
CS 340 Lec. 21: Hidden Markov Models

AD

April 2011

AD () April 2011 1 / 13

Modelling Dependent Data

For the time being, we have always assumed that available data
{xt}Tt=1 are independent.
In numerous applications, we only have access to data which are
statistically dependent; i.e.

p
(
{xt}Tt=1

)
6=

T

∏
t=1
p (xt) .

Typical applications include: speech processing, tracking, stock prices.

Most popular model for time dependent data is Hidden Markov
Models = Mixture Models + Markov chain on the “cluster labels”.

AD () April 2011 2 / 13

Introduction to HMM

In a standard mixture models, we have independent cluster labels
{zt}Tt=1 and data {xt}

T
t=1 so

p
(
{zt}Tt=1 , {xt}

T
t=1

)
=

T

∏
t=1
p (zt , xt) =

T

∏
t=1
p (zt) p (xt | zt)

=
T

∏
t=1
p (zt)

T

∏
t=1
p (xt | zt)

In an HMM model, the cluster labels {zt}Tt=1 follow a Markov chain

p
(
{zt}Tt=1 , {xt}

T
t=1

)
= p (z1)

T

∏
t=2
p (zt | zt−1)

T

∏
t=1
p (xt | zt)

AD () April 2011 3 / 13

Graphical Representation

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

dgmBody.tex 187

Figure 6.5: A first-order HMM/ state space model.

6.3.4 State space models
A Markov model is a joint distribution over sequences, p(z1, . . . , zT). In many applications, it is useful to imagine that the
state of the Markov model is hidden or unobserved, but that we observe some noisy measurements xt generated by the hidden
state. We can write the corresponding joint distribution as follows:

p(z1:T ,x1:T) = p(z1:T)p(x1:T |z1:T) =

[
p(z1)

T∏
t=2

p(zt|zt−1)

][
T∏
t=1

p(xt|zt)

]
(6.20)

The distribution p(zt|zt−1) is known as the transition model or system dynamics, and the distribution p(xt|zt) is known as
the observation model or sensor model.

Figure 6.5 illustrates the CI assumptions. Note that this model is more powerful than a Markov model, because it does not
assume that the previous observation is a sufficient statistic for predicting future observations; rather it assumes that the hidden
state vector (which could summarize the entire past history) is a sufficient statistic. Given a model, the goal is to infer these
hidden states from the noisy observations. This can either be done offline (when the whole sequence is available) or online (as
the observations stream in). We discuss algorithms for these tasks later.

If the hidden states are continuous, zt ∈ RL, this model is called a state space model (SSM). A special case of an SSM is
where all the CPDs are linear-Gaussian, so the model has the following form:

p(zt+1|zt,θ) = N (zt|Atzt,Qt) (6.21)
p(xt|zt,ut,θ) = N (yt|Ctzt,Rt) (6.22)

This is called a linear dynamical system (LDS), or linear-Gaussian SSM. The model can be generalized in a straightforward
way to handle non-linear relationships and/or non-Gaussian noise.

6.3.4.1 Applications of SSMs

SSMs have many applications, such as the following:

Tracking It is common for zt to represent the location of an object (e.g., a missile or a person), and xt to represent a noisy
measurement of the object’s location (e.g., a radar “blip” or a video image). The goal is compute a distribution over the
hidden variables, zt, given the observations seen so far, x1:t; this is called belief state updating. We discuss algorithms
for this in Section 12.8.

Control theory In Section 9.4.3, we discuss methods for sequential decision making under uncertainty. The optimal way to
solve such problems is to update the belief state online. This forms the basis of many kinds of controllers, from mobile
robots, to helicopters, to automated financial trading systems.

Time-series prediction It turns out that many classical models for time-series prediction are special cases of SSMs. (see
[WH97, DK01, PW10] for details). Hence SSMs can be used for various kinds of tasks which require forecasting or
predicting future observable outcomes.

6.3.5 Hidden Markov models
A hidden Markov model or HMM is the same as an SSM except the hidden states are discrete, zt ∈ {1, . . . ,K}. So HMMs
and SSMs only differ in how they parameterize the relevant CPDs. The transition model in an HMM is usually represented by
a transition matrix, as in a Markov chain:

p(zt = k|zt−1 = j,θ) = A(j, k) (6.23)

The observations in an HMM can be discrete or continuous. If they are discrete, it is common for the observation model to be
an observation matrix:

p(xt = l|zt = k,θ) = B(k, l) (6.24)

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

HMM as a directed graphical model

AD () April 2011 4 / 13

HMM Specification

Assume zt ∈ {1, ...,K} then the Markov chain is defined by its initial
distribution

p (z1 = k) = πk

and the transition probabilities

p (zt = l | zt−1 = k) = Pk ,l

We have the conditional densities/distribution

p (xt | zt = k) = pk (xt)

where we could have for example pk (xt) = N (xt ; µk ,Σk) or
pk (xt = 1) = αk .

