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Bayesian Model Selection

Metropolis-Hastings on a General State-Space

Trans-dimensional Markov chain Monte Carlo.
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Most Bayesian models discussed until now: prior p (θ) and likelihood
p (y j θ). Using MCMC, we sample from

p ( θj y) = p (θ) p (y j θ)R
p (θ) p (y j θ) dθ

.

We discuss several examples where the model under study is fully
speci�ed.

In practice, we might have a collection of candidate models. This
class of problems include cases where �the number of unknowns is
something you don�t know�(Green, 1995).
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Bayesian Model Selection

Assume we have a (countable) set K of candidate models then an
associated Bayesian model is such that

k denotes the model and has a prior probability p (k) .
θk 2 Θk is the unknown parameter associated to model k of prior
p ( θk j k) .
The likelihood is p (y j k, θk ) .

You can think of it as a �standard�Bayesian model of parameter
(k, θk ) 2 [i2K (fig �Θi ) .
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The Bayes�rule gives the posterior

p (k, θk j y) =
p (k) p ( θk j k) p (y j k, θk )

∑i2K
R

Θi
p (i) p ( θi j i) p (y j i , θi ) dθi

de�ned on [i2K (fig �Θi ) .

From this posterior, we can compute

p (k j y) and p (y j k)
p (y j j) =

p (k j y)
p ( j j y)

p (j)
p (k)

or performing Bayesian model averaging

p
�
y 0
�� y� = ∑

i2K

Z
Θi

p
�
y 0
�� i , θi � p ( i , θi j y) dθi
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Example: Autoregression

The model k 2 K = f1, ..., kmaxg is given by an AR of order k

Yn =
k

∑
i=1
aiYn�i + σVn where Vn

i.i.d� N (0, 1)

and we have θk =
�
a1:k , σ

2
�
2 Rk �R+.

We need to de�ned a prior p (k, θk ) = p (k) p (θk j k), say

p (k) = k�1max for k 2 K,
p ( θk j k) = N

�
a1:k ; 0, σ

2δ2Ik
�
IG
�

σ2;
ν0
2
,

γ0
2

�
.

One should be careful, the parameters denoted similarly can have a
di¤erent �meaning� so that computing say p

�
σ2
�� y� does not mean

much.

Some authors favour a more precise notation θk =
�
ak ,1:k , σ

2
k

�
but

this can be cumbersome.
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Example: Finite Mixture of Gaussians

The model k 2 K = f1, ..., kmaxg is given by a mixture of k Gaussians

Yn �
k

∑
i=1

πiN
�
µi , σ

2
i

�
.

and we have θk =
�
π1:k , µ1:k , σ

2
1:k
�
2 Sk �Rk � (R+)

k .

We need to de�ned a prior p (k, θk ) = p (k) p (θk j k), say

p (k) =
1
kmax

,

p (θk j k) = D (π1:k ; 1, ..., 1)
k

∏
i=1
N (µi ; α, β) IG

�
σ2i ;

ν0
2
,

γ0
2

�
.

Some authors favour a more precise notation
θk =

�
πk ,1:k , µk ,1:k , σ

2
k ,1:k

�
.
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Problem Statement

As stated before, Bayesian model selection problems corresponds to
the case where the parameter space is simply [k2K (fkg �Θk ).

Can we de�ne MCMC algorithms - i.e. Markov chain kernels with
�xed invariant distribution π (k, θk ) = π (k)πk (θk )- ?

We are going to present a generalization of MH after revisiting �rst
the MH algorithm.

AD () March 2007 8 / 38



Problem Statement

As stated before, Bayesian model selection problems corresponds to
the case where the parameter space is simply [k2K (fkg �Θk ).

Can we de�ne MCMC algorithms - i.e. Markov chain kernels with
�xed invariant distribution π (k, θk ) = π (k)πk (θk )- ?

We are going to present a generalization of MH after revisiting �rst
the MH algorithm.

AD () March 2007 8 / 38



Problem Statement

As stated before, Bayesian model selection problems corresponds to
the case where the parameter space is simply [k2K (fkg �Θk ).

Can we de�ne MCMC algorithms - i.e. Markov chain kernels with
�xed invariant distribution π (k, θk ) = π (k)πk (θk )- ?

We are going to present a generalization of MH after revisiting �rst
the MH algorithm.

AD () March 2007 8 / 38



We say that a measure γ (dx) admits a density with respect to a
measure λ (dx) if for any (measurable) set A 2 B (X )

λ (A) = 0) γ (A) = 0

and we call
γ (dx)
λ (dx)

= f (x)

the density of γ (dx) with respect to λ (dx) .

