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Metropolis-Hastings one-at-a time

o Initialization: Select deterministically or randomly

0= (00",...00").
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Metropolis-Hastings one-at-a time

o Initialization: Select deterministically or randomly
0 0
0= (00",...00").

@ lteration i; i > 1:

e Fork=1:p
e Sample 95('-) using an MH step of proposal distribution
gk ((9@,{,95{'71)) G’k) and target 7 (Gk\ 9@,{) where

i i i i—1 i—1
o) = (61, 00 0y 0y ).
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Logistic Regression

@ In 1986, Challenger exploded; the explosion being the result of an
O-ring failure. It was believed to be a result of a cold weather at the
departure time: 31°F.

AD () March 2007 3 / 46



Logistic Regression

@ In 1986, Challenger exploded; the explosion being the result of an
O-ring failure. It was believed to be a result of a cold weather at the
departure time: 31°F.

@ We have access to the data of 23 previous flights which give for flight
i: Temperature at flight time x; and y; = 1 failure and zero otherwise
(Robert & Casella, p. 15).
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Logistic Regression

@ In 1986, Challenger exploded; the explosion being the result of an
O-ring failure. It was believed to be a result of a cold weather at the
departure time: 31°F.

@ We have access to the data of 23 previous flights which give for flight
i: Temperature at flight time x; and y; = 1 failure and zero otherwise
(Robert & Casella, p. 15).

@ We want to have a model relating Y to x. Obviously this cannot be a
linear model Y = a + x as we want Y € {0, 1}.
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@ We select a simple logistic regression model

(¥ = 115) <1 (v =0l = SR
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@ We select a simple logistic regression model

(¥ = 115) <1 (v =0l = SR

e Equivalently we have

logit = log (W) = + xB.

AD () March 2007 4 / 46



@ We select a simple logistic regression model

(¥ = 115) <1 (v =0l = SR

e Equivalently we have

logit = log (W) = + xB.

@ This ensures that the response is binary.
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@ We follow a Bayesian approach and select
mt(a, B) =m(a|b)w(B) =b texp(a)exp (—b Lexp(a));ie.
exponential prior on exp(a) and flat prior on B.
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@ b is selected as the data-dependent prior such that [E («) = & where
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@ We follow a Bayesian approach and select
mt(a, B) =m(a|b)w(B) =b texp(a)exp (—b Lexp(a));ie.
exponential prior on exp(a) and flat prior on B.

@ b is selected as the data-dependent prior such that [E («) = & where
w is the MLE of a (Robert & Casella).

@ As a simple proposal distribution, we use
a((@p). (@) = (/| b) N (B 5.55)

where 3% is the variance associated to the MLE B
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The algorithm proceeds as follows at iteration i

e Sample (a*, B*) ~ 7 (a| ) N (ﬁ;ﬁ(ifl),ﬁf;) and compute

4 ((“(iq), ﬁ(i—l)) (&, [3*))
7 (a*, B*| data) <uc("*1)) b)

= min (1: - ([X(,-,l)yﬁ(i—l)‘ data) 7 (o] b)>
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The algorithm proceeds as follows at iteration i

e Sample (a*, B*) ~ 7 (a| ) N (ﬁ;ﬁ(ifl),ﬁf;) and compute

4 ((“(iq), 5(/—1)) (&, [3*))
7 (a*, B*| data) <uc("*1)) b)

= min | 1, : -
7 (zx(’*l),[ﬁ(’_l)‘ data) 7 (a*| b)
@ Set (a(/),ﬁ(i)> = (a*, B*) with probability

¢ ((“("71), ,3("71)> ((x*,B*)> otherwise set
(,xm, ﬁm) - (,xo'—l), 5(f—1>> _
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Probit Regression

@ We consider the following example: we take 4 measurements from
100 genuine Swiss banknotes and 100 counterfeit ones.
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@ We consider the following example: we take 4 measurements from
100 genuine Swiss banknotes and 100 counterfeit ones.

@ The response variable y is O for genuine and 1 for counterfeit and the
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Probit Regression

@ We consider the following example: we take 4 measurements from
100 genuine Swiss banknotes and 100 counterfeit ones.

