CS 340: Machine Learning

Lecture 17: Neural Networks

AD

March 2010

March 2010 1/23

Limitation of Linear Models

@ Until now, we have worked primarily with linear models.

@ In the models we have previously discussed, we select beforehand the
basis functions.

o If we have too many basis functions (i.e. one for each training point),
we tend to overfit.

@ Solutions to reduce these problems consists of using priors or different
loss functions.

@ These methods dominate Machine Learning nowadays.

AD () March 2010 2 /23

Neural Networks

@ Very network, not very neural after all.

@ In this case, we fix the number of basis functions but their parameters
are adapted during training.

@ These models are (too?) flexible.

@ They can perform well but it is difficult to train them and their
interpretability is difficult.

@ Revival of these approaches over recent years.

AD () March 2010 3 /23

Feed-forward network functions

@ We have worked with models where for regression
M

y(x)=w'®(x) =) we;(x)

j=1
and for binary classification
Priy=1|x) =g (WTQD(X)) :

@ For the basic neural network (NN), we build first M linear
combinations of x = (xi, ..., xp)

OT, v 1) M
aj=w; x:/; wj x/+Wj0 forj=1,...M
a weights bias

@ We then apply a nonlinear transformation - activation function
zj = g (aj). We can use the logistic sigmoid or the hyperbolic
tangent. These are called hidden units.

AD () March 2010 4 / 23

@ We obtain K output unit activations by setting for regression
problems

M
)/k(XvW) = Z sz—l—wko fork=1,..,.K

:ﬁ<

Jj=1

MD

/—|-W >—|—ng3)
I=1

@ For classification problems, we have
u @)
e (x,w) =g (ax) =g EWkJ Z Uxi+wiy) | +wis
Jj=1

with K =1 and g (+) logistic function for binary classification and
K = C — 1 and softmax link for C classes.

AD () March 2010 5/ 23

Two-layer NN

hidden units

March 2010 6 /23

@ The NN architecture presented here is the most common one.
@ We can add layers of hidden units.

@ We can have sparse architectures where some of the connections are
not included.

o Theoretical justification: Many results have established that a
two-layer network with linear outputs can approximate any continuous
function on a compact input domain to arbitrary accuracy provided
the network has a sufficiently large number of hidden units.

AD () March 2010 7 /23

@ You should be a bit critical about these properties.

@ Essentially it tells you then if your model can be as complex as you
want then you can approximate anything.

@ However, it is true that NN can perform well in some scenarios.

AD () March 2010 8 /23

Regression examples

NN trained using 50 data on various functions using 3 hidden units with
‘tanh’ activation functions and a linear output. Ouput of the hidden units
are in dashed lines.

March 2010 9/23

Regression examples

NN trained using 50 data on various functions using 3 hidden units with
‘tanh’ activation functions and a linear output. Ouput of the hidden units
are in dashed lines.

March 2010 10 / 23

Classification example

Two input, two hidden units with ‘tanh’ activation and a single output
with logististic. Dashed blue lines show z = 0.5 for each hidden units, red
line is output y = 0.5 and green line is the true Bayes classifier.

March 2010 11 /23

NN Training

. . ;N
@ Assume we are considering a regression problem {x’,y’}." . To learn
the parameters in a regression case, we seek to minimize

E(w) =7 i i (Vi = e (<. w))®

which corresponds to maximizing the likelihood for a Gaussian model.

@ In the binary logistic regression case, we have

N

E (w) = — ; {y'log (v (x",w)) + (1= y') log (1 -y (x",w)) }

March 2010 12 /23

@ In both cases, these functions are not convex and it is difficult to
minimize E (w) .

@ We can use a gradient descent method

w(tHD) — (0 _ 5 9E (W)
aW w(t)
@ We can also use Newton-Raphson
-1
WD) — W 9°E (w) JE (w)
owow " w(t ow w(t)

which provides usually algorithms converging faster.

@ We can also cycle over the observations using

w(t+D) — (0 _ 5 9B (W)

ow

wi(t)

where E; (w) corresponds to observation /.

