
CS 340 Lec. 15: Linear Regression

AD

February 2011

AD () February 2011 1 / 31



Regression

Assume you are given some training data
{
xi , yi

}N
i=1 where x

i ∈ Rd

and yi ∈ Rc .

Given an input test data x, you want to predict/estimate the output y
associated to x.
Applications:

x: location, y sensor reading.
x: stock at time t − d , t − d + 1, ..., t − 1, y : stock at time t.
x: temperature at day t − d , t − d + 1, ..., t − 1, y : temperature at
day t.
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Formalization

We want to learn a mapping/predictor based on
{
xi , yi

}N
i=1:

f : Rd → Rc

which allows us to predict the response y given a new input x; i.e.

y (x) = f (x) .

Linear regression is the simplest approach to build such a mappnig
and is ubiquitous in applied science.
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Linear Regression

For sake of simplicity, consider the simplest case c = 1 and d = 1.

Linear regression assumes a model

y (x) = w1x + w0

where w1,w0 ∈ R.

Given only 2 training data, we can solve for w1 and w0 but the result
would be dependent of the 2 training data selected and very sensitive
to the noise in the training responses y i .

A more sensible approach is to minimize the residual errors εi over the
N training data

εi = y i − y
(
x i
)

= y i − w1x i − w0
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Least square Regression

We propose to minimize the sum of the squared residual errors w.r.t
(w0,w1)

E (w0,w1) =
N

∑
i=1

(
y i − w1x i − w0

)2
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Figure 1.21: RBF basis in 1d. Left column: fitted function. Middle column: basis functions evaluated on a grid. Right column: design
matrix. Top to bottom we show different bandwidths: σ = 0.1, σ = 0.5, σ = 50. Figure generated by linregRbfDemo.
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Figure 1.22: (a) In linear least squares, we try to minimize the sum of squared distances from each training point (denoted by a red circle)
to its approximation (denoted by a blue cross), that is, we minimize the sum of the lengths of the little vertical blue lines. The red diagonal
line represents ŷ(x) = w0 + w1x, which is the least squares regression line. Note that these residual lines are not perpendicular to the least
squares line, in contrast to Figure 21.8. Figure generated by residualsDemo. (b) Contours of the RSS error surface for the same example.
The red cross represents the MLE, w = (1.45, 0.93). Figure generated by contoursSSEdemo.

c© Kevin P. Murphy. Draft — not for circulation.
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Least square Regression

We compute ∂E
∂w0

and set it equal to zero

∂E
∂w0

= −2
N

∑
i=1

(
y i − w1x i − w0

)
= 0

⇔ w0 =
∑N
i=1 y

i

N
− w1

∑N
i=1 x

i

N
= y − w1x

Substituting back w0 = y − w1x in E (w0,w1) , we obtain

E (y − w1x ,w1) =
N

∑
i=1

((
y i − y

)
− w1

(
x i − x

))2
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Least square Regression

We compute ∂E
∂w1

set them equal to zero

∂E
∂w1

= −2
N

∑
i=1

(
x i − x

) ((
y i − y

)
− w1

(
x i − x

))
= 0

⇔ w1 =
∑N
i=1

(
x i − x

) (
y i − y

)
∑N
i=1 (x i − x)

2

Hence

w0 = y − w1x = y −
∑N
i=1

(
x i − x

) (
y i − y

)
∑N
i=1 (x i − x)

2 x .
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Example
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Figure 1.21: RBF basis in 1d. Left column: fitted function. Middle column: basis functions evaluated on a grid. Right column: design
matrix. Top to bottom we show different bandwidths: σ = 0.1, σ = 0.5, σ = 50. Figure generated by linregRbfDemo.
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Figure 1.22: (a) In linear least squares, we try to minimize the sum of squared distances from each training point (denoted by a red circle)
to its approximation (denoted by a blue cross), that is, we minimize the sum of the lengths of the little vertical blue lines. The red diagonal
line represents ŷ(x) = w0 + w1x, which is the least squares regression line. Note that these residual lines are not perpendicular to the least
squares line, in contrast to Figure 21.8. Figure generated by residualsDemo. (b) Contours of the RSS error surface for the same example.
The red cross represents the MLE, w = (1.45, 0.93). Figure generated by contoursSSEdemo.

c© Kevin P. Murphy. Draft — not for circulation.