@ The response variable y is O for genuine and 1 for counterfeit and the
explanatory variables are

x1 the length,

x2: the width of the left edge

x3: the width of the right edge
x*: the bottom margin witdth

AD () March 2007 9 / 46



D 1 2
|

9
|

W ® ¥ 6 ®B® O
|

7 8 9 10 11 12 0 1

Bottom m argin width (m m ) S tatus

Figure: Left: Plot of the status indicator versus the bottom margin width. Right:
Boxplots of the bottom margin width for both counterfeit status.
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@ Instead of selecting a logistic link, we select a probit one here

Pr(Y=1/x)=® (x'B, +...+x*B,)

0= [ (-2 o

where

AD () March 2007 11 / 46



@ Instead of selecting a logistic link, we select a probit one here

Pr(Y=1/x)=® (x'B, +...+x*B,)

0= [ (-2 o

o For n data, the likelihood is then given by

Ot = fro(78) (1=0 (79)

where
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@ We assume a vague prior where B ~ N (0,100/4) and we use a
simple random walk sampler with X the covariance matrix associated
to the MLE (estimated using simple deterministic method).
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@ We assume a vague prior where B ~ N (0,100/4) and we use a
simple random walk sampler with X the covariance matrix associated
to the MLE (estimated using simple deterministic method).

@ The algorithm is thus simply given at iteration i by

o Sample §* ~ N ([3(’.71), T22> and compute

(=1 8*) = min Y 7T (B* Y10, X1:n) .
® (:5 P ) (1 - (,B(i_l)‘}/LnxXl:n))
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@ We assume a vague prior where B ~ N (0,100/4) and we use a
simple random walk sampler with X the covariance matrix associated
to the MLE (estimated using simple deterministic method).

@ The algorithm is thus simply given at iteration i by

o Sample §* ~ N ([3(’.71), T22> and compute

(=1 8*) = min Y 7T (B* Y10, X1:n) .
® (:5 P ) (1 - (,B(i_l)‘}/LnxXl:n))

o Set ,3(") = B* with probability a (,B("*l),,B*) and 5(/’) — ‘B(ifl)

otherwise.

@ Best results obtained with 72 = 1.
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"8 2000 6000 10600
™
o
-
o 4
<
5 2000 6000 10000
Qq 3
q .
8 .
8 J
5 2000 6000 10000
a
s
8 5
8
5 2000 6000 10000

0RHU®B G5

®

10D

06 08 1.0 1.2 14 16 18

o, [0 07N} oo e

oo e

; 0 200 400 600 800 1000
E 0 200 400 600 800 1000
Eo 200400 60080 1000
E 0 200 4‘00 600 860 1000

Figure: Traces (left), Histograms (middle) and Autocorrelations (right) for

(A

.,/35"')).

March 2007

13 / 46



Autocorrelation

@ One way to monitor the performance of the algorithm of the chain
{X(i)} consists of displaying p, = cov [ X0, x(i+k) ] / var <X( ))
which can be estimated from the chain, at least for small values of k.
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Autocorrelation

@ One way to monitor the performance of the algorithm of the chain
{X(i)} consists of displaying p, = cov [ X0, x(i+k) ] / var <X( ))
which can be estimated from the chain, at least for small values of k.

@ Sometimes one uses an effective sample size measure

No —-1/2
Ness:N(1—|—22ﬁk> .
k=1

This represents approximately the sample size of an equivalent i.i.d.
samples.
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Autocorrelation

@ One way to monitor the performance of the algorithm of the chain
{X(i)} consists of displaying p, = cov [X(’),X(i+k)] / var <X(i))
which can be estimated from the chain, at least for small values of k.

@ Sometimes one uses an effective sample size measure

No —-1/2
Ness:N(1—|—22ﬁk> .
k=1

This represents approximately the sample size of an equivalent i.i.d.
samples.