In 99% of the applications in statistics λ (dx) is the Lebesgue
measure dx and we write

γ (dx)
λ (dx)

=
γ (dx)
dx

= γ (x) .
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The standard MH algorithm where X �Rd corresponds to

K
�
x , dx 0

�
= α

�
x , x 0

�
q
�
x , dx 0

�
+

�
1�

Z
α (x , z) q (x , dz)

�
δx
�
dx 0
�

where

α
�
x , x 0

�
= min

�
1,

π (x 0) q (x 0, x)
π (x) q (x , x 0)

�

You should think of
π (x 0) q (x 0, x)
π (x) q (x , x 0)

not as just a �number�!
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The acceptance ratio corresponds to a ratio of probability measures
-importance weight- de�ned on the same spaces

π (dx 0) q (x 0, dx)
π (dx) q (x , dx 0)

=
π (x 0) dx 0q (x 0, x) dx
π (x) dxq (x , x 0) dx 0

=
π (x 0) q (x 0, x)
π (x) q (x , x 0)

.

You can only compared points de�ned on the same joint space. If you
have x = (x1, x2) and π1 (dx1) = π1 (x1) dx1,
π2 (dx1, dx2) = π2 (x1, x2) dx1dx2, you can compute numerically

π2 (x1, x2)
π1 (x1)

but it means nothing as the measures π1 and π2 are not de�ned on
the same space. You CANNOT compare a surface to a volume!
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In the general case where X is a union of subspaces of di¤erent
dimensions, you might want to move from x 2 Rd to x 0 2 Rd 0 .

To construct this move, you can use u 2 Rr and u0 2 Rr 0 and a
one-to-one di¤erentiable mapping h:Rd �Rr ! Rd 0 �Rr 0�

x 0, u0
�
= h (x , u) where u � g

and
(x , u) = h�1

�
x 0, u0

�
where u0 � g 0.

We need d + r = d 0 + r 0 and typically, if d < d 0, then r 0 = 0 and
r = d 0 � d , that is in most case the variable u0 is not introduced.
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We can rewrite formally

π (dx) q
�
x ,
�
dx 0, du0

��
= π (x) g (u) dxdu

and
π
�
dx 0
�
q
�
x 0, (dx , du)

�
= π

�
x 0
�
g 0
�
u0
�
dx 0du0.

An acceptance ratio ensuring π�reversibility of this trans-dimensional
move is given by

π (dx 0) q (x 0, (dx , du))
π (dx) q (x , (dx 0, du0))

=
π (x 0) g 0 (u0)
π (x 0) g (u)

����∂ (x 0, u0)∂ (x , u)

���� .
In this respect, the RJMCMC is an extension of standard MH as you
need to introduce auxiliary variables u and u0.
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Assume we have a distribution de�ned on f1g �R[ f2g �R�R.
We want to propose some moves to go from (1, θ) to (2, θ1, θ2) .

We can propose u � g 2 R and set

(θ1, θ2) = h (θ, u) = (θ, u) ,

i.e. we do not need to introduce a variable u0. Its inverse is given by

(θ, u) = h�1 (θ1, θ2) = (θ1, θ2) .

The acceptance probability for this �birth�move is given by

min
�
1,

π (2, θ1, θ2)
π (1, θ)

1
g (u)

����∂ (θ1, θ2)∂ (θ, u)

�����
= min

�
1,

π (2, θ1, θ2)
π (1, θ1) g (θ2)

�
.
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The acceptance probability for the associated �death move� is

min
�
1,

π (1, θ)
π (2, θ1, θ2)

g (u)

���� ∂ (θ, u)
∂ (θ1, θ2)

����� = min�1, π (1, θ) g (u)
π (2, θ, u)

�

Once the birth move is de�ned then the death move follows
automatically. In the death move, we do not simulate from g but its
expression still appear in the acceptance probability.
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To simplify notation -as in Green (1995) & Robert (2004)-, we don�t
emphasize that actually we can have the proposal g which is a
function of the current point θ but it is possible!

We can propose u � g ( �j θ) 2 R and set

(θ1, θ2) = h (θ, u) = (θ, u) .

Its inverse is given by

(θ, u) = h�1 (θ1, θ2) = (θ1, θ2) .

The acceptance probability for this �birth�move is given by

min
�
1,

π (2, θ1, θ2)
π (1, θ)

1
g (uj θ)

����∂ (θ1, θ2)∂ (θ, u)

�����
= min

�
1,

π (2, θ1, θ2)
π (1, θ1) g ( θ2j θ1)

�
.
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Its inverse is given by

(θ, u) = h�1 (θ1, θ2) = (θ1, θ2) .

