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Introduction

: . ;N ;
@ Assume you are given some training data {x’,y’}i:1 where x'e R?
and y' can take C different values.

e Given an input test data x, you want to predict/estimate the output y
associated to x.

@ Previously we have followed a probabilistic approach

p(xly=kply=k)
Y p(xly=0ply=14)

p(y =klx)=

@ This requires modelling and learning the parameters of the class
conditional density of features p (x| y = k).
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Logistic Regression

e Discriminative model: we model and learn directly p (y = k| x) and
bypassing the introduction of p (x| y = k).
e Consider the following model for C = 2 (binary classification)

ply=1xw) = 1-p(y=0[xw)
= g(wa)
wherew =(wg - wg)', x=(x0 -+ xg)' so
d
z:wa:Wo+ZWij
j=1

and g is a “squashing” function: g : R — [0, 1].
@ Logistic regression corresponds to
g(2)

_ 1 __exp (z)
l+exp(—z) 1l4exp(z)
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Logistic Function
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(Left) logistic or sigmoid function (Right) logistic regression for x=SAT
score and y=pass/fail class (solid black dots are the data), open red
circles are predicted probabilities.
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Logistic Regression

@ The log odds ratio satisfies

— ply=1xw) 1
LOR (x) = log by =0/ xw) =W X

so the logistic parameters are easily interpretable.

o If w; > 0, then increasing x; makes y = 1 more likely while decreasing
xj makes y = 0 more likely (and opposite if wj = 0). w; = 0 means
xj has no impact on the outcome.

o Logistic regression partitions the input space into two regions whose
decision boundary is {x :LOR (x) =0} = {x:w'x =0}

@ Simple model of a neuron: it forms a weighted sum of its inputs and
the “fires” an output pulse if this sum exceeds a threshold. Logistic
regression mimics this as you can sort of think of it as a process
which “fires” if p(y = 1|x,w) > p(y = 0|x, w) equivalently if
LOR (x) > 0.
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W= (1,4) W= (5,4)

W-(2,3)

Plots of p(y = 1| wix; + wax2) . Here w = (wy, wy) define the normal to
the decision boundary. Points to the right have w'x >0 and to the left
have w'x <0.
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MLE Parameter Learning for Logistic Regression

@ To learn the parameters w, we can maximize w.r.t w the (conditional)
log-likelihood function

o p ({y}io| {1, w) = '°€HP % w)

~
—~
~—

N . .
= ) logp (v|x, w)
i=1

N . B . . B .
Iw) = Y ylogp(y' =1|x",w)+ (1—y')logp(y' =0|x",w)

i=1
N
(1 - yi) wix' — Z log (1 + exp (—wai>>
i=1

e Good news: /(w) is concave so there is no local maxima.
@ Bad news: there is no-closed form solution for W g.
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Gradient Ascent

@ Gradient ascent is one of the most basic method to maximize a
function.

@ It is an iterative procedure such that at iteration t :
t) _ o (t—1
Wt = w4y Vil (W)

where the gradient is

Vul (w) = | B0 M}T

dwg dwy

and 77 > 0 is the learning rate.

e To minimize a function f (w), simply use the gradient descent

w = wl — g Vi (W) e
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Gradient Descent Example

Gradient descent on a simple function, starting from (0,0) for 20 steps
using 7 = 0.1 (left) and 7 = 0.6 (right)
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Gradient Ascent for Logistic Regression

@ Hence we have

al (w)

TW) o oy = o) — (1)}

aWk

= Y x Y —p(y =1x.w)}
@ So in vector-form, we will do

w = w4y ol (w) e

— W(t—1)+17 i{yi_p<yi _ 1‘xiyw(t—1))} X
i=1
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Regularized Logistic Regression

@ Similarly to regression, we can regularize the solution by assigning a
Gaussian prior to w

d d

p(w)=]Tp(w)=TTN (w:0A)

Jj=0 Jj=0

@ This pushes the parameters w towards zero and can prevent
overfitting. In this case, we have

Wpyap = argmax p<w| {x’,y’}i:1>
-
w'w
- I(w) - 2 W
argmax [ (w) o

@ Wy ap can be computed iteratively using
Wit = w0 T (1w) = 5) |
= w1 4y {—)\_IW+Z,,'\I:1 {yi —p (yi —1 xi,w(t—1)>} Xi}
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Using Basis Functions for Logistic Regression

@ Similarly to regression, we can use basis functions; i.e.
ply=1xw) =g (w(x)

where w = (wy -+ Wp)', @ (x) = (P1 (x) - D (x))".

@ For example, if x €R then we can pick

e For x €RY, we can pick some radial basis functions

-
D;(x) =exp | — (X _ yj) (X _ yj)

202
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(left) Logistic regression in the original feature space x = (xi, x2). (right)
Logistic regression obtained after performing a 2nd degree poly expansion
P (x) = (1,x1,x2,xl2,x22) )

AD () March 2011 13 / 16



Example
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(left) Logistic regression for ® (x) = (1,x1,x2, ...,xllo, leo). (right)
Logistic regression using 4 radial basis functions with centers ; specified
by black crosses.
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Multinomial Logistic Regression

@ Consider now the case where C > 2. We could consider the following
generalization

p(y = elx fwele,) = =2 %) forc=1,....C

but this is not identifiabée as
p(y=clx{we+w}) =p(y=clx{w},).

o Hence we set we = (0 --- 0)" to obtain
T
c-1 exp( Ix)
p(y:c|x,{wc}C: ) = forc=1,...,C—-1
L 1+2k 1 eXp( T )

1
1+Zk 1exp(wz )

@ The (conditional) log-likelihood is concave w.r.t {WC}CC;11 so MLE
estimates can be computed using gradient.

p(y=Clxiw}l) =
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Example

Linear Mutinomial Logistic Regression Kernel-RBF Muttinomial Logistic Regression

(left) Some 5 class data in 2d (center) Multinomial logistic regression in
the original feature space x = (xi, x2) (right) RBF basis functions with
bandwidth 1 using m = 1+ N. We use all the data points as centers.
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