
CS 340 Lec. 20: Mixture Models and EM Algorithm

AD

March 2011

AD () March 2011 1 / 23

Limitations of Clustering using K-Means

No uncertainty about cluster labels {zi}Ni=1.
Selection of the cost function optimized quite arbitrary.

What about if the number of clusters K has to be estimated?

AD () March 2011 2 / 23

Mixture Models

We follow a probabilistic approach where the pdf p (x) of individual
data {xi}Ni=1 is modelled explicitly.
A mixture model states that the pdf of data xi is

p (xi) =
K

∑
k=1

πk pk (xi)

where K ≥ 2, 0 ≤ πk ≤ 1, ∑K
k=1 πk = 1 and {pk (xi)}Kk=1 are pdf.

You can think of pk (xi) as the pdf of cluster k.

AD () March 2011 3 / 23

Latent Cluster Labels

We associate to each xi a cluster label zi ∈ {1, 2, ...,K} as in
K-means.

If we set p (zi = k) = πk then we can rewrite

p (xi) =
K

∑
k=1

p (zi = k) pk (xi)

Alternatively and equivalently, this means that we have now a joint
distribution

p (xi , zi = k) = p (zi = k) p (xi | zi = k)
= p (zi = k) pk (xi)

AD () March 2011 4 / 23

Example: Mixture of Three 2D-Gaussians

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

36 introBody.tex

0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(b) (c)

Figure 1.38: A mixture of 3 Gaussians in 2d. (a) We show the contours of constant probability for each component in the mixture. (b) A
contour plot of the overall density. (c) A surface plot. Based on Figure 2.23 of [Bis06b]. Figure generated by mixGaussPlotDemo.

−5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

0

1

2
4 errors using student (red=error)

Bankrupt

Solvent

(a)

−5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

0

1

2
21 errors using gauss (red=error)

Bankrupt

Solvent

(b)

Figure 1.39: Mixture modeling on the bankruptcy data set. Left: Gaussian class conditional densities. Right: Student class conditional
densities. Points that belong to class 1 are shown as triangles, Points that belong to class 2 are shown as circles. The estimated labels, based
on the posterior probability of belonging to each mixture component, are computed. If these are incorrect, the point is colored red, otherwise
it is colored blue. (Training data is in black.) Unlike Figure 1.33, the class labels are not known at training time (so training is unsupervised,
evaluation is supervised). Produced by mixStudentBankruptcyDemo.

1.5.1.3 Mixtures of Student distributions

Mixtures of Gaussians can give poor results if there are outliers in the data. However, we can easily replace the Gaussian distri-
bution with a Student distribution if we want to perform robust clustering.24 We discuss how to fit this model in Exercise 11.6.

As an example, let us reconsider the bankruptcy data used in Section 1.4.2. We fit two models to this data, ignoring the
class labels: a mixture of 2 Gaussians, and a mixture of 2 Students . We then use each fitted model to classify the data. We
compute the most probable cluster membership and treat this as ŷi. We then compare ŷi to the true labels yi and compute an
error rate. If this is more than 50%, we permute the latent labels (i.e., we consider cluster 1 to represent class 2 and vice versa),
and then recompute the error rate. Points which are misclassified are then shown in red. The result is shown in Figure 1.39. We
see that the Student model made 4 errors, the Gaussian model made 21. We also see that these error rates are higher than in the
supervised case, especially for the Gaussian model, but that is because we are solving a harder problem.