In linear least squares, we minimize the sum of squared distances from
each training point (denoted by a red circle) to its approximation (denoted
by a blue cross). The red diagonal line represents y (x) = w1x + w0,
which is the least squares regression line. Note that these residual lines are
not perpendicular to the least squares line, in contrast to PCA.
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Least square Regression for Multidimensional Inputs

Consider now that c = 1 but d > 1 and we consider

y (x) = w0 +
d

∑
k=1

wkxk

= wTx+ w0 = w̃T x̃

where

w̃T =
(
w0 wT

)
= (w0 w1 · · · wd )

x̃T =
(
1 xT

)
= (1 x1 · · · xd )

Given N training data, we want to minimize w.r.t w̃ the sum of the
squared residual errors

E (w̃) =
N

∑
i=1

(
y i − w̃T x̃i

)2
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Least square Regression for Multidimensional Inputs

We can rewrite

E (w̃) =
(
Y− X̃w̃

)T (
Y− X̃w̃

)
where

Y=
(
y1 . . . yN

)T
N × 1 matrix

X̃ = (x̃1 x̃2 · · · x̃N )T N × (d + 1) matrix
We can rewrite

E (w̃) = YTY−2YTX̃w̃+ w̃TX̃TX̃w̃

By setting ∂E
∂w̃ = 0, we obtain if

(
X̃TX̃

)
is invertible

̂̃wLS = (X̃TX̃)−1 X̃TY
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Least square Regression for Multidim Inputs Ouputs

Consider the case where c > 1 and d > 1 then

E (w̃) =
N

∑
i=1
trace

(
yi − W̃T x̃i

)T (
yi − W̃T x̃i

)
=

∥∥∥Y− X̃W̃∥∥∥2
F
=

N

∑
i=1

c

∑
j=1

(
y ij −

(
W̃T x̃i

)
j

)2
where W̃ ∈ R(d+1)×c .

It can also be shown that

̂̃wLS = (X̃TX̃)−1 X̃TY
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Geometric Interpretation

For sake of simplicity, let’s come back to the case where c = 1. We
have for an new input x

y (x) = ̂̃wTLS x̃ = x̃T ̂̃wLS = x̃T (X̃TX̃)−1 X̃TY
On the training set

{
xi , yi

}N
i=1 , we have

Y (X) = X̃ ̂̃wLS = X̃(X̃TX̃)−1 X̃TY
so

X̃T (Y (X)−Y) = X̃TX̃
(
X̃TX̃

)−1
X̃TY−X̃TY

= 0

Y (X) is simply the orthogonal projection of Y onto the columns of X̃.
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Nonlinear Regression using Basis Functions

Linear regression can handle nonlinear regression problem; e.g.

y (x) = w̃TΦ (x̃)

where Φ : Rd+1 → Rm and w̃ is a m−dimensional vector.
Example: Φ (x̃) =

(
1,x ,x2

)T (d = 1,m = 3); Φ (x̃) = x̃ = (1,x1,x2)
(d = 2,m = 3); Φ (x̃) = x̃ =

(
1,x1,x2, x21 ,x

2
2

)
(d = 2,m = 5).
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Figure 1.20: More examples of regression. (a) We fit a degree 2 polynomial to the 1d input. Produced by linregPolyVsDegree. (b)
Input is 2d. Vertical axis is temperature, horizontal axes are location within a room. Data was collected by some remote sensing motes at
Intel’s lab in Berkeley, CA (data courtesy of Romain Thibaux). The fitted plane has the form f̂(x) = w0 + w1x1 + w2x2. (c) Temperature
data is fitted with a quadratic of the form f̂(x) = w0 + w1x1 + w2x2 + w3x

2
1 + w4x

2
2. Figure generated by surfaceFitDemo.