The acceptance probability for this �birth�move is given by

min
�
1,

π (2, θ1, θ2)
π (1, θ)

1
g (uj θ)

����∂ (θ1, θ2)∂ (θ, u)

�����
= min

�
1,

π (2, θ1, θ2)
π (1, θ1) g ( θ2j θ1)

�
.
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The acceptance probability for the associated �death move� is

min
�
1,

π (1, θ)
π (2, θ1, θ2)

g (uj θ)
���� ∂ (θ, u)
∂ (θ1, θ2)

�����
= min

�
1,

π (1, θ) g (uj θ)
π (2, θ, u)

�

Once the birth move is de�ned then the death move follows
automatically. In the death move, we do not simulate from g but its
expression still appears in the acceptance probability.

Clearly if we have g (θ2j θ1) = π ( θ2j 2, θ1) then the expressions
simplify

min
�
1,

π (2, θ1, θ2)
π (1, θ1) g (θ2j θ1)

�
= min

�
1,

π (2, θ1)
π (1, θ1)

�
,

min
�
1,

π (1, θ) g (uj θ)
π (2, θ, u)

�
= min

�
1,
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�
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Assume we have a distribution de�ned on f1g �R[ f2g �R�R.
We want to propose some moves to go from (1, θ) to (2, θ1, θ2) .

We can propose u � g 2 R and set

(θ1, θ2) = h (θ, u) = (θ � u, θ + u) .

Its inverse is given by

(θ, u) = h�1 (θ1, θ2) =
�

θ1 + θ2
2

,
θ2 � θ1
2

�
.

The acceptance probability for this �split�move is given by

min
�
1,

π (2, θ1, θ2)
π (1, θ)

1
g (u)

����∂ (θ1, θ2)∂ (θ, u)

�����

= min

0@1, π (2, θ1, θ2)

π
�
1, θ1+θ2

2

� 2

g
�

θ2�θ1
2

�
1A .
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The acceptance probability for the associated �merge move� is

min
�
1,

π (1, θ)
π (2, θ1, θ2)

g (u)

���� ∂ (θ, u)
∂ (θ1, θ2)

�����
= min

�
1,

π (1, θ)
π (2, θ � u, θ + u)

g (u)
2

�

Once the split move is de�ned then the merge move follows
automatically. In the merge move, we do not simulate from g but its
expression still appear in the acceptance probability.
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In practice, the algorithm is based on a combination of moves to
move from x = (k, θk ) to x 0 = (k 0, θk 0) indexed by i 2 M and in this
case we just need to haveZ

(x ,x 0)2A�B
π (dx) αi

�
x , x 0

�
qi
�
x , dx 0

�
=

Z
(x ,x 0)2A�B

π
�
dx 0
�

αi
�
x 0, x

�
qi
�
x 0, dx

�
to ensure that the kernel P (x ,B) de�ned for x /2 B

P (x ,B) =
1
jMj ∑

i2M

Z
B

αi
�
x , x 0

�
qi
�
x , dx 0

�
is π-reversible.

In practice, we would like to have

P (x ,B) = ∑
i2M

Z
B
ji (x) αi

�
x , x 0

�
qi
�
x , dx 0

�
where ji (x) is the probability of selecting the move i once we are in x
and ∑i2M ji (x) = 1.
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In this case reversibility is ensured ifR
(x ,x 0)2A�B π (dx) ji (x) αi (x , x 0) qi (x , dx 0)
=
R
(x ,x 0)2A�B π (dx 0) ji (x 0) αi (x 0, x) qi (x 0, dx)

which is satis�ed if

αi
�
x , x 0

�
= min

�
1,

π (x 0) ji (x 0) g 0i (u
0)

π (x) ji (x) gi (u)

����∂ (x 0, u0)∂ (x , u)

����� .