1.5.1.4 Mixture of Bernoullis

We can use mixtures models to define density models on many kinds of data. For example, suppose our data consist of D-
dimensional bit vectors. In this case, an appropriate class-conditional density is a product of Bernoullis:

p(xi|zi = k,θ) =
D∏
j=1

Ber(xij |µjk) =
D∏
j=1

µ
xij
kj (1− µkj)1−xij (1.88)

where µjk is the probability that bit j turns on in cluster k.
As a simple example, we applied this method to a binarized version of the MNIST handwritten digit dataset (see Fig-

ure 1.16(a)), ignoring any class labels. We used the first N = 10, 000 training cases; the number of features is D = 784. We
set the number of clusters to K = 10 (see Section 11.4.2.8 for a discussion of how to choose K). In Figure 1.40 we visualize

24An alternative to using a mixture of K Student distributions is to use a mixture of K + 1 Gaussians, where the last Gaussian is constrained to have a very
broad covariance, which thus approximates a uniform distribution. This last component represents an outlier process.

c© Kevin P. Murphy. Draft — not for circulation.

(left) 3 Gaussians in 2D, we display contours of constant proba for each
component (center) contours of constant proba of the mixture density
(right) Surface plot of the pdf.

AD () March 2011 5 / 23

Posterior Distribution of Cluster Labels

Given xi , we can determined

p (zi = k | xi) =
p (xi , zi = k)

∑K
l=1 p (xi , zi = l)

=
πkpk (xi)

∑K
l=1 πlpl (xi)

,

this is sometimes known as soft clustering.

Assume we can to assign data xi to a single cluster, then we could set

ẑi = argmax
k∈{1,2,...,K }

p (zi = k | xi) ,

this is known as hard clustering.

AD () March 2011 6 / 23

Example: Mixture of Two 2D-Gaussians and 2D-Students

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

36 introBody.tex

0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(b) (c)

Figure 1.38: A mixture of 3 Gaussians in 2d. (a) We show the contours of constant probability for each component in the mixture. (b) A
contour plot of the overall density. (c) A surface plot. Based on Figure 2.23 of [Bis06b]. Figure generated by mixGaussPlotDemo.

−5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

0

1

2
4 errors using student (red=error)

Bankrupt

Solvent

(a)

−5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

0

1

2
21 errors using gauss (red=error)

Bankrupt

Solvent

(b)

Figure 1.39: Mixture modeling on the bankruptcy data set. Left: Gaussian class conditional densities. Right: Student class conditional
densities. Points that belong to class 1 are shown as triangles, Points that belong to class 2 are shown as circles. The estimated labels, based
on the posterior probability of belonging to each mixture component, are computed. If these are incorrect, the point is colored red, otherwise
it is colored blue. (Training data is in black.) Unlike Figure 1.33, the class labels are not known at training time (so training is unsupervised,
evaluation is supervised). Produced by mixStudentBankruptcyDemo.

1.5.1.3 Mixtures of Student distributions

Mixtures of Gaussians can give poor results if there are outliers in the data. However, we can easily replace the Gaussian distri-
bution with a Student distribution if we want to perform robust clustering.24 We discuss how to fit this model in Exercise 11.6.

As an example, let us reconsider the bankruptcy data used in Section 1.4.2. We fit two models to this data, ignoring the
class labels: a mixture of 2 Gaussians, and a mixture of 2 Students . We then use each fitted model to classify the data. We
compute the most probable cluster membership and treat this as ŷi. We then compare ŷi to the true labels yi and compute an
error rate. If this is more than 50%, we permute the latent labels (i.e., we consider cluster 1 to represent class 2 and vice versa),
and then recompute the error rate. Points which are misclassified are then shown in red. The result is shown in Figure 1.39. We
see that the Student model made 4 errors, the Gaussian model made 21. We also see that these error rates are higher than in the
supervised case, especially for the Gaussian model, but that is because we are solving a harder problem.

1.5.1.4 Mixture of Bernoullis

We can use mixtures models to define density models on many kinds of data. For example, suppose our data consist of D-
dimensional bit vectors. In this case, an appropriate class-conditional density is a product of Bernoullis:

p(xi|zi = k,θ) =
D∏
j=1

Ber(xij |µjk) =
D∏
j=1

µ
xij
kj (1− µkj)1−xij (1.88)

where µjk is the probability that bit j turns on in cluster k.
As a simple example, we applied this method to a binarized version of the MNIST handwritten digit dataset (see Fig-

ure 1.16(a)), ignoring any class labels. We used the first N = 10, 000 training cases; the number of features is D = 784. We
set the number of clusters to K = 10 (see Section 11.4.2.8 for a discussion of how to choose K). In Figure 1.40 we visualize

24An alternative to using a mixture of K Student distributions is to use a mixture of K + 1 Gaussians, where the last Gaussian is constrained to have a very
broad covariance, which thus approximates a uniform distribution. This last component represents an outlier process.

c© Kevin P. Murphy. Draft — not for circulation.

