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Regression

@ Assume you are given some training data {x",y"}ll.\l:1 where x' € R?
and y' € R°.

e Given an input test data x, you want to predict/estimate the output y
associated to x.

@ Applications:

e x: location, y sensor reading.

e x: stock at time t —d,t—d+1,...,t — 1, y: stock at time t.

e x: temperature at day t —d,t —d+1,...,t — 1, y: temperature at
day t.
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Formalization

@ We want to learn a mapping/predictor based on {xi,yi},,.\lzl:
f:R? — R®
which allows us to predict the response y given a new input x; i.e.
y(x) =1 (x).

@ Linear regression is the simplest approach to build such a mappnig
and is ubiquitous in applied science.
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Linear Regression

@ For sake of simplicity, consider the simplest case ¢ =1 and d = 1.

@ Linear regression assumes a model
y (x) = wix +wp

where wy, wy € R.

@ Given only 2 training data, we can solve for wy and wy but the result
would be dependent of the 2 training data selected and very sensitive
to the noise in the training responses y'.

@ A more sensible approach is to minimize the residual errors €' over the
N training data

e = yi—y(xi)
= yi—W1Xi—W0
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Least square Regression

@ We propose to minimize the sum of the squared residual errors w.r.t
(wo, wy)

N . .
E(W(), Wl) = Z (y’ - WIXI - W0)2

Sum of squares error contours for linear regression
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Least square Regression

E

e We compute 3 9E and set it equal to zero
dwo

JE N .
— g —2 r_ r_ —
e ._E 1 (y Wi X Wo) 0
N i
1 i=1X — —
<~ Wo—zl\;y 172& =y —wiX

@ Substituting back wg =y — wix in E (Wo, W1) , we obtain

N .
E(y—wix,m) = Z y' —y —w (x’—?))2
i=1
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Least square Regression

E

e We compute 3 a set them equal to zero

;Vi - _2é(xi_x)((YI—Y)—W1(x'—x)):0
N Wl:Z,’-V:l (x' =%) (y' —¥)

Y (x—x)

@ Hence .
_ _ f_ZN:1 (X' =x) (Y'—Y)Y.

=y —wx=Yy P
YV (x —%)
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prediction

In linear least squares, we minimize the sum of squared distances from
each training point (denoted by a red circle) to its approximation (denoted
by a blue cross). The red diagonal line represents y (x) = wix + wy,
which is the least squares regression line. Note that these residual lines are

not perpendicular to the least squares line, in contrast to PCA.
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Least square Regression for Multidimensional Inputs

@ Consider now that ¢ = 1 but d > 1 and we consider

y(x) = w+ kzl Wi X
= w'x —|—7Wo =Ww'X
where
w' o= <W0 WT> =(wpwp -+ wy)
X' = (1xT>:(1x1~~-xd)

e Given N training data, we want to minimize w.r.t w the sum of the
squared residual errors

E (w) :Z(y - W x>2
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Least square Regression for Multidimensional Inputs

@ We can rewrite

where -
Y= (yl ...yN) N x 1 matrix
X= (%X --- Xy)' Nx(d+1) matrix

@ We can rewrite
E(w)=YTY-2YTXw +w'X"Xw

@ By setting g—é = 0, we obtain if <)~(T)~(> is invertible

~ o~ o\ —1 <
Wis = (xTx) XTY
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Least square Regression for Multidim Inputs Ouputs

@ Consider the case where ¢ > 1 and d > 1 then

N
E(w) = ) trace (yi - WT§i>T (yi - WTii)
i=1

I
<
|
X
2!
=
I
™=
™1
—
&
/N
=
_|
x\
}_/
N——

where W € R(d+1)xc

@ It can also be shown that

fs = (XX) " XTY
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Geometric Interpretation

@ For sake of simplicity, let’s come back to the case where ¢ = 1. We
have for an new input x

