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Limitations of Clustering using K-Means

o No uncertainty about cluster labels {z,-}ll-vzl.

@ Selection of the cost function optimized quite arbitrary.
@ What about if the number of clusters K has to be estimated?
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Mixture Models

@ We follow a probabilistic approach where the pdf p (x) of individual
data {x,-},I-V:1 is modelled explicitly.
@ A mixture model states that the pdf of data x; is

px) = 3 e pr (%)
k=1

where K > 2,0 <, <1, 2,’5:1 tx =1 and {px (x,-)}kK:1 are pdf.
@ You can think of py (x;) as the pdf of cluster k.
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Latent Cluster Labels

o We associate to each x; a cluster label z; € {1,2, ..., K} as in
K-means.

o If we set p(zj = k) = 714 then we can rewrite

K
p(xi) = k);lp(zi = k) pr (xi)

@ Alternatively and equivalently, this means that we have now a joint
distribution

p(xi,zi=k) = p(zi=k)p(xi|zi=k)
p(zi = k) px (xi)
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Example: Mixture of Three 2D-Gaussians

A S R R R
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(left) 3 Gaussians in 2D, we display contours of constant proba for each
component (center) contours of constant proba of the mixture density
(right) Surface plot of the pdf.
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Posterior Distribution of Cluster Labels

@ Given x;, we can determined

P (X,‘,Z,' = k)
Z;(:1 p(xi,zi=1)
TPk (Xi)
Z;(:1 TP (Xi)

this is sometimes known as soft clustering.

p(zi =k|x;) =

@ Assume we can to assign data x; to a single cluster, then we could set

%= agmax p(z = kx),
ke{1,2,...K}

this is known as hard clustering.
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Example: Mixture of D-Gaussians and

4 errors using student (red=error) 21 errors using gauss (red=error)
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Mixture models trained on bankruptcy dataset modelled using a mixture of
Gaussians (left) and Students (right). Estimated posterior proba is
computed. If correct, blue. If incorrect, red.
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Examples of Models

@ Mixture of Gaussians
K
=Y e N (%ii iy Zic)
k=1
. L. . D
@ Mixture of multivariate Bernoullis: x; = (xj1,...,x1,p) € {0,1}

kpk

qu

where
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Mixture of Bernoullis for MNIST Data

@ Binary images of digits; D = 784.
@ We consider applying a mixture of Bernoullis to unlabeled data.
o We set K = 10.

e Parameters are learned using Maximum Likelihood (more later!).
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Mixture of Bernoullis for MNIST Data

0.04 013 a1 006 Q10
12 017 a1 o8 009

A mixture of 10 multivariate Bernoulli fitted to binarized MNIST data. We
display the MLE of cluster means.
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Application of Mixture Models to Machine Learning

@ Better models of class conditional distributions for generative
classifiers
@ Mixture of regressions / Mixture of Experts.

e Applications: astronomy (autoclass), econometrics (mixture of Garch
models, SV), genetics, marketing, speech processing.
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Maximum Likelihood Parameter Estimation for Mixture

Models

@ In practice, we typically have
K
p(x[0) =) mif(xi¢y)
k=1

and we need to estimate the parameters 6 = {nk,gbk}kK:l given oo,
@ The ML parameter estimates is given by

Oy = argmax [ (6)

where
N
10) = Y log p(xi|6)
i=1
@ No analytic solution to this problem! Gradient methods could be used
but are painful to implement.
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Likelihood Surface for a Simple Example
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(left) N = 200 data points from a mixture of two 2D Gaussians with
my =7 =05,01 =02 =5and y; = —pu, =10. (right) Log-Likelihood
surface / (j1;, 1t,) , all the other parameters being assumed known.
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Expectation-Maximization

e EM is a very popular approach to maximize /() in this context.
@ The key idea is to introduce explicitly the cluster labels.

o If the cluster labels where known then we would estimate 6 by
maximizing the so-called complete likelihood

1

N
— i;log Tty (Xi;qbz;)

N
L(®) = Y log p(x:zl0)
=1
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Expectation-Maximization

@ We have

K
l(0) = Z ( 12 klog y- f(’(i;‘f’z,))
K
Z Ny log (i) + Z log £ (xi;¢,)
k=1 i=1l:zj=k

where N, = YN 1izi=k L.
@ We would obtain the MLE for the complete likelihood

N -
To= e G —argmax Y log £(xig)
[ i=1l:zji=k

@ Problem: We don't have access to the cluster labels!
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Example: Finite mixture of scalar Gaussians

o In this case, ¢ = (p,0?)

o 2
Flag) = \/2;(72 &P <_( 2051) )

and 0 = {nk,yk,(ﬂ}f:l.

