
CS 340 Lec. 16: Logistic Regression

AD

March 2011

AD () March 2011 1 / 16

Introduction

Assume you are given some training data
{
xi , y i

}N
i=1 where x

i∈ Rd

and y i can take C different values.

Given an input test data x, you want to predict/estimate the output y
associated to x.
Previously we have followed a probabilistic approach

p (y = k | x) = p (x| y = k) p (y = k)
∑C−1
j=0 p (x| y = j) p (y = j)

.

This requires modelling and learning the parameters of the class
conditional density of features p (x| y = k) .

AD () March 2011 2 / 16

Logistic Regression

Discriminative model: we model and learn directly p (y = k | x) and
bypassing the introduction of p (x| y = k) .
Consider the following model for C = 2 (binary classification)

p (y = 1| x,w) = 1− p (y = 0| x,w)
= g

(
wTx

)
where w = (w0 · · · wd)T , x = (x0 · · · xd)T so

z = wTx =w0 +
d

∑
j=1
wjxj

and g is a “squashing” function: g : R→ [0, 1].
Logistic regression corresponds to

g (z) =
1

1+ exp (−z) =
exp (z)

1+ exp (z)
.

AD () March 2011 3 / 16

Logistic Function

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

8 introBody.tex

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

460 480 500 520 540 560 580 600 620 640

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 1.5: (a) The sigmoid or logistic function. Produced by sigmoidPlot. (b) Logistic regression for SAT scores. Solid black dots are
the data. The open red circles is the predicted probability. The green crosses denote two students with the same SAT score of 525 (and hence
same input representation x) but with different training labels (one student passed, y = 1, the other failed, y = 0). Hence this data is not
perfectly separable using just the SAT feature. Figure generated by logregSATdemo.

will be eD(s) = s1/D. If D = 10, and we want to base our estimate on 10% of the data, we have e10(0.1) = 0.8, so we need
to extend the cube 80% along each dimension around x. Since the entire range of the data is only 1 along each dimension, we
see that the method is no longer very local, despite the name “nearest neighbor”. (Even if we only use 1% of the data, we find
e10(0.01) = 0.63: see Figure 1.4.)

There are several solutions to the curse. One is to use feature selection, which eliminates “irrelevant” dimensions. Another
approach is to find a low-dimensional manifold on which the data lies, and measure distance in that subspace. We will discuss
these kinds of techniques later.

1.2.6 Parametric vs non-parametric models
A KNN classifier is an example of a non-parametric model, This does not mean the model has “no parameters”, since it
clearly does (namely K, the parameters inside the distance metric, and all the training data). Rather, “non-parametric” means
(roughly speaking) that the number of parameters can grow with the amount of training data.

By contrast, many popular methods for classification are based on parametric models, that have a number of parameters
that is fixed ahead of time. The data is then used to estimate these parameters; this is called “learning” or “model fitting”. We
give an example of this below. By making strong parametric assumptions, we can hope to avoid the curse of dimensionality
(assuming the assumptions are reasonable!).

1.2.7 Logistic regression
Logistic regression is an example of a simple and widely used parametric model for binary classification. (It is called “logistic
regression” due to its similarity to linear regression, which we will discuss below; however, it is actually a form of classification.)
It can easily be extended to multi-class classification, and it forms the basis of several more sophisticated models, such as neural
networks (Section 16.2), relevance vector machines (Section 17.3.2), etc.

Logistic regression is a model that specifies the probability of the output given the input as follows:

p(y|x,w) = Ber(y|sigm(wTx)) (1.9)

Let us unpack this equation. First the notation Ber(y|θ) refers to the Bernoulli13 distribution, where p(y = 1) = θ and
p(y = 0) = 1− θ (see Section 2.3.1 for more details). Second, the notation wTx refers to the scalar (inner) product

wTx = w0 +
D∑
j=1

wjxj (1.10)

where we have assumed that x = (1, x1, . . . , xD). Herew0 is called an offset or bias term, and encodes the baseline probability
that y is on even if there are no other features (i.e., x1:D = 0). This trick of adding a 1 to the beginning (or end) of a feature
vector is very widely used. Finally, the notation sigm(η) refers to the sigmoid function, also known as the logistic or logit
function, defined as

sigm(η) :=
1

1 + exp(−η)
=

eη

eη + 1
(1.11)

13Daniel Bernoulli (1700–1782) was a Dutch-Swiss mathematician and physicist.

c© Kevin P. Murphy. Draft — not for circulation.