(We discuss pdf’s in more detail in Section 2.4.1; we discuss the Gaussian distribution in more detail in Section 2.4.2.) To make
the output y depend on the input x, we can write

p(y|x,θ) = N (y|µ(x), σ2(x)) (1.30)

In the simplest case, we assume µ is a linear function of x, so µ = wTx, and that the noise is fixed, σ2(x) = σ2. This model
is called linear regression, and is illustrated in 1d in Figure 1.19(a-b). It can be equivalently written in the following form:

y(x) = wTx + ε (1.31)

where ε ∼ N (0, σ2) is the residual error between our linear predictions and the true response.
Linear regression is very widely used because it is simple to understand, and it is easy to fit, as we explain in Section 1.3.2.

It can be made to model non-linear relationships using basis function expansion, as illustrated in Figure 1.20. For example,
Figure 1.20(a) illustrates the case where we fit a polynomial model to 1d input, φ(x) = [1, x, x2]. Figure 1.20(b) illustrates the
case where we fit a linear model to 2d input, φ(x) = [1, x1, x2]. Figure 1.20(c) illustrates the case where we fit a quadratic
model to 2d input, φ(x) = [1, x1, x2, x

2
1, x

2
2]. (We could also incorporate interaction terms of the form x1x2 if we wished.)

Another way to perform nonlinear regression is to use kernels to define the basis functions,φ(x) = [κ(x,µ1), . . . , κ(x,µD′)].
For example, Figure 1.21 shows a 1d data set fit with D′ = 10 uniformly spaced RBF prototypes, but with the bandwidth rang-
ing from small to large. Small values lead to very wiggly functions, since the predicted function value will only be non-zero
for points x that are close to one of the prototypes µk. If σ2 is very large, the design matrix reduces to a constant matrix of 1’s,
since each point is equally close to every prototype; hence the corresponding function is just a straight line.

Many other variants on the basic linear regression model are possible, such as the following:

• We can transform the outputs before fitting the model. For example it is common to use models of the form log(ŷ) =
w0 + w1x1 + · · ·wDxD + ε, where ε ∼ N (0, σ2). This is equivalent to saying that the residual error has a log normal
distribution. On the original y scale, this model becomes ŷ = ew0ew1x1 × · · · × ewdxdeε, so we see that the inputs (and
noise) have a multiplicative effect on the output. In other words, if xj is increased by one unit, then y is multiplied by
ewj on average.

• We can allow the variance of the noise to depend on the inputs; this is called heteroscedasticity, and is illustrated in
Figure 1.19(c).

• We can use non-Gaussian noise, which can make the model more robust to outliers, as explained in Section 1.3.4.

1.3.2 Maximum likelihood and least squares
The most common way to estimate the parameters of a statistical model is the method of maximum likelihood. This principle
says we should choose the parameters θ which assign highest probability to the training data. More precisely, the maximum
likelihood estimate or MLE is defined as

θ̂ := arg max
θ

p(D|θ) (1.32)

Intuitively the ML criterion makes sense: we “wiggle” the parameters θ until we find a setting that makes the model assign the
highest probability to the observed data. There are also various strong theoretical arguments to support the use of MLE, some
of which we will discuss in Section 10.6.

Machine Learning: a Probabilistic Approach, draft of January 4, 2011
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MSE on Training and Test Sets
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Figure 1.54: MSE on training and test sets vs size of training set, for data generated from a degree 2 polynomial with Gaussian noise of
variance 4. We fit polynomial models of varying degree to this data. (a) Degree 1. (b) Degree 2. (c) Degree 25. Note that for small training
set sizes, the test error of the degree 25 polynomial is higher than that of the degree 2 polynomial, due to overfitting, but this difference
vanishes once we have enough data. Note also that the degree 1 polynomial is too simple and has high test error even given large amounts of
training data. Figure generated by linregPolyVsN.

