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How to Select K

We want to select K so as to obtain a small classification error on the
test data but, in real-world applications, we cannot evaluate this error
on the test set!
A simple idea to evaluate the error rate consists of splitting the
training data into two blocks: a block used as training data and the
other block known as validation set.
Example: Assume you are given

{
xi , y i

}N
i=1 training data, then only

Ntrain < N data, say
{
xi , y i

}Ntrain
i=1 are used as training data whereas

the remaining Nvalid = N −Ntrain data
{
xi , y i

}N
i=Ntrain+1

are used to
assess the performance of the classifier using

Err︸︷︷︸
Error rate

=
1

Nvalid

N

∑
i=Ntrain+1

I
(
ŷ
(
xi
)
6= y i

)
.

We compute Err for various values of K and select the one which
minimizes Err .
This is a very common, general and useful procedure!
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Cross-Validation

If N is small, this technique is unreliable as the model won’t have
enough data to train on, and we won’t have enough data to make a
reliable estimate of the future performance.
A simple and popular solution to this is M-fold cross validation
(CV). We split the training data into M folds then, for each fold
k ∈ {1, 2, ...,M}, we train on all the folds but the k’th, and test on
the k’th, in a round-robin fashion to estimate Err = 1

M ∑M
k=1 Errk .

N-fold CV is called leave-one-out CV.

Figure: 5-fold cross validation
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Cross-Validation for K-NN

Illustration of the 10-fold CV for K-NN.

CV for kNN

• In hw1, you will implement CV and use it to select K 
for a kNN classifier

• Can use the “one standard error” rule*, where we 
pick the simplest model whose error is no more 
than 1 se above the best.

• For KNN, dof=N/K, so we would pick K=11.

K

CV error

* HTF p216
Figure: 10 fold-CV error rate as a function of K

In this case, we would pick K = 11.
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Problems with K-NN

Can be slow to find nearest neighbor in high-dimensional space.

Need to store all the training data, so takes a lot of memory.

Need to specify the distance function.

Does not give probabilistic output.

Diffi cult to interpret.

Curse of dimensionality...
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Reducing Running Time of K-NN

Takes O (Nd) to find the exact nearest neighbor

Use a branch and bound technique where we prune points based on
their partial distances

Dr
(
x, x′

)
=

r

∑
k=1

(
xk − x ′k

)2
.

Structure the points hierarchically into a kd-tree (does offl ine
computation to save online computation).

Use locality sensitive hashing (a randomized algorithm).

Various heuristic algorithms have been proposed to prune/edit/
condense “irrelevant”points that are far from the decision boundaries.

Later we will study sparse kernel machines that give a more principled
solution to this problem.
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A Probabilistic Version of K-NN

A classification function returns a single best guess ŷ (x) of y given
an input x.
A probabilistic classifier returns a probability distribution over outputs
given an input:

Pr ( ŷ (x) = i | x) ≥ 0
C

∑
i=1
Pr ( ŷ (x) = i | x) = 1.

For C = 2 if Pr ( ŷ (x) = i | x) ≈ 0.5 (very uncertain), the system may
choose not to classify as 0/1 and instead ask for human help.

Useful to fuse different predictions ŷ (x) of y .
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A Basic Probabilistic K-NN

We can compute the empirical distribution over labels in the
K -neighborhood; i.e. we set

Pr ( ŷ (x) = i | x) = 1
K ∑
{j :xj is one of the K -NN of x}

I
(
y j = i

)
Example: let C = 3, K = 5 and the 5 nearest neighbor of x have
labels {2, 3, 3, 3, 2} then

i 1 2 3
Pr ( ŷ (x) = i | x) 0

5
2
5

3
5
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A Basic Probabilistic K-NN
Probabilistic kNN
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Figure: Illustration of the outpout of a probabilistic KNN classifier
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Smoothing Empirical Frequencies

The empirical distribution will often predict 0 probability due to
sparse data.

We can add pseudo counts to the data and then normalize.

Example: let C = 3, K = 5 and the 5 nearest neighbor of x have
labels {2, 3, 3, 3, 2} then if we add pseudo-counts to the data and
then normalize, we obtain

i 1 2 3
Pr ( ŷ (x) = i | x) 0+1

5+1+1+1 =
1
8

2+1
5+1+1+1 =

3
8

3+1
5+1+1+1 =

4
8

This approach is related to Bayesian statistics.
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Softmax (multinomial logit) Function

We can also “soften” the empirical distribution so it spreads its
probability mass over unseen classes.

Define the softmax with inverse temperature β > 0

Pr ( ŷ (x) = i | x) = exp (β πi )

∑C
k=1 exp (β πk )

where
πi =

1
K ∑
{j :xj is one of the K -NN of x}

I
(
y j = i

)
Big β = cool temp = spiky distribution.

Small β = high temp = uniform distribution.
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Curse of Dimensionality for K-NN

To explain the curse, consider using a KNN classifier where the inputs
are uniformly distributed in the unit hypercube [0, 1]d .

Suppose we want to take our decision for a test point x by “growing”
a hypercube around x until it contains a desired fraction s of the
training data points.

The expected edge length of this cube will be ed (s) = s1/d as
e (s)d = s.

If d = 10 and we want to base our estimate on 1% of the data, we
have e10 (0.01) = 0.011/10 ≈ 0.63 so we need to extend the cube
63% along each dimension around x. Since the entire range of the
data is only 1 along each dimension, the method is no longer very
local, despite the name “nearest neighbor”.
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Curse of Dimensionality for K-NN

Figure: Illustration of the curse of dimensionality
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Limiting the Curse of Dimensionality

Feature selection: eliminate some of the “irrelevant” features xi ;
e.g. the car you drive might not be a good indicator whether you
have blue eyes or not.
Dimension reduction: find a low-dimensional manifold on which the
data lies, and measure distance in that subspace.

Figure: Simulated data in three classes, near the surface of a half-sphere
AD () CS 340: Lec. 5 - K-Nearest Neighbors January 2011 14 / 14