(Left) logistic or sigmoid function (Right) logistic regression for x=SAT
score and y=pass/fail class (solid black dots are the data), open red
circles are predicted probabilities.

AD () March 2011 4 / 16

Logistic Regression

The log odds ratio satisfies

LOR (x) = log
p (y = 1| x,w)
p (y = 0| x,w) = w

Tx

so the logistic parameters are easily interpretable.

If wj > 0, then increasing xj makes y = 1 more likely while decreasing
xj makes y = 0 more likely (and opposite if wj = 0). wj = 0 means
xj has no impact on the outcome.

Logistic regression partitions the input space into two regions whose
decision boundary is {x :LOR (x) = 0} =

{
x : wTx = 0

}
Simple model of a neuron: it forms a weighted sum of its inputs and
the “fires”an output pulse if this sum exceeds a threshold. Logistic
regression mimics this as you can sort of think of it as a process
which “fires” if p (y = 1| x,w) > p (y = 0| x,w) equivalently if
LOR (x) > 0.

AD () March 2011 5 / 16

Logistic Function in Two Dimensions
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

10 introBody.tex

Figure 1.6: Plots of sigm(w1x1 + w2x2). Here w = (w1, w2) defines the normal to the decision boundary. Points to the right of
this have sigm(wTx) > 0.5, and points to the left have sigm(wTx) < 0.5. Based on Figure 39.3 of [Mac03]. Figure generated by
sigmoidplot2d.

so φ(g) = [0, 1, 0], etc. This maps {r, g, b} to {0, 1}3. We now use φ(xij) instead of xij .
Note that these new features are highly correlated, because they sum to one. This can cause numerical difficulties when

estimating the weights (see Section 3.3.5). In addition, it makes the parameters of the model unidentifiable, meaning there is
not a unique estimate of their values (even given infinite data). To see why, note that increasing the weight on one component
while decreasing the weight on another will not affect the overall fit. Hence it is common to drop one of the features, say the
last one, and to use a length K − 1 vector, such as

φ(x) = (I(x = r), I(x = g)) (1.17)

The model then becomes
p(y = 1|x,w) = sigm(w0 + w1I(x = r) + w2I(x = g)) (1.18)

The effect of using this dummy encoding is to create a new offset value for each setting of x:

LOR(b) = w0, LOR(r) = w0 + w1, LOR(g) = w0 + w2 (1.19)

Essentially we are learning a separate output probability for each possible discrete input, but this is represented in terms of
difference from a baseline log-odds ratio of w0. The advantage of this approach is that we can combine it with other kinds of
covariates, where the relationship between inputs and outputs is less discontinuous. (See also Exercise 1.7.)

1.2.10 Linear separability
Logistic regression essentially partitions the input space into two regions: those for which LOR(x) < 0 and those for which
LOR(x) > 0. The point that separates these two regions is called the decision boundary, i.e., the set {x : LOR(x) = 0}.

In 1d, the decision boundary is a single point, where x∗ = −w0
w1

. The value of w0/w1 determines the location of the
threshold, and the magnitude of w1 determines the “steepness” of the sigmoid function, that is, the sensitivity of the response to
changes in x. As w1 gets larger, the sigmoid curve approaches a step-function, which has the form p(y = 1|x) = 0 if x < x∗

and p(y = 1|x) = 1 if x > x∗. In general, such “extreme” probabilities are undesirable, since they are over-confident and lead
to poor generalization performance. Later we will study mechanisms (known as regularization/ weight decay) to prevent the
parameters from becoming too large in magnitude.