1.7.1.3 Overfitting in unsupervised learning

Overfitting can also arise in unsupervised learning settings. For example, we may use too many clusters, some of which might
be used to model outliers or noise. Or we may pick a low dimensional subspace that is too high dimensional, thus capturing the
noise as well as the signal. We will discuss these issues later.

1.7.2 The benefits of more data

One way to avoid overfitting it to use lots of data. Indeed, it should be intuitively obvious that the more training data we have,
the better we will able to learn. (This assumes the training data is randomly sampled, and we don’t just get repetitions of the
same examples. Having informatively sampled data can help even more; this is the motivation for an approach known as active
learning, where you get to choose your training data.) Thus the test set error should decrease to some plateau as N increases.

This is illustrated in Figure 1.54, where we plot the mean squared error incurred on the test set achieved by polynomial
regression models of different degrees vs N (a plot of error vs training set size is known as a learning curve). The level of the
plateau for the test error consists of two terms: an irreducible component that all models incur, due to the intrinsic variability of
the generating process (this is called the noise floor); and a component that depends on the discrepancy between the generating
process (the “truth”) and the model: this is called structural error.

In Figure 1.54, the truth is a degree 2 polynomial, and we try fitting polynomials of degrees 1, 2 and 25 to this data. Call the
3 modelsM1,M2 andM25. We see that the structural error for modelsM2 andM25 is zero, since both are able to capture
the true generating process. However, the structural error forM1 is substantial, which is evident from the fact that the plateau
occurs high above the noise floor.

For any model that is expressive enough to capture the truth (i.e., one with small structural error), the test error will go to
the noise floor as N → ∞. However, it will typically go to zero faster for simpler models, since there are fewer parameters to
estimate. In particular, for finite training sets, there will be some discrepancy between the parameters that we estimate and the
best parameters that we could estimate given the particular model class. This is called approximation error, and goes to zero
as N →∞, but it goes to zero faster for simpler models. This is illustrated in Figure 1.54.

So far, we have been talking about test error, which is what we mostly care about. But it is also interesting to look at the
training error vs N for the different models. For models that are too simple, the training error is initially high, since we cannot
model the truth, but will go down as we estimate the parameters more reliably. But for models that can capture the truth, the
training error will increase to some plateau as N increases. The reason is this: initially the model is sufficiently powerful to
simply memorize the training data, but as we are given more examples, it becomes harder to fit them perfectly given a fixed-
complexity model. Eventually the error on the training set will match the error on the test set, as shown in Figure 1.54. (If the
error on the training set increases with N , it is a sign that we are overfitting.)

In domains with lots of data, simple methods can work surprisingly well [HNP09]. However, there are still reasons to study
more sophisticated learning methods, because there will always be problems for which we have little data, especially little
labeled data.

1.7.3 `2 regularization

In cases where we have little data relative to the complexity of the model, we can minimize the chance of overfitting by
penalizing overly “extreme” parameter values. This is called regularization. For example, when fitting a polynomial regression

c© Kevin P. Murphy. Draft — not for circulation.

Data generated from a degree 2 poly. with Gaussian noise of var. 4. We
fit polynomial models. For N small, test error of the degree 25 poly. is
higher than that of the degree 2 poly., due to overfitting, but this
difference vanishes once as N increases. Note also that the degree 1 poly.
is too simple and has high test error even given large N.
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Kernel Regression

Another way to perform nonlinear regression is to use kernels to
define the basis functions Φ (x) = (K (x, µ1) , ...,K (x, µm)).
For example, we could use a Radial Basis Function

K (x, µ) = exp

(
− (x− µ)T (x− µ)

2σ2

)
.

Alternatively we can use any function: wavelets, curvelets, splines etc.

