p ((72‘ y) does not mean
much.
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Example: Autoregression

@ The model k € I = {1, ..., kmax } is given by an AR of order k
K i
Yo=Y a;Yo i+ 0V, where V, < N (0,1)
i=1

and we have 6y = (a1, 0°) € R x RT.
@ We need to defined a prior p (k,0x) = p (k) p (6«| k), say

p(k) = k. forkek,

P (9k| k) = N (alzk;O, (7'2(52//() IQ (0’2; VEO, %) .

@ One should be careful, the parameters denoted similarly can have a
different “meaning” so that computing say p ((72‘ y) does not mean
much.

@ Some authors favour a more precise notation 6x = (ak,1:x, 0%) but
this can be cumbersome.
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Example: Finite Mixture of Gaussians

@ The model k € K = {1, ..., kmax } is given by a mixture of k Gaussians
k
Yo~ E N (4;,0%) .
i=1

and we have 0y = (T4, iy, 02,) € S X RE x (RH)¥,
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Example: Finite Mixture of Gaussians

@ The model k € K = {1, ..., kmax } is given by a mixture of k Gaussians
k
Yo~ E N (4;,0%) .
i=1

and we have 0y = (T4, iy, 02,) € S X RE x (RH)¥,
@ We need to defined a prior p (k,0x) = p (k) p (6«| k), say

1

’
km ax

p(OkK) = D(muilo DN (wiw p)ZG (33, 22).

p(k) =
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Example: Finite Mixture of Gaussians

@ The model k € K = {1, ..., kmax } is given by a mixture of k Gaussians
k
Yo~ E N (4;,0%) .
i=1

and we have 0y = (T4, iy, 02,) € S X RE x (RH)¥,
@ We need to defined a prior p (k,0x) = p (k) p (6«| k), say
1

’
km ax

p(0lk) = D(mxl ... HN e, ﬁ)zg( 2, % %)

p(k) =

@ Some authors favour a more precise notation
_ 2
O = (nkvlik']’lk,lzk'ak,l:k) :
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Problem Statement

@ As stated before, Bayesian model selection problems corresponds to
the case where the parameter space is simply Uxeic ({k} X ©O).
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@ Can we define MCMC algorithms - i.e. Markov chain kernels with
fixed invariant distribution 77 (k, 0x) = 7t (k) 7ty (6k)- ?
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Problem Statement

@ As stated before, Bayesian model selection problems corresponds to
the case where the parameter space is simply Uxeic ({k} X ©O).

@ Can we define MCMC algorithms - i.e. Markov chain kernels with
fixed invariant distribution 77 (k, 0x) = 7t (k) 7ty (6k)- ?

@ We are going to present a generalization of MH after revisiting first
the MH algorithm.
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o We say that a measure 7y (dx) admits a density with respect to a
measure A (dx) if for any (measurable) set A € B (X))

AA)=0=7(A)=0
and we call (d)
ylax)
e
the density of 7 (dx) with respect to A (dx) .
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o We say that a measure 7y (dx) admits a density with respect to a
measure A (dx) if for any (measurable) set A € B (X))

AA)=0=7(A)=0

and we call (d)
v (dx
=f
e
the density of 7 (dx) with respect to A (dx) .
@ In 99% of the applications in statistics A (dx) is the Lebesgue
measure dx and we write

v (dx) _ 7 (dx)
Adx)  dx =7 ().
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@ The standard MH algorithm where X CIR? corresponds to

K (x, dx') = (X, x’) q (x, dx/) + (1 — /uc (x,2) q(x, dz)) Ox (dx/)

where
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@ The standard MH algorithm where X CIR? corresponds to

K (x, dx') = (X, x’) q (x, dx/) + (1 — /uc (x,2) q(x, dz)) Ox (dx/)

where

w(x,x") = min{1,77TT(></)q(X/vX)}

@ You should think of

not as just a “number”!
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@ The acceptance ratio corresponds to a ratio of probability measures
-importance weight- defined on the same spaces
m(dx')q(x',dx)  m(x')dx'q(x' x)dx  m(x')q(x, x)
7 (dx)q(x,dx')  7(x)dxq(x,x)dx  7m(x)q(x,x")’
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The acceptance ratio corresponds to a ratio of probability measures
-importance weight- defined on the same spaces

m(dx')q(x' dx)  m(xX)dx'q(x',x)dx 7 (x")q(x' x)