AD () April 2011 5 / 13

Data Sampled from an HMM

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

188 dgmBody.tex

−20 −15 −10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

1

23 4
5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

(a)

2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(b)

Figure 6.6: (a) Some data sampled from a 3 state HMM. Each state emits from a 2d Gaussian. (b) The hidden state sequence. Based on
Figure 13.8 of [Bis06a]. Figure generated by hmmLillypadDemo.

If the observations are continuous, it is common for the observation model to be a conditional Gaussian:

p(xt|zt = k,θ) = N (xt|µk,Σk) (6.25)

Figure 6.6 shows an example where we have 3 states, each of which emits a different Gaussian. The resulting model is similar
to a Gaussian mixture model, except the cluster membership has Markovian dynamics. (Indeed, HMMs are sometimes called
Markov switching models [FS07].) We see that we tend to get multiple observations in the same location, and then a sudden
jump to a new cluster.

6.3.5.1 Applications of HMMs

There are many real-world applications of HMMs, such as the following

Automatic speech recognition or ASR, where xt represents the speech signal, and zt represents the word that is being spoken.
See e.g., [Jel97, JM08] for details.

Activity recognition where xt represents a video frame and zt is the class of activity the person is engaged in (e.g., running,
walking, sitting, etc.) See e.g., [Sze10a] for details.

Part of speech tagging where xt represents a word, and zt represents its part of speech (noun, verb, adjective, etc.) See
Section 7.6.3 for more information on POS tagging and related tasks.

Gene finding where xt represents the DNA nucleotides (A,C,G,T), and zt represents whether we are inside a gene-coding
region or not. See e.g., [SZZ+09] for a recent system based on a modified form of HMM.

Protein sequence alignment where xt represents an amino acid, and zt represents whether this matches the latent consensus
sequence at this location. This model is called a profile HMM and is illustrated in Figure 6.7. The HMM has 3 states,
called match, insert and delete. If zt is a match state, then xt is equal to the t’th value of the consensus. If zt is an insert
state, then xt is generated from a uniform distribution that is unrelated to the consensus sequence. If zt is a delete state,
then xt = −. In this way, we can generate noisy copies of the consensus sequence of different lengths (see [DEKM98]
for details). In Figure 6.7(a), the consensus is “AGC”, and we see various versions of this below. A path through the state
transition diagram, shown in Figure 6.7(b), specifies how to align a sequence to the consensus, e.g., for the gnat, the most
probable path is D,D, I, I, I,M . This means we delete the A and G parts of the consensus sequence, we insert 3 A’s,
and then we match the final C. We can estimate the model parameters by counting the number of such transitions, and
the number of emissions from each kind of state, as shown in Figure 6.7(c). See Section 23.3 for more information on
training an HMM.

Note that for some of these tasks, conditional random fields, which are essentially discriminative versions of HMMs, may
be more suitable; see Section 7.6 for details.

6.3.6 Probabilistic expert systems
An expert system is a set of logical rules extracted from a human expert by a process called knowledge engineering. The
problem with these rules is that they nearly always have exceptions. For example, a rule might say “People with heart disease

c© Kevin P. Murphy. Draft — not for circulation.

(left) Some data sampled from a 3 state HMM. Each state emits from a
2d Gaussian. (right) The hidden state sequence {zt}.

AD () April 2011 6 / 13

Applications of HMM

Automatic speech recognition: xt is the speech signal, zt represents
the word that is being spoken.

Activity recognition: xt represents a video frame, zt is the class of
activity the person is engaged in (e.g., running, walking, sitting, etc.)

Part of speech tagging: xt represents a word, zt represents its part of
speech (noun, verb, adjective, etc.)

Gene finding: xt represents the DNA nucleotides (A,C,G,T), zt
represents whether we are inside a gene-coding region or not.