@ One should be very careful with such measures which can be very
misleading.
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e We found for E ( B| y1:n, x1:n) = (—1.22,0.95,0.96, 1.15) so a simple
plug-in estimate of the predictive probability of a counterfeit bill is

p=®(—1.22x" +0.95x* + 0.96x> + 1.15x*)

For x = (214.9,130.1,129.9,9.5), we obtain p = 0.59.
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e We found for [E (B y1:n, x1:n) = (—1.22,0.95,0.96, 1.15) so a simple
plug-in estimate of the predictive probability of a counterfeit bill is

p=®(—1.22x" +0.95x* + 0.96x> + 1.15x*)

For x = (214.9,130.1,129.9,9.5), we obtain p = 0.59.
@ A better estimate is obtained by

[ @ (Buxt + B+ Byx® + Bx) 7 (Bl yin x1) AP
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Auxiliary Variables for Probit Regression

o It is impossible to use Gibbs to sample directly from 77 (B| y1:n, X1:n) -
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Auxiliary Variables for Probit Regression

o It is impossible to use Gibbs to sample directly from 77 (B| y1:n, X1:n) -

@ Introduce the following unobserved latent variables
Z ~ N (X,Tﬁ, 1) ,

v 1 ifZ >0
b 0 otherwise.

March 2007



Auxiliary Variables for Probit Regression

o It is impossible to use Gibbs to sample directly from 77 (B| y1:n, X1:n) -

@ Introduce the following unobserved latent variables

Z,' ~ N (X,-Tﬁ, ].) '
v 1 ifZ >0
b 0 otherwise.

@ We have now define a joint distribution

f(yivzil B.xi) = f (yilz) f (2| B xi) -
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@ Now we can check that
flyi=1x,B) = /f(Yi,ZinXi)dzi
= / f(zi| B, xi) dzi = @ (X,Tﬁ) :
0

= We haven't changed the model!
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@ Now we can check that
flyi=1x,B) = /f(y,-,z,-|ﬁ,x,-)dz,-
Y PN T
= /o f (zi| B, xi) dz; CD(X, ﬁ)

= We haven't changed the model!

@ We are now going to sample from 77 (B, z1.n| X1:n, y1:n) instead of
7T ( B| X1:n, ¥1:n) because the full conditional distributions are simple

7T (Bl yi:ni X1:no 21:n) = 70 (B| X1:n, 21:n) (standard Gaussian!),
7T (z1:n| Yiin, X120, B) = lﬁ{ﬂ<zk‘)’k.xky,3>
where Ni (TBL) iy =
Zi| i, Xk, B ~ { e (X:Tﬁ,l) if v =
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@ The results obtained through Gibbs are very similar to MH.

AD () March 2007 19 / 46



@ The results obtained through Gibbs are very similar to MH.

@ We can also adopt an Zellner's type prior and obtain very similar
results.
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@ The results obtained through Gibbs are very similar to MH.

@ We can also adopt an Zellner's type prior and obtain very similar
results.

@ Very similar were also obtained using a logistic fonction using the MH
(Gibbs is feasible but more difficult).
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@ Although the introduction of latent variables can be attractive, it can
be also very inefficient.
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@ Although the introduction of latent variables can be attractive, it can
be also very inefficient.

@ It is not because you can use the Gibbs sampler that everything works
well!

o Consider the following simple generalization of the previous model

0 otherwise.

Z,'N./\/’(X,',B,OQ),Y,':{l ifZ,'>0
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@ Although the introduction of latent variables can be attractive, it can
be also very inefficient.

@ It is not because you can use the Gibbs sampler that everything works
well!

o Consider the following simple generalization of the previous model

1 ifZ >0
0 otherwise.

Zi ~ N (x;B.0%), Y,-:{

e We complete the model by ¢ ~ ZG (1.5,1.5) and
Bl o ~ N (0,100).
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@ Not only the data Z; and ([3,(72) are very correlated but we have

Pr(Y;=1|x.p,0%) :®<Xf>
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@ The likelihood only depends on /¢ and the parameters B and ¢ are
not identifiable.

AD () March 2007 21 / 46
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@ The likelihood only depends on /¢ and the parameters B and ¢ are
not identifiable.