If the input is 2 dimensional, the decision boundary corresponds to a line, where w0 +w1x1 +w2x2 = 0. We can interpret
(w1, w2) as a vector defining the normal to the decision boundary, and w0 is an offset that determines where along this normal
vector the decision boundary lies. See Figure 1.6 for an illustration. It is clear that in general the decision boundary will always
be a linear function of the features.

c© Kevin P. Murphy. Draft — not for circulation.

Plots of p (y = 1|w1x1 + w2x2) . Here w = (w1,w2) define the normal to
the decision boundary. Points to the right have wTx >0 and to the left
have wTx <0.

AD () March 2011 6 / 16

MLE Parameter Learning for Logistic Regression

To learn the parameters w, we can maximize w.r.t w the (conditional)
log-likelihood function

l (w) = log p
({
y i
}N
i=1

∣∣∣ {xi}Ni=1 ,w) = log N

∏
i=1
p
(
y i
∣∣ xi ,w)

=
N

∑
i=1
log p

(
y i
∣∣ xi ,w)

We have

l (w) =
N

∑
i=1

y i log p
(
y i = 1

∣∣ xi ,w)+ (1− y i) log p (y i = 0∣∣ xi ,w)
= −

N

∑
i=1

(
1− y i

)
wTxi −

N

∑
i=1
log
(
1+ exp

(
−wTxi

))
Good news: l (w) is concave so there is no local maxima.
Bad news: there is no-closed form solution for ŵMLE.

AD () March 2011 7 / 16

Gradient Ascent

Gradient ascent is one of the most basic method to maximize a
function.

It is an iterative procedure such that at iteration t :

w(t) = w(t−1) + η ∇wl (w)|w(t−1)

where the gradient is

∇wl (w) =
[

∂l(w)
∂w0

· · · ∂l(w)
∂wd

]T
and η > 0 is the learning rate.

To minimize a function f (w), simply use the gradient descent

w(t) = w(t−1) − η ∇wf (w)|w(t−1)

AD () March 2011 8 / 16

Gradient Descent Example

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

310 compBody.tex

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

(a)

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

(b)

Figure 11.1: Gradient descent on a simple function, starting from (0, 0), for 20 steps, using a fixed learning rate (step size) η. The global
minimum is at (1, 1). (a) η = 0.1. (b) η = 0.6. Produced by steepestDescentDemo.

11.1 Introduction

One of the main computational challenges in machine learning is devising efficient training algorithms. In this chapter, we
focus on optimization algorithms which can solve MAP parameter estimation problems of the following form:

θ∗ = arg max
θ

log p(θ|D) = arg max
θ

log p(D|θ) + log p(θ) (11.1)

By using a uniform prior, p(θ) ∝ 1, these algorithms can also be used for ML estimation. We can also use these algorithms for
regularized risk minimization (Section 10.3.4), where we dispense with any probabilistic concepts.

11.2 First-order optimization algorithms

In the optimization community, it is more common to minimize functions than maximize them. We will therefore define our
objective function as follows:

f(θ) := − log p(D|θ)− log p(θ) (11.2)

This is called the penalized negative log likelihood.
The likelihood is usually a smooth function of the parameters. If the prior is also smooth (e.g., a Gaussian), then we can use

standard gradient-based optimization methods to find the MAP estimate. In this section, we focus on first-order optimization
methods, which make use of the gradient (first-order derivatives) but not the Hessian (second-order derivatives).

If the prior and likelihood are both convex, then the overall objective is convex. In this case, these methods will find the
global optimum. If the objective is not convex, they will just find a local optimum.

If the prior is not smooth (e.g., the Laplace distribution has a discontinuity at the origin), then we must use methods for
non-smooth optimization. We will see examples of such methods in Section 15.4. Alternatively, we may be able to phrase the
problem in terms of constrained optimization (Section ??).

11.2.1 Gradient descent

One of the simplest optimization algorithms is called gradient descent or steepest descent. This can be written as follows:

θk+1 = θk − ηkgk (11.3)

where k indexes steps of the algorithm, gk = g(θk) is the gradient at step k, and ηk > 0 is called the learning rate or step
size. We discuss how to set this below.