AD () April 2011 7 / 13

Inference in HMM

Assume for the time being that the parameters of the models are
known, we want to estimate zt given observations {xt} .
Filtering: compute p (zt = k | x1:t)

Prediction: compute p (zt+L = k | x1:t) for L > 0

Smoothing: compute p (zt = k | x1:T)

In the independent case,
p (zt = k | x1:t) = p (zt = k | x1:T) = p (zt = k | xt) and
p (zt+L = k | x1:t) = p (zt+L = k).

AD () April 2011 8 / 13

Inference in HMM: Filtering

Given the filter p (zt−1| x1:t−1) at time t − 1, we compute p (zt | x1:t)
as follows.
Prediction:

p (zt = k | x1:t−1) = ∑K
l=1 p (zt−1 = l , zt = k | x1:t−1)

= ∑K
l=1 p (zt = k | x1:t−1, zt−1 = l) p (zt−1 = l | x1:t−1)

= ∑K
l=1 p (zt = k | zt−1 = l) p (zt−1 = l | x1:t−1)

= ∑K
l=1 Pl ,k p (zt−1 = l | x1:t−1)

Update:

p (zt = k | x1:t) =
p (xt | zt = k) p (zt = k | x1:t−1)

∑K
l=1 p (xt | zt = l) p (zt = l | x1:t−1)

=
pk (xt) p (zt = k | x1:t−1)

∑K
l=1 pl (xt) p (zt = l | x1:t−1)

This has computational complexity O
(
K 2T

)
.

AD () April 2011 9 / 13

Inference in HMM: Prediction

We want to compute p (zt+L = k | x1:t) for L > 0.

We have

p (zt+1 = k | x1:t) =
K

∑
l=1

Pl ,k p (zt = l | x1:t−1)

and similarly

p (zt+m = k | x1:t) =
K

∑
l=1

Pl ,k p (zt+m−1 = l | x1:t−1)

AD () April 2011 10 / 13

Inference in HMM: Smoothing

We have for 1 ≤ t < T

p (zt = k | x1:T) =
p (zt = k | x1:t−1) p (xt :T | zt = k)

∑K
l=1 p (zt = l | x1:t−1) p (xt :T | zt = l)

We can compute p (xt :T | zt = k) using the following backward
recursion initialized at p (xT | zT = k) = pk (xT)

p (xt+1:T | zt = k) = ∑K
l=1 p (xt+1:T , zt+1 = l | zt = k)

= ∑K
l=1 p (xt+1:T | zt = k, zt+1 = l) p (zt+1 = l | zt = k)

= ∑K
l=1 p (xt+1:T | zt+1 = l)Pk ,l

and

p (xt :T | zt = k) = p (xt , xt+1:T | zt = k)
= pk (xt) p (xt+1:T | zt = k)

AD () April 2011 11 / 13

Example: Casino

In this model, xt ∈ {1, 2, ..., 6} represents which dice face shows up,
and zt represents the identity of the dice that is being used. Most of
the time the casino uses a fair dice, z = 1, but occasionally it
switches to a loaded dice, z = 2, for a short period.

If z = 1 the observation distribution is a uniform distribution over
{1, 2, ..., 6}. If z = 2, the observation distribution is skewed towards
face 6.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

592 hmmBody.tex

Figure 23.1: An HMM for the occasionally dishonest casino. The blue arrows visualize the state transition diagram A. Based on [DEKM98,
p54].

23.1 Introduction

In this chapter, we consider latent variable models for sequence or time-series data, i.e., models of the form

p(z1:T ,x1:T) = p(z1:T)p(x1:T |z1:T) =

[
p(z1)

T∏
t=2

p(zt|zt−1)

][
T∏
t=1

p(xt|zt)

]
(23.1)

As discussed in Section 6.3.4, if zt is a real-valued vector, Equation ?? is called a state-space model (SSM). The most simple
example of which is a linear dynamical system, introduced in Section ??. This is analogous to factor analysis through time.

As discussed in Section 6.3.5, if zt is discrete, Equation ?? is called a hidden Markov model or HMM. This is analogous
to a mixture model through time.

In this Chapter, we discuss these and related models in more detail. We focus on the HMM case, but we discuss SSMs at
the end.

23.2 Inference in HMMs

We now discuss how to infer the hidden state sequence of an HMM, assuming the parameters are known. Similar ideas apply
to the LDS case, which we discuss in Section 23.5.

