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Lots of High Dimensional Data

According to media reports,
a pair of hackers said on
Saturday that the Firefox
Zambian President Levy| [Web browser, commonly
Mwanawasa has won al |perceived as the safer
second term in office in| [and more customizable
an election his challenger| |alternative  to  market
Michael Sata accused him | |leader Internet —Explorer,
of rigging, official results| is critically flawed A
showed on Monday. on the flaw
was shown during the
ToorCon hacker conference
in San Diego.
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Why do dimensionality reduction?

e Computational: compress data = time/space efficiency
@ Statistical: fewer dimension = better generalization
@ Visualization: understand structure of data

@ Anomaly detection: describe normal data, detect outliers
Dimensionality reduction in this course:

@ Linear methods (this week)
o Clustering.

@ Feature selection.
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Types of Problems

@ Supervised learning (classification, regression):
Applications: face recognition, gene expression prediction
Techniques: kNN, SVM, least squares (+ dimensionality reduction
preprocessing)

@ Structure discovery: find an alternative representation z of data x
Applications: visualization
Techniques: clustering, linear dimensionality reduction
o Density estimation p (x): model the data,
Applications: anomaly detection, language modeling
Techniques: clustering, linear dimensionality reduction
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What is the true dimensionality of these data?
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What is the true dimensionality of this data?
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Linear Dimensionality Reduction

Which line should | pick?
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Linear Dimensionality Reduction

it

Represent each face as a high-dimensional vector x €R3%! by a
lower-dimensional vector say z €R10.
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Review of Linear Algebra

X1 air v aip
e x =34 x= A= ,
Xd ag1 cc adp
bii - bip
B=| :
bpi -+ bpn
@ Here x is scalar (1 x 1), xisd x 1, Aisd x pand Bis p X n.

Transposition: x' = x, x' = ( X1 X4 ) (AT)’.J. = ajj.
Quantities whose inner dimensions match may be “multiplied” by
summing over this index. The outer dimensions give the dimensions

of the answer.

(Ax Za’JXJ' AB); Za'kbkf
j=1

@ x"x scalar, xx" d xd, Axd x 1, AB d X n, x" Ax scalar.
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Review of Linear Algebra

@ Simple and valid manipulations
(AB)C = A(BC), A(B+C)=AB+ AC,
(A+B)T = AT4+BT, (AB)" =BTAT

o Consider a square matrix A then u is an eigenvector of A and A is its
associated eigenvalue iff
Au =Au.

o If the matrix is diagonalizable
AU=UD & A=UDU™!

o Q: Prove that AK = UDXU~!. Why is this expression useful?
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Review of Linear Algebra: PD Matrices

@ A real-valued square matrix A is called (semi-)positive definite if
x Ax >0

@ Q: Prove that for any matrix M, the matrix MTM is (semi-)positive
definite.

@ Q: Prove that a positive definite matrix only admits positive
eigenvalues.
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Review of Linear Algebra: Inner Product

@ Let u,v €RY, then the inner product of u and v is a scalar

d
UTV = VTU = Z ujv;
i=1

@ The (Euclidean) length/norm of a vector u is written ||u|| and is
defined as the square root of the inner product of the vector with itself

o If the angle between vectors u and v is 6 then

UTV

<os (0) = Tl
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Approximating High-dimensional Vectors

o We are given N data {x;} ", where x;€R? and we want to
. ~ 1N .
approximate them by {X;};_; using

where z; ; € R and {w,-}f:1 are R9-valued basis vector.

@ This can be rewritten as

S(‘,-:Wz,-
for
W = (W1 wk),dkaatrix
T
zi = (z; -+ zk; ) ., kx1vector
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Approximating High-dimensional Vectors

@ An even more compact notation is

X = W Z

~—~— —~

dxN dxk kxN
where)/i:(i(\l ?N)andZ:(zl ceeZpy )

o We can gain very significantly in terms of storage if k << d as we

only need to store W (size d X k) and Z (size k x N) to compute X
instead of X (size d x N).

@ Example: For d = 1000, k =10 and N = 10%, we have
dx N/ (dx k+ kx N) = 100.
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Approximating High-dimensional Vectors

@ How should we select W and Z to ensure X ~ X?

e We introduce the reconstruction error X—X and propose to minimize
the square of its Frobenius norm

Jw.z) = x|} = Ly
1 - N F NI:1 xl xl
LYY i)
= — (xji —X.i)
Nj:li:l S

subject to W be an orthonormal matrix; i.e.