In practice, we will only have a limited number of moves possible from
each point x .
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Reversible Jump MCMC Algorithm

For each point x = (k, θk ), we de�ne a collection of potential moves
selected randomly with probability ji (x) where i 2 M

To move from x = (k, θk ) to x 0 = (k 0, θk 0), we build one (or several)
deterministic di¤erentiable and inversible mapping(s)

(θk 0 , uk 0,k ) = Tk ,k 0 (θk , uk ,k 0)

where uk ,k 0 � gk ,k 0 and uk 0,k � gk 0,k and we accept the move with
proba

min
�
1,

π (k 0, θk 0) ji (k 0, θk 0) gk 0,k (uk 0,k )
π (k, θk ) ji (k, θk ) gk ,k 0 (uk ,k 0)

����∂Tk ,k 0 (θk , uk ,k 0)∂ (θk , uk ,k 0)

����� .
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Example: Autoregression

The model k 2 K = f1, ..., kmaxg is given by an AR of order k

Yn =
k

∑
i=1
aiYn�i + σVn where Vn � N (0, 1)

and we have θk =
�
ak ,1:k , σ

2
k

�
2 Rk �R+ where

p (k) = k�1max for k 2 K,
p ( θk j k) = N

�
ak ,1:k ; 0, σ

2
k δ2Ik

�
IG
�

σ2;
ν0
2
,

γ0
2

�
.

For sake of simplicity, we assume here that the initial conditions
y1�kmax :0 = (0, ..., 0) are known and we want to sample from

p ( θk , k j y1:T ) .

Note that this is not very clever as p (k j y1:T ) is known up to a
normalizing constant!
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We propose the following moves. If we have
�
k, a1:k , σ

2
k

�
then with

probability bk we propose a birth move if k � kmax, with proba uk we
propose an update move and with proba dk = 1� bk � uk we
propose a death move.

We have d1 = 0 and bk max = 0.

The update move can simply done in a Gibbs step as

p ( θk j y1:T , k) = N
�
ak ,1:k ;mk , σ

2Σk
�
IG
�

σ2;
νk
2
,

γk
2

�
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Birth move: We propose to move from k to k + 1�
ak+1,1:k , ak+1,k+1, σ

2
k+1

�
=
�
ak ,1:k , u, σ

2
k

�
where u � gk ,k+1

and the acceptance probability is

min

 
1,
p
�
ak ,1:k , u, σ2k , k + 1

�� y1:T
�
dk+1

p (ak ,1:k , σ
2
k , k j y1:T ) bkgk ,k+1 (u)

!
.

Death move: We propose to move from k to k � 1�
ak�1,1:k�1, u, σ

2
k�1
�
=
�
ak ,1:k�1, ak ,k , σ

2
k

�
and the acceptance probability is

min

 
1,
p
�
ak ,1:k�1, σ2k , k � 1

�� y1:T
�
bk�1gk�1,k (ak ,k )

p (ak ,1:k , σ
2
k , k j y1:T ) dk

!
.
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The performance are obviously very dependent on the selection of the
proposal distribution. We select whenever possible the full conditional
distribution, i.e. we have
u = ak+1,k+1 � p

�
ak+1,k+1j y1:T , ak ,1:k , σ

2
k , k + 1

�
and

min

 
1,

p
�
ak ,1:k , u, σ2k , k + 1

�� y1:T
�
dk+1

p (ak ,1:k , σ
2
k , k j y1:T ) bkp (uj y1:T , ak ,1:k , σ

2
k , k + 1)

!

= min

 
1,
p
�
ak ,1:k , σ

2
k , k + 1

�� y1:T
�
dk+1

p (ak ,1:k , σ
2
k , k j y1:T ) bk

!
.

In such cases, it is actually possible to reject a candidate before
sampling it!
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We simulate 200 data with k = 5 and use 10,000 iterations of
RJMCMC.

The algorithm output is
�
k (i ), θ(i )k

�
� p (θk , k j y) (asymptotically).

The histogram of
�
k (i )
�
yields an estimate of p (k j y) .

Histograms of
�

θ
(i )
k

�
for which k (i ) = k0 yields estimates of

p ( θk0 j y , k0).
The algorithm provides us with an estimate of p (k j y) which matches
analytical expressions.
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Example: Finite Mixture of Gaussians

The model k 2 K = f1, ..., kmaxg is given by a mixture of k Gaussians

Yn �
k

∑
i=1

πiN
�
µi , σ

2
i

�
.

and we have θk =
�
π1:k , µ1:k , σ

2
1:k
�
2 Sk �Rk � (R+)

k .

We need to de�ned a prior p (k, θk ) = p (k) p (θk j k), say

p (k) = k�1max for 2 K

p ( θk j k) = D (πk ,1:k ; 1, ..., 1)
k

∏
i=1
N
�
µk ,i ; α, β

�
IG
�

σ2k ,i ;
ν0
2
,

γ0
2

�
.

Given T data, we are interested in π (k, θk j y1:T ) .
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2
1:k
�
2 Sk �Rk � (R+)

k .