~+~\ 1~
y(x) = W—LI—SX =%x"wis =% (XTX) X'y

@ On the training set {x",y"}jvzl , we have
o S /o1o)\ Lot
Y (X) = Xwys :x(x x) XTY
so
~ ~r~ [~ —1 o ~
XT(Y(X)-Y) = X'X (xTx) XTY-XTY
=0

e Y (X) is simply the orthogonal projection of Y onto the columns of X.
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Nonlinear Regression using Basis Functions

@ Linear regression can handle nonlinear regression problem; e.g.
— ~Tq) v
y(x) =w @ (x)

where @ : R9t! — R™ and w is a m—dimensional vector.
e Example: @ (x) = (1,x,x2)T (d=1m=3);,®(x)=x=(1,x1,x)
(d=2m=3),d(X)=x= (l,xl,xz,xlz,xzz) (d =2,m=25).

degee2
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MSE on Training and Test Sets
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Data generated from a degree 2 poly. with Gaussian noise of var. 4. We
fit polynomial models. For N small, test error of the degree 25 poly. is
higher than that of the degree 2 poly., due to overfitting, but this
difference vanishes once as N increases. Note also that the degree 1 poly.
is too simple and has high test error even given large N.
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Kernel Regression

Another way to perform nonlinear regression is to use kernels to
define the basis functions @ (x) = (K (x,py) ..., K (x, p,,,))-

For example, we could use a Radial Basis Function

)
K<x,y>:exp<_<x—”> (x—m)_

202

Alternatively we can use any function: wavelets, curvelets, splines etc.
Selecting (pty, ..., #,,, 0%) can be difficult.

How to select p: 1) place the centers unformly spaced in the region
containing the data, 2) place one center at each data point, 3) cluster
the data and use one center for each cluster, 4) use CV, MLE or
Bayesian approach.

How to select 0 : 1) use average squared distances to neighboring
centers (scaled by a constant), 2) use CV, MLE or Bayesian approach.
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Kernel Regression

1

SEREERY

(Left) RBS basis in 1d. (Middle) Basis functions evaluated on a grid.
(Right) Design matrix.

AD () February 2011 16 / 31



A Probabilistic Interpretation of Least-Square Regression

@ Consider the following model
p(y|xw,0?) =N (y;y(x),0?)
where y (x) = w' ® (X).
@ Given the training set {x', y’}ll.\lzl , the MLE estimates of (vTI,(TZ) is

given by
(WMLE aQMLE) = arg max Zlogp(y |x w, o)
(w,0?) =1
where
N . . N 1 N 2
Y- logp (v/| X W,%) = — log (2710%) = 5 ) (y W x)
i—1 Pt

o Hence Wy g = (XT)~( XTY and

—~ e 2
N S .
o2 MLE = Yis1 (y’ - WMLEXI> /N.

AD () February 2011 17 / 31



Robust Regression

@ The problem with least square regression is that it is very sensitive to
outliers as it minimizes
N

Ea(w) =) (v =y ( i(y —WX)2

i=1 i=1
and hence the square of the residual errors.
@ To design a procedure less sensitive to these outliers, we could pick
N

En(w) =Y |y —y (X \—Z‘y

i=1

o As |u| goes to infinity slowler than u? as |u| — oo then this procedure
is less sensitive to outliers. We could also use something like

Etuber (W) = Z, 1c(y —y( )) where
c (u) :{ lul if [u] < Juo|

|uo| if u] = [uo]
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A Probabilistic Interpretation of Robust Regression

o Consider the following model
p(y|xw,b)=Lap(y;y(x),b)

where y (x) = w'x and
. 1 |x — u]
Lap (x; i, b) = 55 &P ( 5 )

is the Laplace density of location p and scale b.
@ Given the training set {xi, yi}ll.\lzl , the MLE estimates of (\TV,(TQ) is

given by
(‘:")’MLE,Lap/ace:/EMLE> = argmax Z'ng (y'|x'.w, b)
(W,b) j=1
1M .
= argmax — Nlog(2b) — 5 y —w'x

i=1
® That is Wy E,1aplace Minimizes Ej1 (W) .
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Gauss versus Laplace
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(left) Plots of N (y;0,1) and Lap(y; 0, 1/@) densities (both have

zero-mean unit variance). (right) Negative logs of these pdfs.
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Gauss versus Laplace Regression
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Linear regression with outliers. Data points are black circles. Black dottet
line: LS, Blue dashed line: Laplace.
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Limitations of Least-Square Regression