1 ifi=j
T, _ J Twar
Wi W _{ 0 otherwise < WIW =1

@ Q: What is the minimum total squared reconstruction error for
k = d? What about k > d?
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Preliminaries: Normalization and Centering of the Data

@ It is standard to normalize and center the data beforehand.

@ This ensures that PCA finds the “interesting” directions of variation,
not the ones which just happen to be large because of the units of
measurement that are used.

@ Hence in practice if the “original data” were {x;}, we compute
1N , N ,
mi=— ) % 0 = ) (06— m)
i=1 '

_ _ _ T
and we set X; = ( X1i c Xdi ) where
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Finding the first principal component

@ Consider first the case k = 1 then we want to minimize

N

1
J(W,2Z2) = J(Wl,zl):NZHX,—ZL,-V\HH2
i=1

1 N
T T 2
= N Zx,- Xj — 221,iX; W1 + 71 ;
i=1

subject to wiwy = 1 with 2} = (z11 z10 -+ z1n).
o Taking derivative w.r.t. z; ; and setting it equal to zero
dJ (wl, zl)

= —2x,-Tw1 +221,=0& 271, = x,-Twl
821’,'

@ Optimal reconstruction weights are obtained by orthogonally
projecting the data onto the first principal direction wj.
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Finding the first principal component

e Minimizing J (w1) is thus equivalent to maximizing

1 &, 1 & 1\
*Zzl,,' — _— (W1X,>
N,':1 Ni:l
1N
= w; NZX;X,-T wy st [[wi]] =1
i=1
N————

@ Assume the data have been centered, so that

N
ZX,‘ =0
i=1

I:tli‘{ (wlTx,->2 ~ <(w1Tx)2> ~ Var (wlTx) ;

i.e. we seek wi maximizing the variance of the projected data.

then
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@ Note additionally that we have

~ 1
Y=Y xx ~E (xxT> = Cov (x).
N =

o That is ¥ is an estimate of the covariance/correlation matrix of the
data.
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Finding the first principal component

e Minimizing J (w1) is equivalent to maximizing
w)Zwi st |lwi] =1.

o Proposition: The vector wi"" minimizing J (wy) is the eigenvector
(selected such that ||wy|| = 1) associated to the largest eigenvalue of
2.

e Proof: £ is a symmetric matrix so it is diagonalizable by an
orthornormal matrix U; i.e.

U =UD & £ =UDU’
with D diagonal. Without loss of generality, we pick

D :diag(af, ...,(7(2.4,) where (7% > 0’% > > (7(21.
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Finding the first principal component

o It follows that

=~ T
arg max wIZwl = argmax (UTwl) D(UTwl)
wifjwy||=1 wi||wy||=1
= argmax y' Dy
y=UTw;:ly[=1
d

e arg max Z ory?
y=UTw,:[lyl|=1 i=1

soyP'=(1 0 ... O)T:>w1:Uy°pt:u1.
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PCA Example

We have d = 2 and k = 1. Circles are the original data points, crosses are
the reconstructions. The red star is the data mean.
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The second principal component

@ We want to minimize
1 2 1Y 2
J (W1,Z TWp, Z ) =N Z ||xi — z1,iw1 — 2, iWo |
i=1

sit. [|wi]| = ||wz]| = 1 and w{w, = 0.
e Optimizing w.r.t wy, z! gives the same results as before. If we
optimize w.r.t z ;, we find

9J (w‘fpt, z2°Pt1 Wy, 22)

= —2X}I—W2 +22;=0& 2 = X;'I—W2
0z

o Similarly it can be proved that wgpt is the eigenvector (selected such
that ||wz|| = 1) associated to the second largest eigenvalue of X.
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General Case

@ Compute the eigendecomposition of

o 1

Y = _XX' =uDU"

N
with 2 > 03 > .- > (7(21 and keep only the associated k eigenvectors
@ The estimate is given by
K
X = Uy (UIX)= Y u; (u/X)

—— Tl e —

Zopt “loadings”

@ It can be additionally shown that (for k < d)
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Important Practical Remark

@ If you have centered and normalize the data beforehand, don't forget
to correct later on!!

@ Suppose you have considered
X=d 1 (X —pu) & X =pu+dX
then the reconstruction will be
X = ;H—CD?

where i is the PCA approximation of X.
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Reconstruction Error

@ We have

@ Hence it follows that

Ixi—%i[|* = _i uj (“J'Txi)>T i Yj (“J'Tx")>

=k+1 =k+1
3 T T 3 T
= Z (uJ x,) u; Z u; (uj x,)
4 T.)° T
= Z (ujx,-) asuju =1ifj=1/and 0if j #/
j=k+1
Lorop
== Z UJ- X,‘Xi UJ'
j=k+1
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Reconstruction Error

@ Thus we have

=12
A
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How Many Principal Components?