If the function is convex, gradient descent will in theory always converge to the global minimum. If the function is non-
convex, it will converge to a local minimum, which is a point where the gradient vanishes, g = 0, and the Hessian H is positive
definite, so all sides of the “bowl” point “up hill”. (This is a vector generalization of the scalar case, which says that a local
optimum must satisfy f ′(θ) = 0 and f ′′(θ) > 0.) If H is only positive semi-definite, we are at a turning or stationary point;
such points are usually unstable, so we will generally disregard them.

c© Kevin P. Murphy. Draft — not for circulation.

Gradient descent on a simple function, starting from (0,0) for 20 steps
using η = 0.1 (left) and η = 0.6 (right)

AD () March 2011 9 / 16

Gradient Ascent for Logistic Regression

We have

∂l (w)
∂wk

= −
N

∑
i=1

(
1− y i

)
x ik +

N

∑
i=1
x ik

exp
(
−wTxi

)
1+ exp (−wTxi)

Hence we have

∂l (w)
∂wk

=
N

∑
i=1
x ik
{
p
(
y i = 0

∣∣ xi ,w)− (1− y i)}
=

N

∑
i=1
x ik
{
y i − p

(
y i = 1

∣∣ xi ,w)}
So in vector-form, we will do

w(t) = w(t−1) + η ∇wl (w)|w(t−1)

= w(t−1) + η
N

∑
i=1

{
y i − p

(
y i = 1

∣∣ xi ,w(t−1))} xi

AD () March 2011 10 / 16

Regularized Logistic Regression

Similarly to regression, we can regularize the solution by assigning a
Gaussian prior to w

p (w) =
d

∏
j=0
p (wj) =

d

∏
j=0
N (wj ; 0,λ)

This pushes the parameters w towards zero and can prevent
overfitting. In this case, we have

ŵMAP = argmax p
(
w|
{
xi , y i

}N
i=1

)
= argmax l (w)− w

Tw
2λ

.

ŵMAP can be computed iteratively using

w(t) = w(t−1) + η ∇w
(
l (w)− wTw

2λ

)∣∣∣
w(t−1)

= w(t−1) + η
{
−λ−1w+∑N

i=1

{
y i − p

(
y i = 1

∣∣ xi ,w(t−1))} xi
}

AD () March 2011 11 / 16

Using Basis Functions for Logistic Regression

Similarly to regression, we can use basis functions; i.e.

p (y = 1| x,w) = g
(
wTΦ (x)

)
where w = (w1 · · · wm)T , Φ (x) = (Φ1 (x) · · · Φm (x))

T .

For example, if x ∈R then we can pick

Φ (x) = (1, x , . . . , xm)

For x ∈Rd , we can pick some radial basis functions

Φj (x) = exp

−
(
x− µj

)T (
x− µj

)
2σ2

 .

AD () March 2011 12 / 16

Example

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 11

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(b)

Figure 1.7: (a) A logistic regresion model in the original feature space. (b) After performing a second degree polynomial expansion. Figure
generated by logregBasisFnDemo.

(a)

0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

7

poly10

(b)

0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

7

rbf prototypes

(c)

Figure 1.8: (a) xor truth table. (b) Fitting a linear logistic regression classifier using degree 10 polynomial expansion. (c) Same model, but
using an RBF kernel with centroids specified by the 4 black crosses. Figure generated by logregXorDemo.

If we can make no errors on the training set using a linear decision boundary (i.e., all the examples of y = 0 lie on one
side of the boundary, and all the examples of y = 1 lie on the other), the data is said to be linearly separable. However, most
data sets are not linearly separable. Figure 1.7(a) shows a simple example. There is obviously no straight line that can perfectly
separate this data. We discuss various solutions to this problem below.

1.2.11 Basis function expansion
There is an easy way to make linear models represent non-linear functions, called basis function expansion. The idea is that
we replace the original features x by some (fixed) non-linear function φ(x), and then use wTφ(x) instead of wTx. This is still
considered a linear model, since it is a linear function of the parameters w, although the model is a non-linear function of the
features. Such models inherit the speed and simplicity of standard linear models, but they have more modeling power.