Selecting
(
µ1, ..., µm , σ

2
)
can be diffi cult.

How to select µ: 1) place the centers unformly spaced in the region
containing the data, 2) place one center at each data point, 3) cluster
the data and use one center for each cluster, 4) use CV, MLE or
Bayesian approach.

How to select σ2 : 1) use average squared distances to neighboring
centers (scaled by a constant), 2) use CV, MLE or Bayesian approach.
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Kernel Regression

(Left) RBS basis in 1d. (Middle) Basis functions evaluated on a grid.
(Right) Design matrix.
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A Probabilistic Interpretation of Least-Square Regression

Consider the following model

p
(
y | x,w̃, σ2

)
= N

(
y ; y (x) , σ2

)
where y (x) = w̃TΦ (x̃).
Given the training set

{
xi , yi

}N
i=1 , the MLE estimates of

(
w̃, σ2

)
is

given by (̂̃wMLE , σ̂2MLE) = argmax
(w̃,σ2)

N

∑
i=1
log p

(
y i
∣∣ xi ,w̃, σ2)

where
N

∑
i=1
log p

(
y i
∣∣ xi ,w̃, σ2) = −N

2
log
(
2πσ2

)
− 1
2σ2

N

∑
i=1

(
y i − w̃T x̃i

)2
Hence ̂̃wMLE = (X̃TX̃)−1 X̃TY and
σ̂2MLE = ∑N

i=1

(
y i − ̂̃wMLE x̃i)2 /N.

AD () February 2011 17 / 31



Robust Regression

The problem with least square regression is that it is very sensitive to
outliers as it minimizes

EL2 (w̃) =
N

∑
i=1

(
y i − y

(
xi
))2

=
N

∑
i=1

(
y i − w̃T x̃i

)2
and hence the square of the residual errors.
To design a procedure less sensitive to these outliers, we could pick

EL1 (w̃) =
N

∑
i=1

∣∣y i − y (xi )∣∣ = N

∑
i=1

∣∣∣y i − w̃T x̃i ∣∣∣ .
As |u| goes to infinity slowler than u2 as |u| → ∞ then this procedure
is less sensitive to outliers. We could also use something like
EHuber (w̃) = ∑N

i=1 c
(
y i − y

(
xi
))
where

c (u) =
{
|u| if |u| ≤ |u0|
|u0| if |u| ≥ |u0|
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A Probabilistic Interpretation of Robust Regression

Consider the following model

p (y | x,w̃, b) = Lap (y ; y (x) , b)
where y (x) = w̃T x̃ and

Lap (x ; µ, b) =
1
2b
exp

(
−|x − µ|

b

)
is the Laplace density of location µ and scale b.

Given the training set
{
xi , yi

}N
i=1 , the MLE estimates of

(
w̃, σ2

)
is

given by(̂̃wMLE ,Laplace , b̂MLE) = argmax
(w̃,b)

N

∑
i=1
log p

(
y i
∣∣ xi ,w̃, b)

= argmax −N log (2b)− 1
b

N

∑
i=1

∣∣∣y i − w̃T x̃i ∣∣∣ .
That is ̂̃wMLE ,Laplace minimizes EL1 (w̃) .
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Gauss versus Laplace
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Figure 1.24: Linear regression with outliers. Data points are black circles. Black dotted line: least squares. Blue dashed line: Laplace. Red
solid line: Student T. Figure generated by linregRobustDemo.
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Figure 1.25: (a) The pdf’s for a N (0, 1) and Lap(0, 1/
√

2) distribution. The mean is 0 and the variance is 1 for both distributions. (b)
Negative log of these pdf’s. Figure generated by laplacePdfPlot.

The technical term for a likelihood surface which is shaped like a bowl, and which has a unique minimum, is “convex”
(see Section 30.5 for more details). Models with convex likelihoods are desirable since we can always find the globally optimal
MLE. By contrast, some models have complex non-convex likelihood surfaces, such as that shown in Figure 1.23(b). Such
models have multiple local optima, and will be harder to fit. (We discuss optimization algorithms in Chapters 11 and ??.)