Mixture models trained on bankruptcy dataset modelled using a mixture of
Gaussians (left) and Students (right). Estimated posterior proba is
computed. If correct, blue. If incorrect, red.

AD () March 2011 7 / 23

Examples of Models

Mixture of Gaussians

p (xi) =
K

∑
k=1

πk N (xi ; µk ,Σk)

Mixture of multivariate Bernoullis: xi = (xi ,1, ..., x1,D) ∈ {0, 1}D

p (xi) =
K

∑
k=1

πk pk (xi)

where

pk (xi) =
D

∏
j=1

(
µk ,j

)xi ,j (
1− µk ,j

)1−xi ,j

AD () March 2011 8 / 23

Mixture of Bernoullis for MNIST Data

Binary images of digits; D = 784.

We consider applying a mixture of Bernoullis to unlabeled data.

We set K = 10.

Parameters are learned using Maximum Likelihood (more later!).

AD () March 2011 9 / 23

Mixture of Bernoullis for MNIST Data

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 37

Figure 1.40: We fit a mixture of 10 Bernoullis to the binarized MNIST digit data. We show the MLE for the corresponding cluster means,
µk. The numbers on top of each image represent the mixing weights π̂k. No labels were used when training the model. Figure generated by
mixBerMnistEM.

the learned µk as images. We see that the method correctly discovered some of the digit classes, but overall the results aren’t
great: it has created multiple clusters for some digits, and no clusters for others. There are several possible reasons for these
“errors”:

• The model is very simple and does not capture the relevant visual characteristics of a digit. For example, each pixel is
treated independently. There is no notion of shape or a stroke.

• Although we think there should be 10 clusters, some of the digits actually exhibit a fair degree of visual variety. For
example, there are two ways of writing 7’s (with and without the cross bar). Figure 1.16(a) illustrates some of the range
in writing styles. Thus we need K � 10 clusters to adequately model this data. However, if we set K to be large, there
is nothing in the model or algorithm preventing the extra clusters from being used to create multiple versions of the same
digit, and indeed this is what happens. We can use model selection to prevent too many clusters from being chosen but
what looks visually appealing and what makes a good density estimator may be quite different.

• The likelihood function is not convex, so we may be stuck in a local optimum. A simple “solution” to this problem is to
use multiple restarts, whereby we run the algorithm from multiple initial random starting points and pick the best solution
found. In this problem, this did not help very much, probably because the model is fundamentally limited in its modeling
power.

This example is typical of mixture modeling, and goes to show one must be very cautious trying to “interpret” any clusters
that are discovered by the method. (Adding a little bit of supervision, or using informative priors, can help a lot.)

The latent variables do not have to correspond to “real” hidden classes, such as the digit identities. We might simply
introduce latent variables in order to make the model more powerful. For example, one can show (Exercise 20.6) that the mean
and covariance of the mixture distribution are given by

E [x] =
∑
k

πkµk (1.89)

cov [x] =
∑
k

πk[Σk + µkµ
T
k]− E [x] E [x]T (1.90)

where Σk = diag(µkj(1 − µkj)). So although the component distributions are factorized, the joint distribution is not. Thus
the mixture distribution can capture correlations between variables, unlike a single product-of-Bernoullis model.

1.5.1.5 Real world applications

Here are some real world applications of clustering.

• In astronomy, the autoclass system [CKS+88], which is based on GMMs, discovered a new type of star.

