CS 340 Lec. 18: Multivariate Gaussian Distributions and

Linear Discriminant Analysis

AD

March 2011

March 2011 1/17



Multivariate Gaussian

o Consider data {x'} ", where x' € R and we assume they are
independent and identically distributed.
@ A standard pdf used to model multivariate real data is the

multivariate Gaussian or normal

p(xImE) = N(xpX)
1

= G al ) ).

Mahalanobis distance
@ It can be shown that y is the mean and X is the covariance of
N(xu2);ie
E (X) = u and cov (X) = X.
o It will be used extensively in our discussion on unsupervised learning
and can also used for generative classifiers (i.e. discriminant analysis).
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Special Cases

@ When D =1, we are back to

p(x|uc?) =N (x;u,0%) = 21 exp (—;2 (X—H)2>

T2

® When D = 2 and writing

s _ o? P10
poioy 03
where p = corr (X1, Xz) € [—1, 1] we have

_ 1
p(x|lu’z) - 271010 /1_p2

—iy ) x2—iy)? X1— Xp—
o (ke ool 4 ol tnmitnman) )
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Graphical llustrations

full diagonal spherical

lllustration of 2D Gaussian pdfs for different covariance matrices (left):
full, (middle): diagonal, (right): spherical.
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Why are the contours of a multivariate Gaussian elliptical

o If we plot the values of x s.t. p(x|pu,X) is equal to a constant, i.e.
st. (x—p)" 271 (x — ) = ¢ > 0 where c is given, then we obtain
an ellipse.

@ 2. is a positive definite matrix so we have

Y = UAUT

where U is an orthonormal matrix of eigenvectors, i.e. UTU = I, and
A = diag (A1, ..., Ap) with Ay > 0 is the diagonal matrix of
eigenvalues.

@ Hence, we have

x! (UT>_1 AU = uATUT i L]
= = = —uiu,,
=1 Mk o
so
. D 2
(x—p) Zfl(x—y):ZA—’;whereyk:uZ(x—y).
k=1
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Graphical llustrations

ful diagonal spherical
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[llustration of 2D Gaussian pdfs level sets for different covariance matrices
(left): full, (middle): diagonal, (right): spherical.
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Properties of Multivariate Gaussians

@ Marginalization is straightforward.

e Conditioning is easy; e.g. if X = (X; Xz) with

p(x)=p(x1,x) =N (x;p,Z)

where
() (2 2)
My ) Yo1 X
then ( )
p (X1, X2
plxifxe) = 1 = N (xiiiya Zap)
with
P = py+ Iy (e —p,),
Sip = Zn—Z1255 Tor.
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Independence and Correlation for Gaussian Variables

It is well-known that independence implies uncorrelations; i.e. if the
components (X1, ..., Xp) of a vector X are independent then they are
uncorrelated. However, uncorrelated does not imply independence in
the general case.

If the components (X, ..., Xp) of a vector X distributed according to
a multivariate Gaussian are uncorrelated then they are independent.

Proof. If (X1, ..., Xp) are uncorrelated then ¥ = diag (0’%, ...,(7%)

D
and ] =[] 0% so
k=1

D
p(x|px) = Hp(xk“’lk'ak =H (i 1y %)
k=1 k=1
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ML Parameter Learning for Multivariate Gaussian

. AN :
o Consider data {x'} " where x' € RP and assume they are

independent and identically distributed from N (x;u, %) .

e The ML parameter estimates of (¢, £) maximize by definition

N
Zlog N(xi;y,Z)
i=1
ND N 18 :
= -5 log (277) — 5 log |Z| — 5 Yo (x —,u)TZfl (x' —u).
i=1

@ We obtain after painful calculations the fairly intuitive results

DY PP v O I G N
PETN RS N |
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Application to Supervised Learning using Bayes Classifier

@ Assume you are given some training data {x",y"}ll.vz1 where x'e RP
and y' € {1,2, ..., C} can take C different values.

@ Given an input test data x, you want to predict/estimate the output y
associated to x.

@ Previously we have followed a probabilistic approach

py=¢cplxly=c
Loap(y=¢)p(xly=¢)

p(y=c|x)=

@ This requires modelling and learning the parameters of the class
conditional density of features p (x|y = ¢).
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Height Weight Data

red = female, blue=male red = female, blue=male
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(left) Height/Weight data for female/male (right) 2d Gaussians fit to
each class. 95% of the proba mass is inside the ellipse
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Supervised Learning using Bayes Classifier

@ Assume we pick

p(xly=c)=N(xp,X)
and p(y = ¢) = 7. then
Py =clx) o e % T ep(—5 (x—po) 2 (x =)
=exp(plE lx — Iuls; IuC+|og7tc)exp( IxTE 1x)

@ For models where .. = X then this is known as linear discriminant
analysis

B e <,31X + %)
P(y = C| X) - 2521 exp (ﬁ;r,x—i—'yc,)

where B, =X lu_, v, = —3pul 7 u_ + log 7t and the model is
very similar to logistic regression.
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Decision Boundaries
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4

Decision boundaries in 2D for 2 and 3 class case.
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Binary Classification

@ Consider the case where C = 2 then one can check that

p(y=1x) =g (B, Bo) x+71 — )

@ We have
1 _
Y1~ %Y — 5 (1 _.”o)TZ ' (1 ‘H‘o) + log (711/710)

1 (1 — 1) log (711/70)

xo =5 (pt+p) —
. (g — o) =71 (g — o)

w  =p—pB =z (F‘1_P‘0)

then

p(y=1x) =g (W (x—xo))

@ x is shifted by xo and then projected onto the line w.
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Binary Classification

March 2011 15 /



Generative or Discriminative Classifiers

@ When the model for class conditional densities is correct, resp.
incorrect, generative classifiers will typically outperform, resp.
underperform, discriminative classifiers for large enough datasets.

@ Generative classifiers can be difficult to learn whereas Discriminative
classifiers try to learn directly the posterior probability of interest.

o Generative classifiers can handle missing data easily, discriminative
methods cannot.

@ Discriminative can be more flexible; e.g. substitute x to ® (x).
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Application

Bankruptcy Data using Gaussian (black = train, blue=correct, red=wrong), nerr = 3
4

o
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-5 —4 -3 -2 —1 o 1 2

Discriminant analysis on the bankruptcy data set. Gaussian class
conditional densities. Estimated labels, based on the posterior proba of
belonging to each class, are computed. If incorrect, the point is colored
read, otherwise in blue (Training data are black).
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