1.3.3 Non-linear regression

If we believe the output is a nonlinear function of the input, we can still use a linear model, provided we use basis function
expansion of some form. If we want to learn the basis functions themselves, the problem becomes nonlinear, so it is harder to fit
the model (the objective function becomes non-convex). Neural networks are one way to learn basis functions; such models can
be used for regression and classification. See Chapter 16 for details. Classification and regression trees are another approach.
Several other nonlinear methods for classification and regression will be discussed later in the book.

1.3.4 Robust regression

It is very common to model the noise in regression models using a Gaussian distribution with zero mean and constant variance,
εi ∼ N (0, σ2), where εi = yi − wTxi. In this case, maximizing likelihood is equivalent to minimizing the sum of squared
residuals, as we have seen. However, if we have outliers in our data, this can result in a poor fit, as illustrated in Figure 1.24.
(The outliers are the points on the bottom of the figure.) This is because squared error penalizes deviations quadratically, so
points far from the line have more affect on the fit than points near to the line.

One way to achieve robustness to outliers is to replace the Gaussian distribution for the response variable with a distribution
that has heavy tails. Such a distribution will assign higher likelihood to outliers, without having to perturb the straight line to
“explain” them. We give some examples below.

c© Kevin P. Murphy. Draft — not for circulation.

(left) Plots of N (y ; 0, 1) and Lap
(
y ; 0, 1/

√
2
)
densities (both have

zero-mean unit variance). (right) Negative logs of these pdfs.
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Gauss versus Laplace Regression
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Linear regression with outliers. Data points are black circles. Black dottet
line: LS, Blue dashed line: Laplace.
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Limitations of Least-Square Regression

Remember that our estimate is given by

̂̃wLS = (X̃TX̃)−1 X̃TY
This assumes that the (d + 1)× (d + 1) matrix

(
X̃TX̃

)
is invertible.

We have rank
(
X̃TX̃

)
=rank

(
X̃
)
≤ min (N, d + 1) . Hence in

common scenarios where N < d + 1, we can never invert X̃TX̃!
We have also problems when columns/rows of X̃ are almost linearly
dependent (collinearity).
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The Need for Regularization

When we have a small number of data, we want to be able to
regularize the solution and limit overfitting.

When fitting a polynomial regression model, “wiggly” functions will
have large weights w̃.
For example for the 14 polynomial model fitted previously, we have 11
coeffi cients wk such that |ŵk ,LS | > 100!
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Ridge Regression

To bypass the fact that X̃TX̃ might not be invertible, we consider
instead ̂̃wR = (X̃TX̃+ λ Id+1

)−1
X̃TY

where λ > 0 and Id+1 is the (d + 1) identity matrix.

This estimate minimizes

E (w̃) =
N

∑
i=1

(
y i − w̃T x̃i

)2
+ λw̃Tw̃.

This is equivalent to minimize

N

∑
i=1

(
y i − w̃T x̃i

)2
s.t. w̃Tw̃ ≤ t (λ)

This shrinks the value of ̂̃w towards zeros.
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A Probabilistic Interpretation of Ridge Regression

Consider the following model

p
(
y | x,w̃, σ2

)
= N

(
y ; y (x) , σ2

)
where y (x) = w̃T x̃ and

p
(
w̃| σ2

)
=

d

∏
k=0

N
(
wk ; 0, σ

2/λ
)