7 (dx)q(x,dx')  7(x)dxq(x,x)dx  7m(x)q(x,x")’

You can only compared points defined on the same joint space. If you
have x = (x1,x2) and 711 (dx1) = 711 (x1) dxq,
7T (dx1, dx2) = 712 (x1, x2) dx1dx2, you can compute numerically

T2 (X1,X2)
71 (Xl)

but it means nothing as the measures 711 and 715 are not defined on
the same space. You CANNOT compare a surface to a volume!
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@ In the general case where X is a union of subspaces of different
. . . !
dimensions, you might want to move from x € R? to x’ € R?".
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@ In the general case where X is a union of subspaces of different
. . . !
dimensions, you might want to move from x € R? to x’ € R?".

@ To construct this move, you can use v € R" and v/ € R’ and a
one-to-one differentiable mapping h:RY x R — RY x R"

(X', u) = h(x,u) where u~ g

and
(x,u) = h1 (x’, u/) where ' ~ g’.
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@ In the general case where X is a union of subspaces of different
. . . !
dimensions, you might want to move from x € R? to x’ € R?".

@ To construct this move, you can use v € R" and v/ € R’ and a
one-to-one differentiable mapping h:RY x R — RY x R"

(X', u) = h(x,u) where u~ g

and
(x,u) = h1 (x’, u/) where ' ~ g’.

@ We need d + r = d’ + r' and typically, if d < d’, then r' = 0 and
r = d' — d, that is in most case the variable ¢/ is not introduced.
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@ We can rewrite formally
7t (dx) q (x, (dx', du")) = 7t (x) g (u) dxdu

and
T (dx’) q (x’, (dx, du)) =7 (X') g (u') dx'du’.
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@ We can rewrite formally
7t (dx) q (x, (dx', du")) = 7t (x) g (u) dxdu

and
T (dx’) q (x’, (dx, du)) =7 (X') g (u') dx'du’.
@ An acceptance ratio ensuring 7t —reversibility of this trans-dimensional
move is given by
a(x', )
d (x, u)

7 (dx") q (X', (dx, du))  m(x") g’ (V)

7t (dx) q (x, (dx’, du")) T (x") g (u)
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@ We can rewrite formally
7t (dx) q (x, (dx', du")) = 7t (x) g (u) dxdu
and
T (dx’) q (x’, (dx, du)) =7 (X') g (u') dx'du’.
@ An acceptance ratio ensuring 7t —reversibility of this trans-dimensional

move is given by

7 (d) q (X, (de du)) 7 (x) g’ ()

a(x', )
d (x, u)

7t (dx) q (x, (dx’, du")) T (x") g (u)

@ In this respect, the RIMCMC is an extension of standard MH as you
need to introduce auxiliary variables u and v/’
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@ Assume we have a distribution defined on {1} x RU {2} x R x R.
We want to propose some moves to go from (1,6) to (2,61,6>).
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Assume we have a distribution defined on {1} x RU{2} x R x R.
We want to propose some moves to go from (1,6) to (2,61,6>).

We can propose u ~ g € R and set
(01,62) = h(6,u) = (6,u),
i.e. we do not need to introduce a variable . Its inverse is given by

(6,u) = h™" (61,02) = (61,62).
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@ Assume we have a distribution defined on {1} x RU {2} x R x R.
We want to propose some moves to go from (1,6) to (2,61,6>).

@ We can propose u ~ g € R and set
(01,62) = h(6,u) = (6,u),
i.e. we do not need to introduce a variable . Its inverse is given by
(0,u) = h™(61,60:) = (61,65).