@ One way to improve the mixing consists of using an additional MH
step that proposes to randomly rescale the current value.
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Not only the data Z; and ([3 02) are very correlated but we have

Pr(Y;=1|x.p,0%) :¢(>f>

The likelihood only depends on /¢ and the parameters  and ¢ are
not identifiable.

One way to improve the mixing consists of using an additional MH
step that proposes to randomly rescale the current value.

We use a proposal distribution such that
(B'.0') =A(B.o) with A ~ Exp (1)

that proposes to randomly rescale the current value.
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Hidden Markov Model

@ Consider the following hidden Markov model

Xi| (Xi—1 = x—1) ~ fo(+|xk-1), Xi ~p
Yol Xk =xk) ~ g (-] %),

and we set a prior 7 (6) on the unknown hyperparameters 6.
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Xi| (Xi—1 = x—1) ~ fo(+|xk-1), Xi ~p
Yol Xk =xk) ~ g (-] %),

and we set a prior 7 (6) on the unknown hyperparameters 6.

@ Given n data, we are interested in the joint posterior

T (9- Xl:n| )/I:n)
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Hidden Markov Model

@ Consider the following hidden Markov model

Xi| (Xi—1 = x—1) ~ fo(+|xk-1), Xi ~p
Yol Xk =xk) ~ g (-] %),

and we set a prior 7 (6) on the unknown hyperparameters 6.

@ Given n data, we are interested in the joint posterior

T (9- Xl:n| )/I:n)

@ There is no closed-form expression for this joint distribution even if
the model is linear Gaussian or for finite state-space model.
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@ In previous lectures, we propose sampling from 77 (6, x1:n| y1:n) using
the Gibbs sampler where the variables are updated according to

Xic ~ 70 (Xic| Y1:n, X—k, 0)

AD () March 2007 23 / 46



@ In previous lectures, we propose sampling from 77 (6, x1:n| y1:n) using
the Gibbs sampler where the variables are updated according to

Xk ~ n(Xk|y1:an7k19)
@ For 2 < k < n, we have

T (Xk‘ Yiiny X—k 0) X 7T (X11n1y1:ny 9)

« 7(0)u (X1>.Iif9 (xil xi-1)] T &o (vil i)

n
i=1

prior likelihood

o o (Xi| xk—1) fo (Xkr1] xk) &0 (ic| Xx)

and 0 ~ 77 (0| y1:n, x1:n) (or by subblocks).
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@ It is often possible to implement the Gibbs sampler even if this can be
expensive; e.g. if you use Accept/Reject to sample from
70 ( Xk| y1:n, X, 6) using the proposal
70 (Xse| Xk, 0) o< fy (x| Xie—1) fo (X1 k) -
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@ It is often possible to implement the Gibbs sampler even if this can be
expensive; e.g. if you use Accept/Reject to sample from
7T (Xk| ¥1:n, X_k, 6) using the proposal
70 (Xse| Xk, 0) o< fy (x| Xie—1) fo (X1 k) -

@ Even if it is possible to implement the Gibbs sampler, one can expect
a very slow convergence of the algorithm is successive variables are
highly correlated.
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@ It is often possible to implement the Gibbs sampler even if this can be
expensive; e.g. if you use Accept/Reject to sample from
7T (Xk| ¥1:n, X_k, 6) using the proposal
70 (Xse| Xk, 0) o< fy (x| Xie—1) fo (X1 k) -

@ Even if it is possible to implement the Gibbs sampler, one can expect
a very slow convergence of the algorithm is successive variables are
highly correlated.

@ Indeed, as you update xx with xx_1 and xx11 being fixed, then you
cannot move much into the space.