@ Remember that our estimate is given by
= $T%) T
Ws = (x x) XTY

@ This assumes that the (d + 1) x (d 4+ 1) matrix ()~(T)~(> is invertible.

e We have rank()N(T)~() :rank<)~(> < min(N,d+1). Hence in
common scenarios where N < d -+ 1, we can never invert X' X!

@ We have also problems when columns/rows of X are almost linearly
dependent (collinearity).
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The Need for Regularization

@ When we have a small number of data, we want to be able to
regularize the solution and limit overfitting.

@ When fitting a polynomial regression model, “wiggly” functions will
have large weights w.

@ For example for the 14 polynomial model fitted previously, we have 11
coefficients wy such that |wy ;s| > 100!
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Ridge Regression

@ To bypass the fact that XTX might not be invertible, we consider
instead

p = (XX 4 A /dﬂ)*l XTY

where A > 0 and /441 is the (d + 1) identity matrix.

@ This estimate minimizes

@ This is equivalent to minimize

i(y - W x)2 st.w w < t(A)

i=1

o This shrinks the value of w towards zeros.
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A Probabilistic Interpretation of Ridge Regression

@ Consider the following model

p(y|xw,0®) =N (y;y(x),0%)

TX and

where y (x) = w
d

p (\Wl|(rz) = HN(Wk;O,O’Z/)\)
k=0

@ In practice, we usually set a flat prior on wp; i.e N (Wo;o,(fz/)\o)
with Ay << 1.

o Given {xi,yi}ll.\lzl, the MAP estimate of w is given by

Wyap = argmax logp (Vv| X1:N,y1:N’0_2)

where
log p (w|xtV, yN o2) = YN logp (yi} x'\w,0?) +log p (W|0?) =
~Hlog (270%) — p EIL, (¥~ WTK)? - T

~ ~ ~— o~ -1 _
@ Hence wyap = wp = XTX + A gy XTy.
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Example of Ridge Regression

Inlambda -20.135 Inlambda -8571 Inlambda 0.102

Degree 14 polynomial fit to N = 21 data points with increasing A. The
errors bars, represents the standard deviation ©.
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Regularization Path for Ridge Regression
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Profile of Ridge coefficients for an example on real data where d = 8 vs
bound on w'w, i.e. small ¢t (A) means large A.
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Example of Ridge R

mean squared error R 5-fold cross validation, nrain = 21 log evidence
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(left) Training and test error for a degree 14 poly. with increasing A.
(center) Estimate of test MSE produced by 5-fold CV. (right)
Log-marginal likelihood vs log (a) where & = A /2.
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L1 Regression - Lasso

@ We minimize in this case

(v —w%)" + A @]
y

M=

I
—

E(w) =
1
where ||W|| = Y¢_, |wk|. This is equivalent to minimize

N

Y (v —w'E) st ] < t()

i=1

) N o ) ) ) ~
e Given {x’, y’}l.:1 , this is equivalent to taking the MAP estimate of w
associated to

p (y|x,\7v,(72) =N (yiy(x) ,(72) :

d
p (VNV\ 0'2) = H Lap (Wk;0,02//\) )
k=0
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ularization Pat
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Profile of Lasso coefficients for an example on real data where d = 8 vs
d

bound on ) |wy/, i.e. small t(A) means large A.
k=1
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Ridge versus Lasso

D §
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Contours of the unregularized function (blue) along with the constraint:
ridge (left) and lasso (right). The lasso give a sparse solution as w; = 0.
The corners of the simplex is more likely to intersect the ellipse than one
of the sides as they “stick out” more.
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