@ In this case, the MLE estimate of the complete likelihood is

- N 1 N
7T fry —_—, g X’-,
k N Hi k,':]_:ZZ;:k
o= Ly ()
kK — T

Ni i=lizj=k
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Expectation-Maximization

@ EM is an iterative algorithm which generates a sequence of estimates

{G(t)} such that
/(9(f>) > | (9“‘”) _

@ At iteration t, we compute

Q(0.67) = (& @) xa.0~V)
_ y ( N log p(x,-,z,-\G)) p<z1N\x1N (- ))

2ne{1,.2,...K}"
= ZIN:]. 2/5:1 log p(x;,zi = k|8) p (z, k|x;, 0 plt- 1)>

and set

0() = argmax Q (9, G(t_l))
0
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E-step and M-step

o We have
Q (0.6 ) =¥, Y log p(xi.z = k|6) p(z = k|x;, 0071
=yN, K {log mi+ logf(xiid,)} p<z,- = k\x,-,9<t—1>)
=Y (Z,'-V:1 p (Zi = k|x;, Q(t_l))) log 774
+ X80 (T p (2= K%, 047Y) log f (xii )

@ We obtain

Yo p (z,- = k|x;, 9(1‘*1))
N ,

0 _ 3 (2= kIx, 0 ;
¢, = argmax )_p(z =k|x;,0 > log f (xi; ¢, )

P i=1
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Example: Finite mixture of scalar Gaussians

@ In this case, the EM algorithm iterate

) Yip (z,- = k|x,-,0(t—1))
B N

A(t
Ty

and
Z:"V:1 Xip (z,- = k| Xi,g(t71)>
M ip (2= kw60

2 (t) Tihip (Z/ = k| x;, 9("‘*1)> <x,- _ ﬁy)y
- B ip (Zi = k|x;,9(t_1)) '

o We typically iterate the algorithm until Hg(t) _p(t-1) H <e
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Example: Finite mixture of Bernoulli

@ Consider now the case where

D

i (x) = II <Vk,j>xj (1 - P‘k,j)lixj
=
s0 0 = {nk,ykyl,...,yk’D}le.

@ In this case, the EM algorithm yields

y 2,’-\’:1 p (z,- = k|x,-,9(t71))
B N

A(t

and
YLy Xip (z,- = k| xi, G(H))

YiLip (Zi = k| x;, 9(t_1))
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Proof of Convergence for EM Algorithm

@ We want to show that / (G(t“)) > (G(t)) for oI+ = arg max
0

Q (e, 9“))_
@ Proof: We have
p (x1:n,21:n] 0)

p (xlszzlzN| 9)
p(zn|0, x1:n)

p (x1:n]0) & p(xun|0) =

p(zin| 0, x1:n) =
thus

1(0) =log p(x1:n]0) = log p (x1:n,21:n] 0) — log p (z1:n] 6, X1:1)
and for any value o(t)

1(6) = Y logp(xin.zi:n|0).p (Zl:N| o), X1;N)

Z1:N

=Q(0.0)

— Y logp(zi:n| 0. x1:n) -P <21:N| 6, X1:/\/) :

Z1:N
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Proof of Convergence for EM Algorithm

e We want to show that / (G(HI)) >/ (G(t)) for the EM, so we need
to prove that

) logp <21;N! pl+y), X1:N> P (leN\ 6, Xl:N)
Z1:N
1) et o
< zglogp <21.N!9 ! :Xl.N) P (Zl./v|9 f ,X1.N>

@ We have
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About the EM Algorithm

@ Some good things about EM

e no learning rate (step-size) parameter

e automatically enforces parameter constraints

e very fast for low dimensions

e each iteration guaranteed to improve likelihood

@ Some bad things about EM

can get stuck in local minima

can be slower than conjugate gradient (especially near convergence)
requires expensive inference step

is a maximum likelihood/MAP method
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