• In e-commerce, it is common to cluster users into groups, based on their purchasing or web-surfing behavior, and then to
send customized targeted advertising to each group (see e.g., [Ber06b]).

• In biology, it is common to cluster flow-cytometry data into groups, to discover different sub-populations of cells (see
e.g., [LHB+09]).

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

A mixture of 10 multivariate Bernoulli fitted to binarized MNIST data. We
display the MLE of cluster means.

AD () March 2011 10 / 23

Application of Mixture Models to Machine Learning

Better models of class conditional distributions for generative
classifiers

Mixture of regressions / Mixture of Experts.

Applications: astronomy (autoclass), econometrics (mixture of Garch
models, SV), genetics, marketing, speech processing.

AD () March 2011 11 / 23

Maximum Likelihood Parameter Estimation for Mixture
Models

In practice, we typically have

p (x| θ) =
K

∑
k=1

πk f (x; φk)

and we need to estimate the parameters θ = {πk , φk}
K
k=1 given ∞.

The ML parameter estimates is given by

θ̂ML = argmax l (θ)

where

l (θ) =
N

∑
i=1
log p (xi | θ)

No analytic solution to this problem! Gradient methods could be used
but are painful to implement.

AD () March 2011 12 / 23

Likelihood Surface for a Simple Example

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

320 compBody.tex

−30 −20 −10 0 10 20 30
0

5

10

15

20

25

30

35

(a)

mu
1

m
u

2

−15.5 −10.5 −5.5 −0.5 4.5 9.5 14.5 19.5

−15.5

−10.5

−5.5

−0.5

4.5

9.5

14.5

19.5

(b)

Figure 11.6: Left: N = 200 data points sampled from a mixture of 2 Gaussians in 1d, with πk = 0.5, σk = 5, µ1 = −10 and µ2 = 10.
Right: Likelihood surface p(D|µ1, µ2), with all other parameters set to their true values. We see the two symmetric modes, reflecting the
unidentifiability of the parameters. Produced by mixGaussLikSurfaceDemo.

11.4.2.5 Unidentifiability

Note that mixture models are not identifiable, which means there are many settings of the parameters which have the same
likelihood. Specifically, in a mixture model withK components, there areK! equivalent parameter settings, which differ merely
by permuting the labels of the hidden states. See Figure 11.6 for an illustration. The existence of equivalent global modes does
not matter when computing a single point estimate, such as the ML or MAP estimate, but it does complicate Bayesian inference,
as we will in Section 12.5.6.3. Unfortunately, even finding just one of these global modes is computationally difficult. The EM
algorithm is only guaranteed to find a local mode. A variety of methods can be used to increase the chance of finding a good
local optimum. The simplest, and most widely used, is to perform multiple random restarts.

11.4.2.6 K-means algorithm

There is a variant of the EM algorithm for GMMs known as the K-means algorithm, which we now discuss.
Consider a GMM in which we make the following assumptions: Σk = σ2ID is fixed, and πk = 1/K is fixed, so only the

cluster centers, µk ∈ RD, have to be estimated. Now consider an approximation to EM in which we make the approximation

p(zi = k|xi,θ) ≈ I(k = z∗i) (11.61)

where zi∗ = arg maxk p(zi = k|xi,θ). This is sometimes called hard EM, since we are making a hard assignment of points
to clusters. Since we assumed an equal spherical covariance matrix for each cluster, the most probable cluster for xi can be
computed by finding the nearest prototype:

z∗i = arg min
k
||xi − µk||2 (11.62)

Hence in each E step, we must find the Euclidean distance betweenN data points andK cluster centers, which takesO(NKD)
time. However, this can be sped up using various techniques, such as applying the triangle inequality to avoid some redundant
computations [Elk03]. Given the hard cluster assignments, the M step updates each cluster center by computing the mean of all
points assigned to it:

µk =
1
Nk

∑
i:zi=k

xi (11.63)

The resulting method is equivalent to the K-means algorithm. See Algorithm 5 for the pseudo-code.