@ The acceptance probability for this “birth” move is given by

min() 7(2,61,0,) 1 >

m(1,0) g(u)

= min | 1, 291 62
- 7(1,61)g(62)
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@ The acceptance probability for the associated “death move" is
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@ The acceptance probability for the associated “death move" is
min (1. 7t (1,0) y 2 (6, u) — min (L (1,0)g (u)
T (2,0, u)

g S ——
(2,61,02) d(61,02)
@ Once the birth move is defined then the death move follows
automatically. In the death move, we do not simulate from g but its
expression still appear in the acceptance probability.
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e To simplify notation -as in Green (1995) & Robert (2004)-, we don't
emphasize that actually we can have the proposal g which is a
function of the current point 0 but it is possible!
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e To simplify notation -as in Green (1995) & Robert (2004)-, we don't
emphasize that actually we can have the proposal g which is a
function of the current point 0 but it is possible!

@ We can propose u ~ g (-|0) € R and set
(61,62) =h(0,u) = (6,u).
Its inverse is given by

(6,u) = h~" (61,602) = (61,62).
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e To simplify notation -as in Green (1995) & Robert (2004)-, we don't
emphasize that actually we can have the proposal g which is a
function of the current point 0 but it is possible!

@ We can propose u ~ g (-|0) € R and set
(01,02) =h(6,u) = (6,u).
Its inverse is given by
(8,u) = h"1(601,6,) = (61,62).
@ The acceptance probability for this “birth” move is given by

min (1.7 s | e )

— min 7'((2,91,92)
a (1'7T(1,91)g(92|91)>'
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@ The acceptance probability for the associated “death move"” is

min (1,mg(”‘9)‘m>

(120
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@ The acceptance probability for the associated “death move"” is

min (1,71”(1'9) )g(u\e)‘a("’“)>

(2,61,02 d (61,02)
in (1 T L0 g (4]0)
(2,0, u)

@ Once the birth move is defined then the death move follows
automatically. In the death move, we do not simulate from g but its
expression still appears in the acceptance probability.
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@ The acceptance probability for the associated “death move"” is

min(l,nn(l'g) g(u\e)‘a("’“)>

(2,61,02) d (61,02)
in (1 T L0 g (4]0)
(2,0, u)

@ Once the birth move is defined then the death move follows
automatically. In the death move, we do not simulate from g but its
expression still appears in the acceptance probability.

o Clearly if we have g (02]01) = 7 (62|2,61) then the expressions
simplify

(o tle) - (03
7

- (1, 7 (1,6) g (ul 9)) — i (1,

(2,0, u)
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@ Assume we have a distribution defined on {1} x RU {2} x R x R.
We want to propose some moves to go from (1,6) to (2,61,6>).
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@ Assume we have a distribution defined on {1} x RU {2} x R x R.
We want to propose some moves to go from (1,6) to (2,61,6>).

@ We can propose u ~ g € R and set

(01,02) =h(6,u) = (0 —u,0+u).

01 +602 02— 6y
2 ' 2 '

Its inverse is given by

(9, U) =ht (91,92)
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@ Assume we have a distribution defined on {1} x RU {2} x R x R.
We want to propose some moves to go from (1,6) to (2,61,02).

@ We can propose u ~ g € R and set
(01,02) =h(6,u) = (0 —u,0+u).

Its inverse is given by

(0’ U) — h—l (91,92) _ <91 ‘;92, 92;91) -

@ The acceptance probability for this “split” move is given by

min <1 7'[(2,91,92) 1 8(91,92) >
" om(1,0) g(u)| 9(6,u)

7 (2,61,02) 2
()5 ()
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@ The acceptance probability for the associated “merge move” is

min <1,mg(”) 'aa(gjgz)) >

= min <1, H(QY;TEIL(,Q()H u) g<2U)>
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@ The acceptance probability for the associated “merge move” is

min <1,7T7T(1’9) g (u) ‘a(e,u) >

(2,601,67) d (61,62)
1
= min |1, 7 (1.9) g (v)
(2,0 —u,0+u) 2
@ Once the split move is defined then the merge move follows
automatically. In the merge move, we do not simulate from g but its
expression still appear in the acceptance probability.
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In practice, the algorithm is based on a combination of moves to
move from x = (k, 0x) to x' = (k,8/) indexed by i € M and in this
case we just need to have

dx) a; (x, x") q; (x, dx’
/(x,x')eAxBn< x) i (x,x") gi (x, dx’)