23.2.1 Inferential goals

There are several different kinds of inferential tasks. To illustrate the differences, we will consider an example called the
occasionally dishonest casino, from [DEKM98]. In this model, xt ∈ {1, 2, . . . , 6} represents which dice face shows up, and
zt represents the identity of the dice that is being used. Most of the time the casino uses a fair dice, z = 1, but occasionally
it switches to a loaded dice, z = 2, for a short period. If z = 1 the observation distribution is a uniform multinoulli over the
symbols {1, . . . , 6}. If z = 2, the observation distribution is skewed towards face 6 (see Figure 23.1). If we sample from this
model, we may observe data such as the following:

Listing 23.1: Example output of casinoDemo
Rolls: 664153216162115234653214356634261655234232315142464156663246
Die: LLLLLLLLLLLLLLFFFFFFLLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFLLLLLLLL

Here “rolls” refers to the observed symbol and “die” refers to the hidden state (L is loaded and F is fair). Thus we see that
the model generates a sequence of symbols, but the statistics of the distribution changes abruptly every now and then. In a
typical application, we just see the rolls and want to infer which dice is being used. But there are different kinds of inference,
as we discuss below.

23.2.1.1 Filtering

Filtering means to compute the belief state p(zt|x1:t) online, or recursively, as the data streams in. This is called “filtering”
because it reduces the noise more than simply estimating the hidden state using just the current estimate, p(zt|xt). We will see
below that we can perform filtering by simply applying Bayes rule in a sequential fashion. See Figure 23.3(a) for an example.

c© Kevin P. Murphy. Draft — not for circulation.

AD () April 2011 12 / 13

Example: Casino

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

hmmBody.tex 593

Figure 23.2: The main kinds of inference for state-space models. The shaded region is the interval for which we have data. The arrow
represents the time step at which we want to perform inference. t is the current time, and T is the sequence length, ` is the lag and h is the
prediction horizon. See text for details.

0 50 100 150 200 250 300
0

0.5

1

roll number

p
(l
o
a
d
e
d
)

filtered

(a)

0 50 100 150 200 250 300
0

0.5

1

roll number

p
(l
o
a
d
e
d
)

smoothed

(b)

0 50 100 150 200 250 300
0

0.5

1

roll number

M
A

P
 s

ta
te

 (
0
=

fa
ir
,1

=
lo

a
d
e
d
)

Viterbi

(c)

Figure 23.3: Inference in the dishonest casino. Vertical gray bars denote the samples that we generated using a loaded die. (a) Filtered
estimate of probability of using a loaded dice. We hope to see a spike up whenever there is a gray bar. (b) Smoothed estimates. (c) MAP
trajectory. Figure generated by casinoDemo.

23.2.1.2 Smoothing

Smoothing means to compute p(zt|x1:T) offline, given all the evidence. See Figure 23.3(b) for an example. By conditioning
on past and future data, our uncertainty will be significantly reduced. To understand this intuitively, consider a detective trying
to figure out who committed a crime. As he moves through the crime scene, his uncertainty is high until he finds the key clue;
then he has an “aha” moment, his uncertainty is reduced, and all the previously confusing observations are, in hindsight, easy
to explain.

Fixed lag smoothing is an interesting compromise between online and offline estimation; it involves computing p(zt−`|x1:t),
where ` > 0 is called the lag. This gives better performance than filtering, but incurs a slight delay. By changing the size of the
lag, one can trade off accuracy vs delay.

23.2.1.3 MAP estimation

MAP estimation means to compute arg maxz1:T p(z1:T |x1:T), which is a most probable state sequence. In the context of
HMMs, this is known as Viterbi decoding (see Section 23.2.4). Figure 23.3 illustrates the difference between filtering,
smoothing and MAP decoding for the occasionally dishonest casino HMM. We see that the smoothed (offline) estimate is
indeed smoother than the filtered (online) estimate. If we threshold the estimates at 0.5 and compare to the true sequence, we
find that the filtered method makes 71 errors out of 300, and the smoothed method makes 49/300; the MAP path makes 60/300
errors.1

1It is not surprising that smoothing makes fewer errors than Viterbi, since the optimal way to minimize bit-error rate is to threshold the posterior marginals
(see Section 9.2.1). Nevertheless, for some applications, we may prefer the Viterbi decoding, as we discuss in Section 23.2.4.

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

Inference in the dishonest casino. Vertical gray bars denote the samples
that we generated using a loaded die. (left) Filtered estimate of probability
of using a loaded dice. We hope to see a spike up whenever there is a gray
bar. (right) Smoothed estimates.

AD () April 2011 13 / 13