A simple example of basis function expansion is to use a polynomial of degree d:

φ(x) = [1, x1, x2, . . . , xd] (1.20)

Applying this to each of the training examples gives rise to the following design matrix

X =

1 x1 x2
1 · · · xd1

...
1 xN x2

N · · · xdN

 (1.21)

(It is common to standardize the data before applying this transformation, for reasons of numerical stability.)
After performing this transformation, we can use logistic regression to create “curvy” decision boundaries. We illustrate

this in Figure 1.7(b), where we use d = 2. Although the problem is not linearly separable in the original features, it is separable
after this feature transformation.

Another kind of basis function expansion is based on radial basis functions (RBF), which have the form

φ(x) = [κ(x,µ1), . . . , κ(x,µD′)] (1.22)

where κ(x,µk) = exp(− 1
2σ2 ||µk − x||2)), the µk are prototypes or exemplars, and σ2 is known as the bandwidth.

The quantity κ(x,µk) ≥ 0 is called a kernel function; it measures the similarity between x and µk, where similar objects
are defined to be ones that are close in Euclidean distance in the original feature space. (The σ parameter controls the length

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

(left) Logistic regression in the original feature space x = (x1, x2). (right)
Logistic regression obtained after performing a 2nd degree poly expansion
Φ (x) =

(
1, x1, x2, x21 , x

2
2

)
.

AD () March 2011 13 / 16

Example

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 11

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(b)

Figure 1.7: (a) A logistic regresion model in the original feature space. (b) After performing a second degree polynomial expansion. Figure
generated by logregBasisFnDemo.

(a)

0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

7

poly10

(b)

0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

7

rbf prototypes

(c)

Figure 1.8: (a) xor truth table. (b) Fitting a linear logistic regression classifier using degree 10 polynomial expansion. (c) Same model, but
using an RBF kernel with centroids specified by the 4 black crosses. Figure generated by logregXorDemo.

If we can make no errors on the training set using a linear decision boundary (i.e., all the examples of y = 0 lie on one
side of the boundary, and all the examples of y = 1 lie on the other), the data is said to be linearly separable. However, most
data sets are not linearly separable. Figure 1.7(a) shows a simple example. There is obviously no straight line that can perfectly
separate this data. We discuss various solutions to this problem below.

1.2.11 Basis function expansion
There is an easy way to make linear models represent non-linear functions, called basis function expansion. The idea is that
we replace the original features x by some (fixed) non-linear function φ(x), and then use wTφ(x) instead of wTx. This is still
considered a linear model, since it is a linear function of the parameters w, although the model is a non-linear function of the
features. Such models inherit the speed and simplicity of standard linear models, but they have more modeling power.

A simple example of basis function expansion is to use a polynomial of degree d:

φ(x) = [1, x1, x2, . . . , xd] (1.20)

Applying this to each of the training examples gives rise to the following design matrix

X =

1 x1 x2
1 · · · xd1

...
1 xN x2

N · · · xdN

 (1.21)

(It is common to standardize the data before applying this transformation, for reasons of numerical stability.)
After performing this transformation, we can use logistic regression to create “curvy” decision boundaries. We illustrate

this in Figure 1.7(b), where we use d = 2. Although the problem is not linearly separable in the original features, it is separable
after this feature transformation.

Another kind of basis function expansion is based on radial basis functions (RBF), which have the form

φ(x) = [κ(x,µ1), . . . , κ(x,µD′)] (1.22)

where κ(x,µk) = exp(− 1
2σ2 ||µk − x||2)), the µk are prototypes or exemplars, and σ2 is known as the bandwidth.

The quantity κ(x,µk) ≥ 0 is called a kernel function; it measures the similarity between x and µk, where similar objects
are defined to be ones that are close in Euclidean distance in the original feature space. (The σ parameter controls the length

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

(left) Logistic regression for Φ (x) =
(
1, x1, x2, ..., x101 , x

10
2

)
. (right)

Logistic regression using 4 radial basis functions with centers µj specified
by black crosses.