AD () March 2007 24 / 46



@ Consider the very simple case where § = (03, (TEV)

X = Xi 1+ Vi where Vi <N (0,02),
Yo = Xe+ W where W, = N (0,0%)

then we have

70 (x| Xk, 0) o oy (x| xk—1) o (Xkv1| xx)

Xe—1 + X, o2
_ N(xk; K 12 k+1’2\,>

and

70 (Xk| Y10, Xk, 0)
o< 70 (xk| x—k,0) go (yk| xx)

_ N( . T <Xk1+Xk+1+yk> oLy, )
w

Xk
02 + 202, 2 o2

March 2007
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@ Assume for the time being that instead of sampling from
7T ( Xk | Y1:n, X—k, 0) directly, we use rejection sampling with
7T (x| X, 0) as a proposal distribution.
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@ Assume for the time being that instead of sampling from
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@ In this case we have to bound

1 (v — %)’ 1
Xk) = —exp| — < .
& ) = o p( 2%, ) = Vano,
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@ Assume for the time being that instead of sampling from
7T ( Xk | Y1:n, X—k, 0) directly, we use rejection sampling with
7T (x| X, 0) as a proposal distribution.

@ In this case we have to bound

1 (Ve — ) 1
Xk) = —F——exp| — < .
& ) = o p( 2%, ) = Vano,

@ We accept each proposal X* ~ 71 ( xx| x_k, 0) with probability

%2
exp (—(yk_x ) ) , so the (unconditional) acceptance probability is

202,
9 (.yk_Xk)2 d
7 ( Xk | x_k, 6) exp — o |

0w exp (—% (y,f/(ffv — (Xk—1 +Xk+1)2 /‘73»

Vo2 + 202

given by

AD () March 2007
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@ To improve the algorithm, we would like to be able to sample a whole
block of variables simultaneously; i.e. being able to sample for
1< k< k+L<nfrom

7'((Xk:k+L|)/I:nyX—(k;k+L)y9) = 7T (XkekotL| YhektL0 Xk—10 Xk+L+1,0)
ktL+1 k+L

x Uk fo (xi| xi—1) _Ilge (yil xi) -
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1< k< k+L<nfrom

7'(<Xk:k+L|y1:nyX—(k:k+L)y9) = 7T (XkekotL| YhektL0 Xk—10 Xk+L+1,0)

k+L+1 k+L

o Uk fo (xi| xi—1) _Ilge (yil xi) -

@ In this case, it is typically impossible to sample from

T (xk:k+L| Yiiny X_(kik L) 9) exactly as L is large, say 5 or 10.
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@ To improve the algorithm, we would like to be able to sample a whole
block of variables simultaneously; i.e. being able to sample for
1< k< k+L<nfrom

7'((Xk:k+L|y1:nyX—(k:k+L)y9) = 7T (XkekotL| YhektL0 Xk—10 Xk+L+1,0)
ktL+1 k+L

o Uk fo (xi| xi—1) _Ilge (yil xi) -

@ In this case, it is typically impossible to sample from

7T (xk:k+L| Yiiny X_(kik L) 9) exactly as L is large, say 5 or 10.
@ We are propose to use a MH step of invariant distribution

T (Xk;k+L‘ Yiiny X_(kik L) 9) instead, hence we need to build a

proposal distribution g ((x1:n,0) , X444 ) -
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@ We first propose to use the conditional prior

q ((X].vag) vX//(;k+L) = T (Xk:k+L|Xf(k:k+L)v9>

= 70 (Xiek| Xk—1, Xk+1+1,0)
P

o« H fo (xi| xi—1) -
i=k
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@ We first propose to use the conditional prior

q((xn 0) X)) = 7@ (Xk:k+L| X_(k:k+L) 9)

= 70 (Xiek| Xk—1, Xk+1+1,0)
P

o« H fo (xi| xi—1) -
i=k

@ In this case, the candidate X;CHL ~ 70 (Xkek+L| Xk—1, Xk+1+1,0) is
accepted with probability

min | 1

' !
70 ( Xk: k+L|}’k k+LvXk—1,Xk+L+170)7T( Xkt L |Xk—1vXk+L+1v9)

o by ga(%le))
- min (1 T g (i)

!
7T( Xieka L |)’k:k+L:Xk—1,Xk+L+1v9>7T(Xk:k+L|Xk—1:Xk+L+1x9) >
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@ We first propose to use the conditional prior

q((xn 0) X)) = 7@ (Xk:k+L| X_(k:k+L) 9)