- ax') ai (X', i (X', d
/(X:X/)EAXBTE( X)(X (X X)q (X x)

to ensure that the kernel P (x, B) defined for x ¢ B

P (x, |M|,§A/‘X’XX qi (x, dx’)

is 7T-reversible.
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@ In practice, the algorithm is based on a combination of moves to
move from x = (k, 0x) to x' = (k,8/) indexed by i € M and in this
case we just need to have

dx) aj (x,x") qi (x, dx’
/(x,x/)eAxBn( x) i (x,x") gi (x, dx’)
_ d / ; /’ ; /,d
/<X,X/)6Axg”( ) a (x', %) g (x', dx)
to ensure that the kernel P (x, B) defined for x ¢ B

P (x, |M|,§A/0¢,xx qi (x, dx’)

is 7t-reversible.
@ In practice, we would like to have

= ¥ [iGa (xx') g (x, )

where ji (x) is the probability of selecting the move i once we are in x
and T i (x) = 1.
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@ In this case reversibility is ensured if

f(xx)eAxBT[(dx)J,( x) i (x,x") qi (x,dx")
fXX Jeaxp T (dx") ji (X") a; (X', x) gi (X', dx)

which is satisfied if

ai (x x') = min T[(X/>ji<x’)gl_/(u/) a(X/,u/)
I( ' ) (1' 7T x)j,-(X)g,-(u) ‘a(x,u)
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@ In this case reversibility is ensured if

f(xx)eAxBT[(dx)J,( x) i (x,x") qi (x,dx")
fXX Jeaxp T (dx") ji (X") a; (X', x) gi (X', dx)

which is satisfied if

! : )
o (1) = i (1, EEAEEOL) |90 )
7 (x)Ji (x) & (u) | 9(x, u)
@ In practice, we will only have a limited number of moves possible from
each point x.
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Reversible Jump MCMC Algorithm

@ For each point x = (k, ), we define a collection of potential moves
selected randomly with probability j; (x) where i € M
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Reversible Jump MCMC Algorithm

@ For each point x = (k, ), we define a collection of potential moves
selected randomly with probability j; (x) where i € M

@ To move from x = (k,0x) to x' = (k/,04), we build one (or several)
deterministic differentiable and inversible mapping(s)

(Ok/, uk/'k) = Tk,k’ (Gk. uk,k/)

where vy jr ~ g« and uy . ~ gy x and we accept the move with

)

proba

- < 7t (K, 0kr) Ji (K, 0xr) gk (i i) |0 Thonr (Oks Up i)
min , B
7T (k,0k) ji (k. Ok) gk kr (Ui k') 9 (Ok, ug k)
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Example: Autoregression

@ The model k € I = {1, ..., kmax } is given by an AR of order k
k
=Y aYoi+0V, where V, ~ N (0,1)
i=1
and we have 0 = (ai,1:4,0%) € R¥ X R™ where

p(k) = ki forkeclk,

max

p(0klk) = N (ak1:4:0,0%26%l) IG (#;’%‘J,%)_
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Example: Autoregression

@ The model k € I = {1, ..., kmax } is given by an AR of order k
K
=Y aYoi+0V, where V, ~ N (0,1)
i=1
and we have 0 = (ai,1:4,0%) € R¥ X R™ where
p(k) = ki forkeclk,
v
p (9k| k) = N (akll;k; O,Uk(52/k) Ig (0’2; ?0, %) .
@ For sake of simplicity, we assume here that the initial conditions
Y1—kpa:0 = (0, ..., 0) are known and we want to sample from

P(9k1k|)/1:T)-
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Example: Autoregression

@ The model k € I = {1, ..., kmax } is given by an AR of order k

k
=Y aYoi+0V, where V, ~ N (0,1)

i=1
and we have 0 = (ai,1:4,0%) € R¥ X R™ where
p(k) = ki forkeclk,

p(0klk) = N (ak1:4:0,0%26%l) IG (#;%‘J,%)_

@ For sake of simplicity, we assume here that the initial conditions
Y1—kpa:0 = (0, ..., 0) are known and we want to sample from

p(Ok kly1.7).
o Note that this is not very clever as p (k| y1.7) is known up to a
normalizing constant!
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@ We propose the following moves. If we have (k, 31:/«‘7%() then with
probability by we propose a birth move if k < knax, with proba u, we
propose an update move and with proba dy =1 — by — u, we
propose a death move.
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@ We propose the following moves. If we have (k, 31:/«‘7%() then with
probability by we propose a birth move if k < knax, with proba v, we
propose an update move and with proba dy =1 — by — u, we
propose a death move.

