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Modelling Dependent Data

For the time being, we have always assumed that available data
{x:}]_, are independent.

@ In numerous applications, we only have access to data which are
statistically dependent; i.e.

p (1) # T o tx0)

Typical applications include: speech processing, tracking, stock prices.

Most popular model for time dependent data is Hidden Markov
Models = Mixture Models + Markov chain on the “cluster labels”.
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Introduction to HMM

@ In a standard mixture models, we have independent cluster labels

{zt};l and data {xt};l S0

p({z0 fx} ) =

T T

HP Zt,Xt HP Xt|Zt)
t=1 t=1

T T

HP HP Xt|Zt

t=1 t=1

@ In an HMM model, the cluster labels {Zt}tT:1 follow a Markov chain

P ({Zt};l ' {xf}thl) =p(z1)

T T
P Zt|zt—1)Hp(xt|Zt)
t=2 t=1
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Graphical Representation
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HMM Specification

@ Assume z; € {1, ..., K} then the Markov chain is defined by its initial
distribution
P (21 = k) = 7Tk

and the transition probabilities
p(zt=1z—1 = k) = Py,
@ We have the conditional densities/distribution
P(Xt’ Zr = k) = Pk (Xt)

where we could have for example py (x¢) = N (x¢; pt,, X)) or
Pk (Xt = 1) = Kgk.
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Data Sampled from an HMM
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(left) Some data sampled from a 3 state HMM. Each state emits from a
2d Gaussian. (right) The hidden state sequence {z}.
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Applications of HMM

@ Automatic speech recognition: x; is the speech signal, z; represents
the word that is being spoken.

e Activity recognition: X; represents a video frame, z; is the class of
activity the person is engaged in (e.g., running, walking, sitting, etc.)

@ Part of speech tagging: x: represents a word, z; represents its part of
speech (noun, verb, adjective, etc.)

o Gene finding: x; represents the DNA nucleotides (A,C,G,T), z;
represents whether we are inside a gene-coding region or not.
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Inference in HMM

Assume for the time being that the parameters of the models are
known, we want to estimate z; given observations {x;} .

Filtering: compute p (z; = k| x1:¢)
Prediction: compute p (z;4; = k|x1:¢) for L >0
Smoothing: compute p (z; = k| x1.7)

In the independent case,
p(z: = k|x1t) = p(z: = k|x1.7) = p (2 = k|x¢) and
p(ziL = k’ X1:¢) = P(Zt+L = k).
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Inference in HMM: Filtering

o Given the filter p (z;—1|x1:¢—1) at time t — 1, we compute p ( z¢| X1:¢)
as follows.

e Prediction:

P(Zt = k| X1:t—1) = Z/K:1 P(Zt—l =1z = k|X1:t—1)
=5 p(ze = k| X101, 221 = 1) p (221 = 1| X1:-1)
= Zfilp(zt = k| Zr—1 = /)P(Zt—l = /’ X1:t—1)

= YIS Pric p (21 = 1 x1e1)

e Update:

P(Xt‘zt =k)p(z: = k’)(lzt—l)
Clip(xelze =1)p(2z =l x1:0-1)
Pk (Xt)P(Zt = k|X1:t—l)
Zﬁl Pi (Xt) P (Zt = /| xl:t—l)

P(Zt = k|X1:t)

e This has computational complexity O (K2T).
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Inference in HMM: Prediction

e We want to compute p (z;+; = k|xq.t) for L > 0.

@ We have

K
p(zes1 = k|x1:e) = Y Prk p(ze = I x1:6-1)
=1

and similarly

K
p(zt+m - k| Xl:t) = Z P/,k p(zt+m—1 = /‘ Xl:t—l)
=1
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Inference in HMM: Smoothing

o Wehavefor1 <t < T

P(Zt = klxlzt—l)P(Xt:T‘Zt = k)

p(z = k|x1:T) =
' Zlelp(Zt:I|x1:t—1)p(xt:T|Zt:I)

e We can compute p (x:.7|z: = k) using the following backward
recursion initialized at p (x| zr = k) = px (x7)

p(xep17]2e = k) = Z;(:1 p(Xtx1:7, Ze41 = | ze = k)
= Z/K:].p(xf‘l’l_r| Zr = kyzt+1 = /)p(ZH_l = /|Zt = k)
= Zf:l P (Xer1:7| 2041 = 1) Pry

and

P(Xt:T|Zt:k) = P(Xt,XH—l:T’Zt:k)
= pk(xt) p(Xep1:7] 2t = k)
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Example: Casino

o In this model, x; € {1,2,...,6} represents which dice face shows up,
and z; represents the identity of the dice that is being used. Most of
the time the casino uses a fair dice, z = 1, but occasionally it
switches to a loaded dice, z = 2, for a short period.

@ If z =1 the observation distribution is a uniform distribution over
{1,2,...,6}. If z =2, the observation distribution is skewed towards

face 6.
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Example: Casino
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Inference in the dishonest casino. Vertical gray bars denote the samples
that we generated using a loaded die. (left) Filtered estimate of probability
of using a loaded dice. We hope to see a spike up whenever there is a gray
bar. (right) Smoothed estimates.
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