= 70 (Xiek| Xk—1, Xk+1+1,0)
P

o« H fo (xi| xi—1) -
i=k

@ In this case, the candidate X;CHL ~ 70 (Xkek+L| Xk—1, Xk+1+1,0) is
accepted with probability

!
min [ 1 7T( Xieka L |)’k:k+L:Xk—1,Xk+L+1v9>7T(Xk:k+L|Xk—1:Xk+L+1x9) >

' !
7T(Xk:k+L|}’k:k+LvXk—1xXk+L+1v0)7T< Xkt L |Xk—1vXk+L+1v9)

: ijLgﬂ(YiV{))
= min (1, ==X ’
< " TI 8o (yilxi)
@ Simple but one cannot expect it to be too efficient when the
observations are very informative compared to the prior.
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@ Consider the case where

Xi = AXj_1 + BVi, Vi = N(0,1).
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@ Consider the case where
Xi = AXj_1 + BVi, Vi = N(0,1).
@ Particular cases include

X = X1+ 0Vi, where Vk ~ N (0,1),
_ W o ii.d.
oo () (e () e
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@ In this case, it is simple to see that 7T (Xk:k+1| Xk—1, Xk+1.6) is a
Gaussian distribution.
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@ In this case, it is simple to see that 7T (Xk:k+1| Xk—1, Xk+1.6) is a
Gaussian distribution.

@ In (Knorr-Held, 1999), one samples from this distribution by
computing directly the parameters of this joint distribution:
complexity O (L2) :
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@ In this case, it is simple to see that 7T (Xk:k+1| Xk—1, Xk+1.6) is a
Gaussian distribution.

@ In (Knorr-Held, 1999), one samples from this distribution by
computing directly the parameters of this joint distribution:
complexity O (L2) :

@ We can derive a simpler method of complexity O (L) based on the
following decomposition (omitting € in the notation)

kL
(Xt %=1 Xkvr+1) = [ 70 (x| =1, Xesr 410 xig1) -

k+L

= H 7T(Xi|Xk71in+1)

i=k
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@ Moreover it is easy to establish the expression for 7 ( x;| xk—_1, Xj+1)
70 (Xi| Xk—1, Xi1) & 70 (Xi| xe—1) £ (Xi1] %)
as
7T (xi| Xk—1) = /n(Xk:i’Xk—l) dxic1 = N (xisp; (xk-1) i)

with, for X, = AX,_1 + BV, Mp_1 (Xk—l) = xx_1, Zk—1 = 0 and for
i>k

Hi (Xk-1) = Ap; g (Xk—1),
Y, = AY, ;AT +3 with ¥ = BB'.
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@ Moreover it is easy to establish the expression for 7 ( x;| xk—_1, Xj+1)
70 (Xi| Xk—1, Xi1) & 70 (Xi| xe—1) £ (Xi1] %)
as
7T (xi| Xk—1) = /n(Xk:i’Xk—l) dxic1 = N (xisp; (xk-1) i)

with, for X, = AX,_1 + BV, Mp_1 (Xk—l) = xx_1, Zk—1 = 0 and for
i>k

Hi (Xk-1) = Ap; g (Xk—1),
Y, = AY, ;AT +3 with ¥ = BB'.

@ To obtain 77 (x;| xk—1, Xi+1), we combine the prior 7T ( x| xxk—1) with
the “likelihood” f (xi41]x;).
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o We have 7t (x| xk—1) = N (xj; i; (xk—1) , %) and
f(xi+1] %) =N (xiy1; Ax;, L) then

7T (X,'| Xk_l,X;+1) = N (X,'; l‘l/l,- (Xk—lyxi+1) ,i,’)
where
~ -1
%= (zaATzA)

M; (kal,X,'_H) = i,’ (ATZ_IX,'_H + Zi_l‘ui (Xk,1)> .
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o We have 7t (x| xk—1) = N (xj; i; (xk—1) , %) and
f(xi+1] %) =N (xiy1; Ax;, L) then

7T (Xi| Xk—1, Xi41) =N (Xi; i (Xk—1,Xit1) ii)

where

-1
%= (zaATzA)
M; (kal,X,'_H) = i,’ (ATZ_IX,'_H + Zi_l‘ui (Xk,1)> .