@ We have di = 0 and by max = 0.
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@ We propose the following moves. If we have (k, 31:/«‘7%) then with
probability by we propose a birth move if k < knax, with proba v, we
propose an update move and with proba dy =1 — by — u, we
propose a death move.

@ We have di = 0 and by max = 0.

@ The update move can simply done in a Gibbs step as

2. Vi ﬂ)

p(0k yrT k) = N (ak1.6; Mk, 07°5k) TG (U 5
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@ Birth move: We propose to move from k to k +1

2 2
(3k+1,1:k. 3k+1,k+1,(7k+1) = (ak,lzk, U,(Tk) where u ~ gk k11

and the acceptance probability is

min [ 1 p (k1 v, 0%, k41| y1:7) diga
"p (a1 0%, k| yi:1) begroks (u) |
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@ Birth move: We propose to move from k to k +1

2 2
(3k+1,1:k. 3k+1,k+1,(7k+1) = (ak,lzk, U,Uk) where u ~ gk k11

and the acceptance probability is

min [ 1 P (a1 U, 0 k41| y1.7) dicya
"p (a1 0%, k| yi:1) begroks (u) |

@ Death move: We propose to move from k to k — 1
(3k—1,1:k—1, U,Ui_l) = (ak,lzk—lvak,k,o'i)
and the acceptance probability is

P (ak1:k—1,0% k — 1‘ y1:7) br—18k-1.k (akk)
' p (a1, 0%, k| y1:7) dk '
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@ The performance are obviously very dependent on the selection of the

proposal distribution. We select whenever possible the full conditional
distribution, i.e. we have

_ 2
U= a1 k+1 ~ P (@k+1k+1| 17, a1k, 03, k + 1) and

min | 1 P (ak,lzk, u, o2 k+ 1‘ yl;T) diin
"p(ak1k 02, k| yrT) bip (U] yi7, ak ok, 02, k + 1)

. P(ak,lzkyo'i,k‘f—l‘yl;'r) di+1
= min| 1, 5 )
p(ak,l:ky Y k| }/1;T) by
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@ The performance are obviously very dependent on the selection of the
proposal distribution. We select whenever possible the full conditional
distribution, i.e. we have

U= dk+1,k+1 ~ P (3k+1,k+1’)/1:T, ak,l:k,O'i, k -+ 1) and
min | 1 P (ak,lzk, u, o2 k+ 1‘ yl;T) diin
"p (ko 0% Kl yir) bep (ul yiiT, g, 0%, k + 1)

. P(ak,lzkyo'i,k‘f—l‘yl;'r) di+1
= min| 1, 5 )
p(ak,l:ky Y k| }/1;T) by

@ In such cases, it is actually possible to reject a candidate before
sampling it!
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@ We simulate 200 data with k = 5 and use 10,000 iterations of
RIJMCMC.
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@ We simulate 200 data with k = 5 and use 10,000 iterations of
RIJMCMC.

@ The algorithm output is (k(i), 95{i)> ~ p(0k, k|y) (asymptotically).
@ The histogram of (k(i)) yields an estimate of p (k|y).
@ Histograms of <95(i)> for which k() = ky yields estimates of

P (01| y. ko).
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We simulate 200 data with k = 5 and use 10,000 iterations of
RIJMCMC.

The algorithm output is (k(i), 95{i)> ~ p(0k, k|y) (asymptotically).
The histogram of (k(i)) yields an estimate of p (k|y).
Histograms of <95(i)> for which k() = ky yields estimates of

P (01| y. ko).

