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Supervised Classification

@ Assume you are given some training data {x",y"}l’.V:1 where x' € R?
and y' € {1,2,...,C}.

@ Given an input test data x, you want to predict/estimate the output
label y associated to x.

@ Decision trees are applicable but not very practical and difficult to fit.

@ K—NN (K-Nearest Neighbors) is a very simple and reasonably
powerful alternative.
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Nearest Neighbors: The simplest supervised classifier?

o Let us introduce a distance D : RY x RY — R* which a numerical
description of how far apart two points in the input space are.

@ Mathematically a distance must satisfy three conditions

Positivity D (x,x’) >0 an dD(x x") = 0 if and only if x = x’
Symmetry D (x,x') = D (x',x)
Triangle inequality D (x,x") < D (x,x"”) + D (x",x)
@ For example, you can pick
L; distance D(x,X) =Y7_; | — xi|
Lo (Euclidean) distance | D (x,x') = \/Zi:l (xk — X//<)2
L distance D (x,x') = ke{Tzaf.,d} Ixk — x|
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Nearest Neighbor classifier

@ For K =1, the 1-NN classifier ouputs looks at the point in the
training set that is the nearest to the test input x and outputs its
label; i.e.

¥ (x) = y* where k= argmin D (x,x')

ie{1,2,...N}

@ This corresponds to a so-called Voronoi tesselation of the space.
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Nearest Neighbors classifier

@ For any K > 1, we look the K points in the training set that are
nearest to the test input x, counts how many members of each class
are in this set, and do a majority voting.

O

1 O O

lllustration of a K-nearest neighbors classifier in R? for K = 3
for test input x! and x>
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Practical Issues: Normalisation

e In practice, the different components of x = (xi, X2, ..., x4) can have
very different scales; e.g. x; € [—1, 1] and xp € [105, 109].
@ A standard approach consists of normalizing these features; i.e. for

k=1, ..d
Xk — Mk

Ok

Xy =

where my = L YN x/ and 07 = £ YN, (xf — mk)2 are the
empirical mean and variance.

@ We then use K-NN on the training data {i",y"};v:l with the rescaled
test input X.

o Equivalently, this can be thought of using a different distance; e.g. if
we consider say the L1 distance

- 3 e = 3 e
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“Generalizations”

@ We have considered the case where X =IR?. In numerous
applications, X = {0, l}d or X could be the set of directed graphs,
strings etc.

@ As long as we can define a valid distance, K-NN still applies.

o For example for X = {O, 1}d, we can still use the L1 distance (known
as Hamming)

d
D (x,x') = 2 }xk —x,/(‘
k=1

which counts the number of entries which differ in x and x’.

@ Over recent years, many distance have been introduced for structured
objects.
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Application: Handwriting Recognition

e Objective: recognizing isolated (i.e., non-overlapping) digits, as in
ZIP or postal codes.

tru= class — ¥

= true class — 1

e Training and Test Data: The MNIST15 dataset contains 60,000
training images and 10,000 test images of the digits 0 to 9, as written
by various people.

@ Details: Images are 28x28 and have grayscale values in the range
0:255.
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Application: Handwriting Recognition

@ Results: 1-NN obtains a miss-classification rate of only 3.09% on the
test data using the Hamming distance!

@ This problem might look easy to you but remember that we do not
use any spatial information. The K-NN classifier would obtain exactly
the same results if the training and test data were permuted as it is
invariant to the order of the features.
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Application: Pixel Labelling of LANDSAT Images

o LANDSAT images for an agricultural area in 4 spectral bands; manual
labeling into 7 classes (red soil, cotton, vegetation, etc.);
@ Output of 5-NN using each 3x3 pixel block in all 4 channels (9*4=36

dimensions).

Fpmk ol PLanl Bymval Baed ¥

@ This approach outperformed all other methods in STATLOG project.

11/
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@ For K =1, we have no training error but are exposed to overfitting.

@ Increasing K yields smoother predictions, since we average over more
data.

@ For K = N, we predict the same output whatever being x!

S
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How to Select K

@ We want to select K so as to obtain a small classification error on the
test data but, in real-world applications, we cannot evaluate this error
on the test set!