AD () March 2011 14 / 16

Multinomial Logistic Regression

Consider now the case where C > 2. We could consider the following
generalization

p
(
y = c | x, {wc}Cc=1

)
=

exp
(
wTc x

)
∑C
k=1 exp

(
wTk x

) for c = 1, ...,C
but this is not identifiable as
p
(
y = c | x, {wc +w′}Cc=1

)
= p

(
y = c | x, {wc}Cc=1

)
.

Hence we set wC = (0 · · · 0)T to obtain

p
(
y = c | x, {wc}C−1c=1

)
=

exp
(
wTc x

)
1+∑C−1

k=1 exp
(
wTk x

) for c = 1, ...,C − 1
p
(
y = C | x, {wc}C−1c=1

)
=

1

1+∑C−1
k=1 exp

(
wTk x

) .
The (conditional) log-likelihood is concave w.r.t {wc}C−1c=1 so MLE
estimates can be computed using gradient.

AD () March 2011 15 / 16

Example

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

12 introBody.tex

1 2 3
0

0.1

0.2

0.3

0.4
T=100

1 2 3
0

0.5

1
T=1

1 2 3
0

0.5

1
T=0.1

1 2 3
0

0.5

1
T=0.01

Figure 1.9: Softmax distribution S(η/T), where η = (3, 0, 1), at different temperatures T . When the temperature is high (left), the
distribution is uniform, whereas when the temperature is low (right), the distribution is “spiky”, with all its mass on the largest element.
Figure generated by softmaxDemo2.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Linear Multinomial Logistic Regression

(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Kernel−RBF Multinomial Logistic Regression

(c)

Figure 1.10: (a) Some 5 class data in 2d. (b) Multinomial logistic regression in the original feature space. (c) RBF basis functions with
bandwidth of 1. We use all the data points as centers. Figure generated by logregMultinomKernelDemo.

scale.) In Section 17.2, we discuss more general kinds of kernel functions, which allow us to measure the similarity between
structured objects such as strings (sequences of characters), trees, molecular structures, etc.

Combining RBF basis functions with logistic regression yields a model known as an RBF network, which is a kind of
neural network. This method is illustrated in Figure 1.8, which shows data arising from the infamous xor or exclusive or
function. The xor function is defined on binary data (see Figure 1.8(a)), but we have jittered the points to make the picture
clearer. In Figure 1.8(b), we see we cannot separate the data even using a degree 10 polynomial. However, using an RBF
kernel and just 4 prototypes easily solves the problem as shown in Figure 1.8(c). We discuss RBF networks in more detail in
Section 17.3.

1.2.12 Multinomial logistic regression

In this section, we extend binary logistic regression to the multiclass case, to create a model called multinomial logistic
regression, or the multinomial logit model.

We make several changes. First we replace the (D + 1) × 1 weight vector w with a (D + 1) × C weight matrix W.
Second, we replace the sigmoid function sigm(wTx) with the softmax function S(WTx), to be defined below; this returns a
C × 1 vector. Finally, we replace the Bernoulli distribution with a discrete or categorical distribution, where Cat(y|η) means
p(y = c|η) = ηc. (This is a special case of the multinomial distribution, discussed in Section 2.3.2.) So the overall model has
the form

p(y|x,W) = Cat(y|S(WTx)) (1.23)

The softmax function is defined as follows:

S(η)c =
eηc∑C

c′=1 e
ηc′

(1.24)

The softmax function is so-called since it acts a bit like the max function. To see this, let us divide each ηc by a constant T
called the temperature. Then as T → 0, we find

S(η/T)c =
{

1.0 if c = arg maxc′ ηc′
0.0 otherwise (1.25)

In other words, at low temperatures, the distribution spends essentially all of its time in the most probable state, whereas at high
temperatures, it visits all states uniformly. (In statistical physics, the softmax function is called the Boltzmann distribution.)
See Figure 1.9 for an illustration.

c© Kevin P. Murphy. Draft — not for circulation.

(left) Some 5 class data in 2d (center) Multinomial logistic regression in
the original feature space x = (x1, x2) (right) RBF basis functions with
bandwidth 1 using m = 1+N. We use all the data points as centers.

AD () March 2011 16 / 16