The algorithm provides us with an estimate of p (k| y) which matches
analytical expressions.
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Example: Finite Mixture of Gaussians

@ The model k € L = {1, ..., kmax } is given by a mixture of k Gaussians

k
Yo ~ E TN (P‘i"f%) :
i—1

1

and we have 8, = (7'[1;/(,“111:,(,0'%:,() € 5, x R x (]R+)k.
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Example: Finite Mixture of Gaussians

@ The model k € L = {1, ..., kmax } is given by a mixture of k Gaussians

k
Yo ~ E TN (P‘i"f%) :
i=1

and we have 8, = (7'[1;/(,“111:,(,0'%:,() € 5, x R x (]R+)k.
@ We need to defined a prior p (k,0x) = p (k) p (6«| k), say

p(k) = knifor €K

max

p(0clk) = D(merl o )]IN (uyia. B) IG (ai,i;%,%)_

i=1

>
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Example: Finite Mixture of Gaussians

@ The model k € L = {1, ..., kmax } is given by a mixture of k Gaussians

k
Yo ~ E TN (P‘i"f%) :
i=1

and we have 8, = (7'[1;/(,“111:,(,0'%:,() € 5, x R x (]R+)k.
@ We need to defined a prior p (k,0x) = p (k) p (6«| k), say

p(k) = knifor €K

max

p(0clk) = D(merl o )]IN (uyia. B) IG (ai,i;%,%)_

i=1

>

e Given T data, we are interested in 7t (k, Ok|y1.7) .
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@ When k is fixed, we will use Gibbs steps to sample from
7T (O, z1.7| y1:7, k) where z;.7 are the discrete latent variables such
that PI’(Z,7 = I‘ k,gk) = Tlk,i-
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@ To allow to move in the model space, we define a birth and death
move.
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@ When k is fixed, we will use Gibbs steps to sample from
7T (O, z1.7| y1:7, k) where z;.7 are the discrete latent variables such
that PI’(Z,7 = I‘ k,gk) = Tlk,i-

@ To allow to move in the model space, we define a birth and death
move.

@ The birth and death moves use as a target 77 (0x| y1.7, k) and not

7T (6, z1.7| y1.7, k) = Reduced dimensionality, easier to design
moves.
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@ We propose a naive move to go from k — k + 1 where j ~ L[{L
_ 0.2 _ 0,2
Brri,— = Mtk Tk+1,—j = Tk, 1k
TTht1,—j = (1 - 7Tk+1,j) TCh,—j

where (ﬂkHJ, Higr) (7%+1,j> ~ gk k+1 (prior distribution in
practice).
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@ We propose a naive move to go from k — k + 1 where j ~ Uy «y1)

_ 2 _ 2
Prt1,—j = Hiik Tk+1,— = Tk, 1k
Ts1,—j = (1= Thq1) Th—j,

where (ﬂkHJ, Higr) 012<+1,j> ~ gk k+1 (prior distribution in
practice).

@ The Jacobian of the transformation is (1 — nk+1,j)k71 (only k-1
“true” variables for 77 _)
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@ We propose a naive move to go from k — k + 1 where j ~ Uy «y1)

_ 2 _ 2
Prt1,—j = Hiik Tk+1,— = Tk, 1k
Ts1,—j = (1= Thq1) Th—j,

where (ﬂkHJ, Higr) (7%+1j> ~ gk k+1 (prior distribution in
practice).

@ The Jacobian of the transformation is (1 — nk+1,j)k71 (only k-1
“true” variables for 77 _)

@ Now one has to be careful when considering the reverse death move.
Assume the death move going from k + 1 — k by removing the
component j.
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@ The acceptance probability of the birth move is given by min (1, A)
where

7 (K + 1, Tt ket B 1okt Ok 1k | Y15T)
T (k: TCk,1:ks P 1:k0 Ui,l:k’ YI:T)
(diyri/ (k+1)) (1= i )
(bik+1/ (k+1)) gk k41 <7Tk+1,j. Hrgrjo Uf) .

A =
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@ The acceptance probability of the birth move is given by min (1, A)
where

7 (k+1, M1 1kt Pet11:k+10 ‘Ti+1,1:/<+1 ‘ Y1:7)
Tt (k: Tk 1:ks B 1k Ui,l:k’ YI:T)
(i e/ (k+1)) (1= 7)<
(bkk+1/ (k+1)) gk k+1 <7Tk+1,j. Hii1)o Uf) .