@ Magnitude of eigenvalues indicate fraction of variance captured.

o Typically eigenvalues drop off sharply so you don't need too many.

13532
1086.7
8201
5536

271

203 4 5 6 7 8 9 1 1
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PCA Example

Example where PCA is of interest.
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PCA Example

Examples where PCA is of no interest.
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Image Compression using PCA

@ Given one single image, how can you use the PCA to perform image
compression?

@ Many different approaches are possible

o Example 1: Interpret the columns of the image as different data points
X;.

o Example 2: Interpret the rows of the image as different data points x;.

e Example 3: Partition the image in non-overlapping small blocks, blocks
are now X;.

@ Note: There are better ways to compress images!
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Computing the Principal Components

o Computing 3 takes O (Ndz) operations and computing the
eigenvectors of the d X d matrix S takes O (d3) operations. This can
be very prohibitive!

o If d >> N, then we can compute the eigenvectors based on the
eigenvectors of the so-called N x N Gram matrix X" X in O (N?)
instead.

@ Assume v; is an eigenvector of XTX such that ||v;|| = 1 associated to
the eigenvalue A; then by definition

XTXV,' = A,‘V,’
so by multiplying both sides by X then
XXT (Xvj) = A (Xvy)
NS

e That is Xv; = u; is an eigenvector of X associated to the eigenvalue
% and we can have a unit norm eigenvector by selecting

u, = /\-_1/26/.

AD ()
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Singular Value Decomposition

@ Given a d x N matrix X, the SVD of X is a factorization of the form

X =UDV' = ZA ui v
d><N - dx1l 1xN

where r = min (d, N), U are the left singular vectors with UTU = I,,
V are the right singular vectors with VTV = I,.
@ Right singular vectors are eigenvectors of XX

XTX = (UDVT>T (UDVT) — vDUTUDVT
= VD?V' = XTXV = vD?
o Left singular vectors are eigenvectors of o d
XXT = (UDVT) (UDVT)T — UDV'VDUT
= UD?UT = X"TXU = uD?
and clearly (712 = A,Z/N.
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Singular Value Decomposition and PCA

@ In the PCA, we have
X = U, (u[x) .
o If we plug the SVD decomposition
X = Uy (u[u) DV’
k
= ZA,‘U,’V}I—
i=1

i.e. the truncated SVD yields the PCA approximation.

@ This can be computationally beneficial.
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Visualization
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@ d is the number of pixels.

e Each x; € R? is a face image.

Xan

Uy L

122

122

o ldea: z; more "meaningful” representation of i-th face than x;.
@ Can use z; for nearest-neighbor classication
@ Much faster: O (dk + Nk) time instead of O (dN) when N,d >> k.
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Eigen-Faces with K-NN

laﬁ@E-l

2zl
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Eigen-Faces with K-NN
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Eigen-Faces with K-NN

number of misclassification errors on test set

. . . . .
o 20 40 60 80 100 120 140 160
PCA dimensionality
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Latent Semantic Analysis

@ PCA can be used to cluster documents and carry out information
retrieval by using concepts as opposed to exact word-matching.

@ This enables us to surmount the problems of synonymy (car, auto)
and polysemy (money bank, river bank).

@ The data is available in a term-frequency (TF) matrix

e N is the number of documents.
e d is the number of words in the vocabulary.

e Each x; € R? is a vector of word counts; xji = numbers of
occurences of word j in document J.
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e Document 1: {l, eat, chips}

e Document 2: {computer,chips,chips}
e Document 3: {intel,computer,chips}
o We have

X

Il
OO R FH =
O, N OO
N = = W )
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PCA for Latent Semantic Analysis

Using the PCA, we obtain

XzUka

That is we approximate the documents by a linear combination of k
“basis” documents.

@ How to measure similarity between two documents X; and x;?
AT~ - T
X; X; is probably better than x; x;

@ Applications: information retrieval.

Note: usually no computational savings; original x is already sparse.
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Network Anomaly Detection

@ xj; = amount of traffic on link j in the network during each time

interval 7
x10’ Limik =1
10 3
5WW
* 10 Link d—1
%10 Link c—d
3 F =]
25l g
2h
%10 Link b—c
25 : ]
Sl M
15 1 1 1 1

Wad Thu En

@ Model assumption: total traffic is sum of flows along a few “paths”.
@ Apply PCA: each principal component intuitively represents a “path”.
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Network Anomaly Detection

@ Anomaly when traffic deviates from first few principal components.
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(a) Normal Behavior (b) Anomalous Behavior
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