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How to Select K

@ We want to select K so as to obtain a small classification error on the
test data but, in real-world applications, we cannot evaluate this error
on the test set!

@ A simple idea to evaluate the error rate consists of splitting the
training data into two blocks: a block used as training data and the
other block known as validation set.

o Example: Assume you are given {x",y"}ll.\l:1 training data, then only
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Nirain < N data, say {x’,y’},.:t1 are used as training data whereas
N

the remaining N,z0 = N — Nip,in data {xi,yi},.:Nt L used to
assess the performance of the classifier using
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@ We compute Err for various values of K and select the one which
minimizes Err.
@ This is a very common, general and useful procedure!
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Cross-Validation

o If N is small, this technique is unreliable as the model won't have
enough data to train on, and we won't have enough data to make a
reliable estimate of the future performance.

@ A simple and popular solution to this is M-fold cross validation
(CV). We split the training data into M folds then, for each fold
k € {1,2,..., M}, we train on all the folds but the k'th, and test on
the k'th, in a round-robin fashion to estimate Err = ﬁ y M | Err.
N-fold CV is called leave-one-out CV.
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Cross-Validation for K-NN

@ lllustration of the 10-fold CV for K-NN.
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Figure: 10 fold-CV error rate as a function of K

@ In this case, we would pick K = 11.
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Problems with K-NN

Can be slow to find nearest neighbor in high-dimensional space.
Need to store all the training data, so takes a lot of memory.
Need to specify the distance function.

Does not give probabilistic output.

Difficult to interpret.

Curse of dimensionality...
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Reducing Running Time of K-NN

@ Takes O (Nd) to find the exact nearest neighbor

@ Use a branch and bound technique where we prune points based on
their partial distances

Dy (x,x ; (x — x4)°

@ Structure the points hierarchically into a kd-tree (does offline
computation to save online computation).

@ Use locality sensitive hashing (a randomized algorithm).

@ Various heuristic algorithms have been proposed to prune/edit/
condense “irrelevant” points that are far from the decision boundaries.

o Later we will study sparse kernel machines that give a more principled
solution to this problem.
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A Probabilistic Version of K-NN

e A classification function returns a single best guess y (x) of y given
an input x.

@ A probabilistic classifier returns a probability distribution over outputs
given an input:

C
ZPr(?(x) =i|lx)=1.

i=1

e For C =2if Pr(y(x) = i|x) ~ 0.5 (very uncertain), the system may
choose not to classify as 0/1 and instead ask for human help.

@ Useful to fuse different predictions y (x) of y.
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A Basic Probabilistic K-NN

@ We can compute the empirical distribution over labels in the
K-neighborhood; i.e. we set

~ . 1 . ]
Pr(y(x):/\x):R Z ]I(yJ:/)
{j:x/ is one of the K-NN of x}

o Example: let C =3, K =5 and the 5 nearest neighbor of x have
labels {2,3,3,3,2} then
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A Basic Probabilistic K-NN
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Figure: Illustration of the outpout of a probabilistic KNN classifier
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Smoothing Empirical Frequencies

@ The empirical distribution will often predict 0 probability due to

sparse data.

@ We can add pseudo counts to the data and then normalize.

o Example: let C =3, K =5 and the 5 nearest neighbor of x have
labels {2,3,3,3,2} then if we add pseudo-counts to the data and
then normalize, we obtain
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@ This approach is related to Bayesian statistics.
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Softmax (multinomial logit) Function

@ We can also “soften” the empirical distribution so it spreads its
probability mass over unseen classes.

@ Define the softmax with inverse temperature g > 0

Privio =ilx) = chf(g i)m

where 1
i = — Z I (yf = i)
{j:x/ is one of the K-NN of x}
@ Big B = cool temp = spiky distribution.

@ Small B = high temp = uniform distribution.
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Curse of Dimensionality for K-NN

@ To explain the curse, consider using a KNN classifier where the inputs
are uniformly distributed in the unit hypercube [0, 1]¢.

@ Suppose we want to take our decision for a test point x by “growing”
a hypercube around x until it contains a desired fraction s of the
training data points.

o The expected edge length of this cube will be ey (s) = s/ as
e(s)? =s.

o If d = 10 and we want to base our estimate on 1% of the data, we
have e1g (0.01) = 0.01'/1% ~ 0.63 so we need to extend the cube
63% along each dimension around x. Since the entire range of the
data is only 1 along each dimension, the method is no longer very
local, despite the name “nearest neighbor”.
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Curse of Dimensionality for K-NN
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Figure: lllustration of the curse of dimensionality
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Limiting the Curse of Dimensionality

o Feature selection: eliminate some of the “irrelevant” features x;;
e.g. the car you drive might not be a good indicator whether you
have blue eyes or not.

o Dimension reduction: find a low-dimensional manifold on which the
data lies, and measure distance in that subspace.

CS 340: Lec. 5 - K-Nearest Neighbors January 2011 14 /