AD () March 2010 13 /23

A Regression Example

@ Consider the case where

el — e

D
_ (1) o N —
aj = /Zowﬂ x;, zj =tanh(aj) = e

2@
Yk (X, W) = Z Wy Zj-
j=0

o We have
1 ; ; 2
E"(W)ZEZ (yk—yk (x,w)))
k=1

@ We want to compute

oE; oE;
avvj, awkj

March 2010 14 / 23

Backpropagation algorithm

o We have
8E,- (W) 8E,- (W) ayk (Xi, W)
ow,.”) Wi (X', W) gy)

= e (ow) =) 7
(1)

e E; (w) only depends on w;;* via the summed input z; so

w0z awj(,l)

where

March 2010 15 / 23

Backpropagation algorithm

o We have
JE; (w) i (w) 9dyx (x w)
Iz [ow (X’ w) 9z
K
- 2
= 2 yk) W/Ej)
@ So putting all the terms together we have
aE,' w i K 1 2
():x, 1—z Z yk)w,gj)

March 2010

o Apply X' to the network and propagate forward through
D 1, i
aj = Li=o Wj(l)X/'v zj = h(aj)

o Evaluate g4 = yy (xi,w) — y,i for the ouput units and compute
9Eilw) _ o .
awﬁp k<

e “Backpropagate” the ¢’s to compute

aE,' (W) ; K 2
o = x| (1 — 21-2) Z skW,Ej).
ow, k=1
. aE,'(W)
@ Perform a gradient descent step w «— w —§ —.~
w

March 2010 17 / 23

Application to Digit Recognition

#,
Layer #2 Layer:®3 Layer #4
Layer #1 Fully
Input Layer 50 Feature Fully
6 Feature Maps Connected
29x29 Each 13x%13 Maps 100 Connected
Each 5x& 10 Neurons
MNeurons

@ Over 100,000 parameters trained using backpropagation, 1.40% test
error on MNIST database.

March 2010 18 / 23

Bayesian Neural Networks

@ In practice, it can help to regularize the solution using a Gaussian prior
ptwle) = TIo (v | o) TTo (+4']2
= HN(Otx_l)H./\f<ij ;0,0)

but this is inefficient as {Wj(,l)} and { (2)} play different roles.

@ It is much more efficient to have a layer specific regularization

p(w|lag,a) = Hp(W ‘a1>Hp(ij)|zx2)
— HN (WJ-, ;0,07)Ik—[/\f <ij ;0,%—1).

@ In practice, we also use specific very vague priors for the bias (as in
ridge regression).

March 2010 19 / 23

Bayesian Neural Networks

000, ab2-1.000 a1-0,001, ab1-0.100, aw2-1.000, ab2-1.000. a1-0.010, 351-0,010, aw2-1.000, ab2-1.000.
1

w0
B B

(@) (b) ©

() ©)

Samples from the regression function y (x, w) for various values of the
prior parameters.

March 2010 20 / 23

Bayesian Neural Networks for Regression

@ Assume that K =1 and
p(ylxwp) =N (yiy(xw),p).
Additionally, for sake of simplicity we set a1 = a» so that
p(w|a) HN((W0, rx—l) HN (ij ;0,07)
@ For data D = {x’,y’}nzl, we are interested in the posterior
p({yhasa| (}0y wiB) p(wla)
p ([(% 0. B)
N . .
E(w) = g Y (v -y (x’,w))2 + ngw
i=1

@ Because the likelihood is highly non-linear in w, there is no
closed-form solution for the posterior.

p(w|D,ap) =

o exp (—E (w))

where

March 2010 21 /23

Laplace approximation of the Posterior and Predictive

@ Assuming we have found the MAP estimate wypap then the Laplace
approximation approximates the posterior by a multivariate Gaussian
distribution (more next week!) centered around the MAP

p(w|D,a B)~ q(w|D a p)=N (wwuap,A)

where 82 (wl)
logp(w|D,a, B
A= wl H
owow T +B
with H the Hessian of the sum of squared prediction errors.
@ We have

pyID.wpx) = [p(yIxw)p(w|D,xp)dw
[P (ylx.w)q(w|D,a.p) dw
N (yiy (x, wmap) ,0° (x))

~1
where 02 (x) = ,B + 2)‘ A Lg:’,w)

WMAP

Q

Q

WMAP

March 2010 22 /23

Example

O data
== = function
s network ||

error bars 1

jiiiiiiias:

Target

O Data

== = Function

N e Prediction

-15 - . . || Samples
0 02 }) P

Input 0 02 0.4 06 08 1

True function (green), y (x, wmap) (red) and y (x, wmap) F 0 (x) (blue)
for an MLP with 3 hidden nodes, trained on 16 data points. (a) Laplace
approximation, after performing empirical Bayes to optimize («, 8). (b)
Samples from y (x, w) where w ~p (w| D, &, B) obtained using hybrid
Monte Carlo, using the same (a, B) as in (a).

March 2010 28