e To sample a realization of 7T (Xk:k+1| Xk—1, Xk+1+1) , first compute
#; (xk=1) . Zj for i = k, ..., k + L using a forward recursion. Then
sample backward Xiy; ~ 70 (- Xk—1, Xk+1+1) »

Xirr—1 ~ 70 (| X1, X 1) oo Xi ~ 70 (-] X1, Xig1) -

AD () March 2007
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Figure: Number of occurences of rainfall in Tokyo for each day during 1983-1984
reproduced as relative frequencies between 0, 0.5 and 1 (n = 366)
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@ Consider the following model

2 -1 iid.
Xk:(zxif1>:<1 0 >Xk—1+(g)vkvvk <N (0,1)

and
Vel Xi ~ B(2,tx) k # 60,
ki 7k B (1, k) k=60 (February 29)
where
exp (o)
Ty = ————2—.
1+ exp (a)
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@ Consider the following model

2 -1 iid.
Xk:(zxif1>:<1 0 >Xk—1+(g)vkvvk <N (0,1)

and
Vel Xi ~ B(2,tx) k # 60,
ki 7k B (1, k) k=60 (February 29)
where
exp (o)
Ty = ————2—.
1+ exp (a)

e We also use for 02 ~ ZG (1’2—0 77) .

AD () March 2007
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@ We use the block sampling strategies discussed before where
candidates are sampled according to 7T ( Xk:k+1 | Xk—1, Xk+1+1) and

accepted with proba
o DEce i) )
T2 & (vil )
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@ We use the block sampling strategies discussed before where
candidates are sampled according to 7T ( Xk:k+1 | Xk—1, Xk+1+1) and

accepted with proba
k+ /
min (1 E’k k giy,\&:)) .
i kg y’|Xl)

@ The parameter ¢? is updated through a simple Gibbs step

(7'2 ~ 7T((72}X1:n,)/1:n)=7T((72’X1:n)

vo+n—1 7o+ Yhop (ax — 201 + a2)°
19 2 ' 2

AD () March 2007 35 / 46



@ We use the block sampling strategies discussed before where
candidates are sampled according to 7T ( Xk:k+1 | Xk—1, Xk+1+1) and

accepted with proba
k+ /
min (1 E’k k giy,\&:)) .
i kg y’|Xl)

@ The parameter ¢? is updated through a simple Gibbs step

(7'2 ~ 7T((72}X1:n,)/1:n)=7T(<72‘X1:n)

_ vo+n—1 7o+ Yhop (ax — 201 + a2)°
= 19 2 ’ 2

@ For block size L =1,5,20 and 40, we compute the average
trajectories of 100 parallel chains after 10, 50, 100 and 500 iterations
with initialization x, = 0 for all k,0? = 0.1.
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After 10 Iterations

Figure: Average trajectories over 100 chains for L = 1,5,20 and 40 from top to
bottom.
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After 50 Iterations

Figure: Average trajectories over 100 chains for L = 1,5,20 and 40 from top to
bottom.
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After 100 Iterations

Figure: Average trajectories over 100 chains for L = 1,5,20 and 40 from top to
bottom.
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After 500 Iterations

— blocksize 1
"""" block size 5
-
— — ~ block size 20
P — — block size 40
7z
o \
-
o~
?

Figure: Average trajectories over 100 chains for L = 1,5,20 and 40 from top to
bottom.
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Figure: Traces of a1, 100, @333 and o2 for L =1 (left) and L = 20 (right).
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@ This (naive!) block sampling strategy performs well here because the
likelihood of the observations is fairly flat.
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@ This (naive!) block sampling strategy performs well here because the
likelihood of the observations is fairly flat.

@ For a linear Gaussian observation equation, Knorr-Held compares this
strategy to a direct Gibbs sampling implementation. As expected, the
conditional proposal strategy is competitive when the observations are
not very informative compared to the prior.
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@ This (naive!) block sampling strategy performs well here because the
likelihood of the observations is fairly flat.