@ A simple idea to evaluate the error rate consists of splitting the
training data into two blocks: a block used as training data and the
other block known as validation set.

o Example: Assume you are given {x",y"}ll.\l:1 training data, then only

[ [ Nrain .
Nirain < N data, say {x’,y’},.:t1 are used as training data whereas
N

the remaining N,z0 = N — Nip,in data {xi,yi},.:Nt L used to
assess the performance of the classifier using
S~ " 1K) £y
Er =5 — L T0K)#y).
valid j—p. .
Error rate train+1

@ We compute Err for various values of K and select the one which
minimizes Err.
@ This is a very common, general and useful procedure!
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Cross-Validation

o If N is small, this technique is unreliable as the model won't have
enough data to train on, and we won't have enough data to make a
reliable estimate of the future performance.

@ A simple and popular solution to this is M-fold cross validation
(CV). We split the training data into M folds then, for each fold
k € {1,2,..., M}, we train on all the folds but the k'th, and test on
the k'th, in a round-robin fashion to estimate Err = ﬁ y M | Err.
N-fold CV is called leave-one-out CV.

T —— — — T
R — — —
I —— .
— — —— T
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Cross-Validation for K-NN

@ lllustration of the 10-fold CV for K-NN.
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Figure: 10 fold-CV error rate as a function of K

@ In this case, we would pick K = 11.
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Problems with K-NN

Can be slow to find nearest neighbor in high-dimensional space.
Need to store all the training data, so takes a lot of memory.
Need to specify the distance function.

Does not give probabilistic output.

Difficult to interpret.

Curse of dimensionality...
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Reducing Running Time of K-NN

@ Takes O (Nd) to find the exact nearest neighbor

@ Use a branch and bound technique where we prune points based on
their partial distances

D (xx) = 3 (5= )

@ Structure the points hierarchically into a kd-tree (does offline
computation to save online computation).

@ Use locality sensitive hashing (a randomized algorithm).

@ Various heuristic algorithms have been proposed to prune/edit/
condense “irrelevant” points that are far from the decision boundaries.

o Later we will study sparse kernel machines that give a more principled
solution to this problem.
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A Probabilistic Version of K-NN

e A classification function returns a single best guess y (x) of y given
an input x.

@ A probabilistic classifier returns a probability distribution over outputs
given an input:

C
Y Pr(y(x)=ilx)=1.

i=1

e For C =2if Pr(y(x) = i|x) ~ 0.5 (very uncertain), the system may
choose not to classify as 0/1 and instead ask for human help.

@ Useful to fuse different predictions y (x) of y.
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A Basic Probabilistic K-NN

@ We can compute the empirical distribution over labels in the
K-neighborhood; i.e. we set

~ . 1 —
Pr(y(x):/\x)%R ) I(y =)
{j:x/ is one of the K-NN of x}

o Example: let C =3, K =5 and the 5 nearest neighbor of x have
labels {2,3,3,1,2} then
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A Basic Probabilistic K-NN
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Figure: Illustration of the outpout of a probabilistic KNN classifier

CS 340 Lec. 4: K-Nearest Neighbors January 2011



Curse of Dimensionality for K-NN

@ To explain the curse, consider using a KNN classifier where the inputs
are uniformly distributed in the unit hypercube [0, 1]¢.

@ Suppose we want to take our decision for a test point x by “growing”
a hypercube around x until it contains a desired fraction s of the
training data points.

o The expected edge length of this cube will be ey (s) = s/ as
e(s)? =s.

o If d = 10 and we want to base our estimate on 1% of the data, we
have e1g (0.01) = 0.01'/1% ~ 0.63 so we need to extend the cube
63% along each dimension around x. Since the entire range of the
data is only 1 along each dimension, the method is no longer very
local, despite the name “nearest neighbor”.
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Curse of Dimensionality for K-NN
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Figure: lllustration of the curse of dimensionality
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Limiting the Curse of Dimensionality

o Feature selection: eliminate some of the “irrelevant” features x;;
e.g. the car you drive might not be a good indicator whether you are
obese or not.

o Dimension reduction: find a low-dimensional manifold on which the
data lies, and measure distance in that subspace.
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