In practice, we usually set a flat prior on w0; i.e N
(
w0; 0, σ2/λ0

)
with λ0 << 1.
Given

{
xi , yi

}N
i=1 , the MAP estimate of w̃ is given bŷ̃wMAP = argmax log p

(
w̃| x1:N , y1:N , σ2

)
where
log p

(
w̃| x1:N , y1:N , σ2

)
= ∑N

i=1 log p
(
y i
∣∣ xi ,w̃, σ2)+ log p ( w̃| σ2) =

−N2 log
(
2πσ2

)
− 1

2σ2 ∑N
i=1

(
y i − w̃T x̃i

)2 − λ
2σ2
w̃Tw̃

Hence ̂̃wMAP = ̂̃wR = (X̃TX̃+ λ Id+1
)−1

X̃TY.
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Example of Ridge Regression
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Figure 1.55: Degree 14 Polynomial fit to N = 21 data points with increasing amounts of L2 regularization. The error bars, representing the
noise variance σ2, get wider since we are ascribing more of the data variation to the noise. Figure generated by linregPolyVsRegDemo.
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Figure 1.56: (a) Training and test set error for a degree 14 polynomial fit by ridge regression, plotted vs log(λ). Note: Models are ordered
from complex (small regularizer) on the left to simple (large regularizer) on the right. The stars correspond to the values used to plot the
functions in Figure 1.55. (b) Estimate of test MSE produced by 5-fold cross-validation (see Section 1.8.5.1). The lowest CV error is indicated
by the vertical line. Note the vertical scale is in log units. (c) Log marginal likelihood vs log(α). The largest value is indicated by the vertical
line. Figure generated by linregPolyVsRegDemo.

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

Degree 14 polynomial fit to N = 21 data points with increasing λ. The
errors bars, represents the standard deviation σ̂.
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Regularization Path for Ridge Regression
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Profile of Ridge coeffi cients for an example on real data where d = 8 vs
bound on wTw, i.e. small t (λ) means large λ.
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Example of Ridge Regression
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Figure 1.55: Degree 14 Polynomial fit to N = 21 data points with increasing amounts of L2 regularization. The error bars, representing the
noise variance σ2, get wider since we are ascribing more of the data variation to the noise. Figure generated by linregPolyVsRegDemo.
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Figure 1.56: (a) Training and test set error for a degree 14 polynomial fit by ridge regression, plotted vs log(λ). Note: Models are ordered
from complex (small regularizer) on the left to simple (large regularizer) on the right. The stars correspond to the values used to plot the
functions in Figure 1.55. (b) Estimate of test MSE produced by 5-fold cross-validation (see Section 1.8.5.1). The lowest CV error is indicated
by the vertical line. Note the vertical scale is in log units. (c) Log marginal likelihood vs log(α). The largest value is indicated by the vertical
line. Figure generated by linregPolyVsRegDemo.
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(left) Training and test error for a degree 14 poly. with increasing λ.
(center) Estimate of test MSE produced by 5-fold CV. (right)
Log-marginal likelihood vs log (α) where α = λ/σ2.
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L1 Regression - Lasso

We minimize in this case

E (w̃) =
N

∑
i=1

(
y i − w̃T x̃i

)2
+ λ ‖w̃‖

where ‖w̃‖ = ∑d
k=0 |wk |. This is equivalent to minimize
N

∑
i=1

(
y i − w̃T x̃i

)2
s.t. ‖w̃‖ ≤ t (λ)

Given
{
xi , yi

}N
i=1 , this is equivalent to taking the MAP estimate of w̃

associated to

p
(
y | x,w̃, σ2

)
= N

(
y ; y (x) , σ2

)
,

p
(
w̃| σ2

)
=

d

∏
k=0

Lap
(
wk ; 0, σ

2/λ
)
.
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Regularization Path for Lasso
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Profile of Lasso coeffi cients for an example on real data where d = 8 vs

bound on
d

∑
k=1
|wk |, i.e. small t (λ) means large λ.
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Ridge versus Lasso

Contours of the unregularized function (blue) along with the constraint:
ridge (left) and lasso (right). The lasso give a sparse solution as w ∗1 = 0.
The corners of the simplex is more likely to intersect the ellipse than one
of the sides as they “stick out”more.
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