A =

@ This move will work properly if the prior is not too diffuse. Otherwise
the acceptance probability will be small.
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@ The acceptance probability of the birth move is given by min (1, A)
where

70 (k41 etk 1 B ke Tkt 1kt | Y2:T)
T (k' Tk 1:ks B 1k Ui,l:k’ YI:T)
(diyri/ (k+1)) (1= i )
(bek1/ (k+1)) gkk+1 <7Tk+1,j. Hii1)o Uf) .

A =

@ This move will work properly if the prior is not too diffuse. Otherwise
the acceptance probability will be small.

e We have (k + 1) birth moves to move from k — k+1 and k+1
associated death moves.
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@ To move from k — k 4 1, one can also select a split move of the
component j ~ Uy i

1) = WTTkj, ket jr1 = (1 — up) 7Ty,
’ ot " Tkj — Tlk+1,jU2
. p— 2 y . p— oy
k+1,j kjr Pk41,j+1 M) — ity k.j
Tl i — Tkt iU
2 _ 2 2 _ Ttk k+1,43 2
Ok+1j = U0kjo Oky1,j+1 = Tk,

TCk,j = TCk+1,j

with vy, up, u3 ~U (0,1).
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@ The associated merge move is

Tlkj = Tkl + TTky1j+1s

Tl = Tkttilgyr, + et je1igy 10
> 2 02

TjOkj = TOk41,j0k+1,j T TTht1,j410k41,j41-
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@ The associated merge move is

TTkj = Tlk41,) + TThkt1,j+1
Tl = Tkttilgyr, + et je1igy 10
> 2 02
TjOkj = TOk41,j0k+1,j T TTht1,j410k41,j41-

@ The Jacobian of the transformation of the split is given by

3

2 (1 —u )2 kv] er-
O 7h1iks Py 1ok Tk 1k ULy U2, U3 1

2
d (7Tk+1,1:k+1: Hpr11:k410 ‘Tk+1,1:k+1)
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@ It follows that the acceptance probability of the split move with
ky is min (1, A) where

2
T (k + 1 Th1, k410 Bg1 1k 10 ‘Tk+1,1:k+1‘ Y1:T)

2
g ( Ky Tk e i Ttk ’ Y1:T)

(Mk41,6/ k) o« ”ij

(Skh+1/k) (1 -

7 I 7
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@ It follows that the acceptance probability of the split move with
ky is min (1, A) where

2
T (k + 1 Th1, k410 Bg1 1k 10 ‘Tk+1,1:k+1‘ Y1:T)

2
T (k: TCk,1:kr P 1:k0 Uk,l:k’ Y1:T)

(Myq1,k/k) " ”il

(Skk+1/k) (1 —

‘ij’

@ You should think of the split move as a mixture of k split moves and
you have k associated merge moves.
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@ We set kmax = 20 and we select (rather) informative priors following
Green & Richardson (1999). In practice, it is worth using a
hierarchical prior.
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hierarchical prior.

@ We run the algorithm for over 1,000,000 iterations.
@ We set additional constraints on the mean 1, | < p; 5 < ... < Yy ;-
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@ We set kmax = 20 and we select (rather) informative priors following
Green & Richardson (1999). In practice, it is worth using a
hierarchical prior.

@ We run the algorithm for over 1,000,000 iterations.
@ We set additional constraints on the mean 1, | < p; 5 < ... < Yy ;-

@ The cumulative averages stabilize very quickly.
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Figure: Estimation of the marginal posterior distribution p (k| y1.7)
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Galaxy dataset

Figure: Estimation of E [f (y|k,0x)|y1.7]

AD () March 2007

37 /38



@ Trans-dimensional MCMC allows us to implement numerically
problems with Bayesian model uncertainty.
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@ Trans-dimensional MCMC allows us to implement numerically
problems with Bayesian model uncertainty.

@ Practical implementation is relatively easy, theory behind not so easy...

@ Designing efficient trans-dimensional MCMC algorithms is still a
research problem.
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