We need to de�ned a prior p (k, θk ) = p (k) p ( θk j k), say

p (k) = k�1max for 2 K

p ( θk j k) = D (πk ,1:k ; 1, ..., 1)
k

∏
i=1
N
�
µk ,i ; α, β

�
IG
�

σ2k ,i ;
ν0
2
,

γ0
2

�
.

Given T data, we are interested in π (k, θk j y1:T ) .
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When k is �xed, we will use Gibbs steps to sample from
π ( θk , z1:T j y1:T , k) where z1:T are the discrete latent variables such
that Pr (zn = i j k, θk ) = πk ,i .

To allow to move in the model space, we de�ne a birth and death
move.

The birth and death moves use as a target π ( θk j y1:T , k) and not
π ( θk , z1:T j y1:T , k)) Reduced dimensionality, easier to design
moves.
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We propose a naive move to go from k ! k + 1 where j � Uf1,...,k+1g

µk+1,�j = µk ,1:k , σ2k+1,�j = σ2k ,1:k ,

πk+1,�j = (1� πk+1,j )πk ,�j ,

where
�

πk+1,j , µk+1,j , σ
2
k+1,j

�
� gk ,k+1 (prior distribution in

practice).

The Jacobian of the transformation is (1� πk+1,j )
k�1 (only k � 1

�true� variables for πk ,�j )

Now one has to be careful when considering the reverse death move.
Assume the death move going from k + 1! k by removing the
component j .
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The acceptance probability of the birth move is given by min (1,A)
where

A =
π
�
k + 1,πk+1,1:k+1, µk+1,1:k+1, σ

2
k+1,1:k+1

�� y1:T
�

π
�
k,πk ,1:k , µk ,1:k , σ

2
k ,1:k

��� y1:T

�
� (dk+1,k/ (k + 1)) (1� πk+1,j )

k�1

(bk ,k+1/ (k + 1)) gk ,k+1
�

πk+1,j , µk+1,j , σ
2
j

� .

This move will work properly if the prior is not too di¤use. Otherwise
the acceptance probability will be small.

We have (k + 1) birth moves to move from k ! k + 1 and k + 1
associated death moves.
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To move from k ! k + 1, one can also select a split move of the
component j � Uf1,...,kg

πk+1,j = u1πk ,j , πk+1,j+1 = (1� u1)πk ,j ,

µk+1,j = u2µk ,j , µk+1,j+1 =
πk ,j � πk+1,ju2
πk ,j � πk+1,j

µk ,j ,

σ2k+1,j = u3σ2k ,j , σ2k+1,j+1 =
πk ,j � πk+1,ju3
πk ,j � πk+1,j

σ2k ,j

with u1, u2, u3 � U (0, 1) .
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The associated merge move is

πk ,j = πk+1,j + πk+1,j+1,

πk ,jµk ,j = πk+1,jµk+1,j + πk+1,j+1µk+1,j+1,

πk ,jσ
2
k ,j = πk+1,jσ

2
k+1,j + πk+1,j+1σ

2
k+1,j+1.

The Jacobian of the transformation of the split is given by������∂
�
πk+1,1:k+1, µk+1,1:k+1, σ

2
k+1,1:k+1

�
∂
�

πk ,1:k , µk ,1:k , σ
2
k ,1:k , u1, u2, u3

�
������ = π3k ,j

(1� u1)2
���µk ,j ��� σ2k ,j .
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It follows that the acceptance probability of the split move with
j � Uf1,...,kg is min (1,A) where

A =
π
�
k + 1,πk+1,1:k+1, µk+1,1:k+1, σ

2
k+1,1:k+1

�� y1:T
�

π
�
k,πk ,1:k , µk ,1:k , σ

2
k ,1:k

��� y1:T

�
� (mk+1,k/k)
(sk ,k+1/k)

�
π3k ,j

(1� u1)2
���µk ,j ��� σ2k ,j .

You should think of the split move as a mixture of k split moves and
you have k associated merge moves.
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We set kmax = 20 and we select (rather) informative priors following
Green & Richardson (1999). In practice, it is worth using a
hierarchical prior.

We run the algorithm for over 1,000,000 iterations.

We set additional constraints on the mean µk ,1 < µk ,2 < .... < µk ,k .

The cumulative averages stabilize very quickly.
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Figure: Estimation of the marginal posterior distribution p (k j y1:T )
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Figure: Estimation of E [ f (y j k, θk )j y1:T ]
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Trans-dimensional MCMC allows us to implement numerically
problems with Bayesian model uncertainty.

Practical implementation is relatively easy, theory behind not so easy...

Designing e¢ cient trans-dimensional MCMC algorithms is still a
research problem.
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