Algorithm 3: K-means algorithm

initialize mk, k ← 1 to K1

repeat2

Assign each data point to its closest cluster center: zi = arg mink ||xi − µk||23

Update each cluster center by computing the mean of all points assigned to it: µk = 1
Nk

∑
i:zi=k

xi4

until converged5

Since K-means is not a proper EM algorithm, it is not maximizing likelihood. Instead, it can be interpreted as a greedy
algorithm for approximately minimizing the reconstruction error created by using vector quantization, as discussed in Sec-
tion 8.5.3.3. (See also Section 20.2.1.)

c© Kevin P. Murphy. Draft — not for circulation.

(left) N = 200 data points from a mixture of two 2D Gaussians with
π1 = π2 = 0.5, σ1 = σ2 = 5 and µ1 = −µ2 = 10. (right) Log-Likelihood
surface l (µ1, µ2) , all the other parameters being assumed known.

AD () March 2011 13 / 23

Expectation-Maximization

EM is a very popular approach to maximize l (θ) in this context.

The key idea is to introduce explicitly the cluster labels.

If the cluster labels where known then we would estimate θ by
maximizing the so-called complete likelihood

lc (θ) =
N

∑
i=1
log p (xi , zi | θ)

=
N

∑
i=1
log πzi f

(
xi ; φzi

)

AD () March 2011 14 / 23

Expectation-Maximization

We have

lc (θ) =
K

∑
k=1

(
N

∑
i=1:zi=k

log πzi f
(
xi ; φzi

))

=
K

∑
k=1

Nk log (πk) +
N

∑
i=1:zi=k

log f (xi ; φk)

where Nk = ∑N
i=1:zi=k 1.

We would obtain the MLE for the complete likelihood

π̂k =
Nk
N
, φ̂k = argmax

φk

N

∑
i=1:zi=k

log f (xi ; φk)

Problem: We don’t have access to the cluster labels!

AD () March 2011 15 / 23

Example: Finite mixture of scalar Gaussians

In this case, φ =
(
µ, σ2

)
f (x ; φ) =

1√
2πσ2

exp

(
− (x − µ)2

2σ2

)

and θ =
{

πk , µk , σ
2
}K
k=1.

In this case, the MLE estimate of the complete likelihood is

π̂k =
Nk
N
, µ̂k =

1
Nk

N

∑
i=1:zi=k

xi ,

σ̂2k =
1
Nk

N

∑
i=1:zi=k

(xi − µ̂k)
2

AD () March 2011 16 / 23

Expectation-Maximization

EM is an iterative algorithm which generates a sequence of estimates{
θ(t)
}
such that

l
(

θ(t)
)
≥ l

(
θ(t−1)

)
.

At iteration t, we compute

Q
(

θ, θ(t−1)
)
= E

(
lc (θ)| x1:N , θ

(t−1)
)

= ∑
z1:N∈{1,2,...,K }N

(
∑N
i=1 log p (xi , zi | θ)

)
p
(
z1:N | x1:N , θ

(t−1)
)

= ∑N
i=1 ∑K

k=1 log p (xi , zi = k | θ) p
(
zi = k | xi , θ(t−1)

)
and set

θ(t) = argmax
θ

Q
(

θ, θ(t−1)
)

AD () March 2011 17 / 23

E-step and M-step

We have

Q
(

θ, θ(t−1)
)
= ∑N

i=1 ∑K
k=1 log p (xi , zi = k | θ) p

(
zi = k | xi , θ(t−1)

)
= ∑N

i=1 ∑K
k=1 {log πk + log f (xi ; φk)} p

(
zi = k | xi , θ(t−1)

)
= ∑K

k=1

(
∑N
i=1 p

(
zi = k | xi , θ(t−1)

))
log πk

+∑K
k=1

(
∑N
i=1 p

(
zi = k | xi , θ(t−1)

)
log f (xi ; φk)

)
We obtain

π̂
(t)
k =

∑N
i=1 p

(
zi = k | xi , θ(t−1)