@ For a linear Gaussian observation equation, Knorr-Held compares this
strategy to a direct Gibbs sampling implementation. As expected, the
conditional proposal strategy is competitive when the observations are
not very informative compared to the prior.

@ For more complex problems, such strategies are inefficient and we will
need to use the observations to build the proposal.
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o (Pitt & Shephard, 1999) propose a more efficient strategy... also
more computationally intensive.
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o (Pitt & Shephard, 1999) propose a more efficient strategy... also
more computationally intensive.

@ Consider the log full conditional distribution

log 7T ( Xk:k+L| Yick+L+ Xk—1, Xk+L+1)
=Y logg (yi| xi) + ZHLH log f (xi+1| xi)
=i thogg (yilxi) — LTI (a1 — Ax) T 271 (x40 — Ax))

which is not quadratic in x; hence 7T ( Xk:k+1| Ykik+L, Xk—1, Xk+1) 1S
not Gaussian.
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o (Pitt & Shephard, 1999) propose a more efficient strategy... also
more computationally intensive.

@ Consider the log full conditional distribution

log 7T ( Xk:k+L| Yick+L+ Xk—1, Xk+L+1)
=Yt logg (yil xi) + Zk““ log f (xi+1] i)
=i thogg (yilxi) — LTI (a1 — Ax) T 271 (x40 — Ax))

which is not quadratic in x; hence 7T ( Xk:k+1| Ykik+L, Xk—1, Xk+1) 1S
not Gaussian.

@ The idea is to expand the log-likelihood part around some point
estimates
logg (vil xi) =~ logg (yi|%)+ Viegg (yi|Xi). (xi — %)

1
+=

> (xi — %) V2logg (yi| %) (xi — %)
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@ By doing this, we have a Gaussian approximation of the log-likelihood
and then we obtain a Gaussian proposal

q (Xlzn, X//<:k+L) =4dq <X—(k:k+L)'X//<:k+L)
/! — k+L ~ ~
log g (Xf(k:k+L):Xk;k+L) =Y Viogg (yil %) - (xi —%i)

+§ (xi —%)" Vlogg (yi| %) (xi — %)
ZHLH (Xi41 — AX:)T 71 (xi41 — Ax)
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@ By doing this, we have a Gaussian approximation of the log-likelihood
and then we obtain a Gaussian proposal

q (Xlzn,X//(:k_i_L) =4dq <X—(k:k+L)'X//<:k+L)
log g (Xf(k:k+L)r XL;HL) = Y7 Viegg (yil %) . (xi — %)
+§ (xi —%)" VZlogg (yi| %) (xi — %)
Iyt (xiyq — Ax)" 7 (xi41 — Ax)

o (Pitt & Shepard, 1999) propose to select
Xk:k+1 = arg Max 7t ( Xk L | Ykek+Lo Xk—10 Xk+L+1)

and a scheme to sample from g (x_(k:kﬂ),x,’«kH) which is of

complexity O (L) .
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@ This algorithm is applied to the SV model where

X = ¢pXeo1+0Vi Vi "N (0,1)
Yo = Bexp(Xi/2) Wi, Wi & N (0,1).
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@ Prior are set to ¢ ~ U [—1,1], 02 ~7IG (1’24 %) and
B~TG(2.%).
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Yo = Bexp(Xi/2) Wi, Wi & N (0,1).

@ Prior are set to ¢ ~ U [—1,1], 02 ~7IG (1’24 %) and
B~TG(2.%).

@ Full conditional distributions of the parameters given xi.,, y1., are
standard.
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@ This algorithm is applied to the SV model where

Xe = X1+ 0Vi, Vi = N(0,1)

Yo = Bexp(Xi/2) Wi, Wi & N (0,1).

@ Prior are set to ¢ ~ U [—1,1], 02 ~7IG (1’24 %) and
B~TG(2.%).

@ Full conditional distributions of the parameters given xi.,, y1., are
standard.

@ Compared to standard single move strategies, the authors report
significant improvement.

AD () March 2007
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Figure: Autocorrelation plots for (4),(72,[3) with L =1
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Figure: Autocorrelation plots for (¢, o, B) with L = 50 on average
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