)
N

,

φ
(t)
k = argmax

φk

N

∑
i=1
p
(
zi = k | xi , θ(t−1)

)
log f (xi ; φk)

AD () March 2011 18 / 23

Example: Finite mixture of scalar Gaussians

In this case, the EM algorithm iterate

π̂
(t)
k =

∑N
i=1 p

(
zi = k | xi , θ(t−1)

)
N

and

µ̂
(t)
k =

∑N
i=1 xip

(
zi = k | xi , θ(t−1)

)
∑N
i=1 p

(
zi = k | xi , θ(t−1)

) ,
σ̂
2 (t)
k =

∑N
i=1 p

(
zi = k | xi , θ(t−1)

) (
xi − µ̂

(t)
k

)2
∑N
i=1 p

(
zi = k | xi , θ(t−1)

) .

We typically iterate the algorithm until
∥∥∥θ(t) − θ(t−1)

∥∥∥ < ε.

AD () March 2011 19 / 23

Example: Finite mixture of Bernoulli

Consider now the case where

pk (x) =
D

∏
j=1

(
µk ,j

)xj (
1− µk ,j

)1−xj
so θ =

{
πk , µk ,1, . . . , µk ,D

}K
k=1
.

In this case, the EM algorithm yields

π̂
(t)
k =

∑N
i=1 p

(
zi = k | xi , θ(t−1)

)
N

and

µ̂
(t)
k ,j =

∑N
i=1 xi ,jp

(
zi = k | xi , θ(t−1)

)
∑N
i=1 p

(
zi = k | xi , θ(t−1)

) .

AD () March 2011 20 / 23

Proof of Convergence for EM Algorithm

We want to show that l
(

θ(t+1)
)
≥ l

(
θ(t)
)
for θ(t+1) = argmax

θ

Q
(

θ, θ(t)
)
.

Proof: We have

p (z1:N | θ, x1:N) =
p (x1:N ,z1:N | θ)
p (x1:N | θ)

⇔ p (x1:N | θ) =
p (x1:N ,z1:N | θ)
p (z1:N | θ, x1:N)

thus

l (θ) = log p (x1:N | θ) = log p (x1:N ,z1:N | θ)− log p (z1:N | θ, x1:N)

and for any value θ(t)

l (θ) = ∑
z1:N

log p (x1:N ,z1:N | θ) .p
(
z1:N | θ(t), x1:N

)
︸ ︷︷ ︸

=Q(θ,θ(t))

−∑
z1:N

log p (z1:N | θ, x1:N) .p
(
z1:N | θ(t), x1:N

)
.

AD () March 2011 21 / 23

Proof of Convergence for EM Algorithm

We want to show that l
(

θ(t+1)
)
≥ l

(
θ(t)
)
for the EM, so we need

to prove that

∑
z1:N

log p
(
z1:N | θ(t+1), x1:N

)
.p
(
z1:N | θ(t), x1:N

)
≤ ∑

z1:N

log p
(
z1:N | θ(t), x1:N

)
.p
(
z1:N | θ(t), x1:N

)
We have

∑
z1:N

log
p
(
z1:N | θ(t+1), x1:N

)
p
(
z1:N | θ(t), x1:N

) .p
(
z1:N | θ(t), x1:N

)

≤ log ∑
z1:N

p
(
z1:N | θ(t+1), x1:N

)
p
(
z1:N | θ(t), x1:N

) p
(
z1:N | θ(t), x1:N

)
(Jensen)

= log 1 = 0.

AD () March 2011 22 / 23

About the EM Algorithm

Some good things about EM

no learning rate (step-size) parameter
automatically enforces parameter constraints
very fast for low dimensions
each iteration guaranteed to improve likelihood

Some bad things about EM

can get stuck in local minima
can be slower than conjugate gradient (especially near convergence)
requires expensive inference step
is a maximum likelihood/MAP method

AD () March 2011 23 / 23

