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A Bayesian Approach

@ In a Bayesian approach, the unknown parameter 60 is assumed random
with an associated prior distribution p () .

o Given data {x"};V:l distributed according to p (x1.n|8), inference
about 6 is based on the posterior distribution

p(x1n|6)p(6)
P (Xl:N) '

P(9| xl:N) =

@ From this posterior, we can obtain various point estimates of 6.
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Bernoulli and Binomial Models

o Assume independent {x'} where x' € {0, 1} (= { Tail, Head}) with
p (X’ 6) _ 91[(x:1) (1 . Q)H(Xzo)
so
p (x| 6) = 07 (1 6)""
where np =Y | 1 (yi = 1) and §MLE =n/N.

@ ny is the number of “success” among N trials, it follows a Binomial
distribution

N

p(ni|6) = Bin(ny;0,N) = ( n

) o™ (1—6)" ™

e In a Bayesian framework, we set a prior density p (6) on 6 € [0, 1].
@ If you know nothing about 6 a reasonable prior is the uniform density

P(9) = 1[0,1] (9)
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Conjugate Priors

@ For simplicity, we will mostly focus on a special kind of prior which
has nice mathematical properties.

@ A prior p (0) is said to be conjugate to a likelihood p (x1.y|0)
(equivalently p (n1|@)) if the corresponding posterior
p (0] x1:n) = p (0] n1) has the same functional form as p ().

@ This means the prior family is closed under Bayesian updating.

@ So we can recursively apply the rule to update our beliefs as data
streams in (online learning).
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@ Let us introduce the class of Beta densities defined for a, f > 0

I'(x+B)
I'(a)T(B)

where T (u) = [~ t“"te 'dt. Note that T (u) = (u—1)! for u € N.
o Be careful: (a, B) are fixed quantities. To distinguish them from 6, we

call them hyperparameters. For &« = B = 1, the Beta density
corresponds to the uniform density.

Beta (6;a, B) = 0 (1—-0)F 14 (0)

@ The Beta prior is such that

E(6) = " V(o) = *p
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beta distributions

pO=0
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Bayesian Inference with the Binomial-Beta Model

@ We obtain

p(m|6)p(6)
p(n)
p(m|0)p(6)
o (1—0)" et (1—0)P 1,1 (0)

= ot a—)N TP g (0)

p(6lm) =

@ This implies necessarily that
p (0| x1.n) = Beta(0;m +a, N —n; + B).

@ The prior on 6 can be conveniently reinterpreted as an imaginary
initial sample of size (a + B — 2) with @ — 1 observations “1” and
B — 1 observations “0". Provided that (a« + f — 2) is small with
respect to n, the information carried by the data is prominent.
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Sequential Bayesian Inference with the Binomial-Beta

Model

@ Assume we first observe at ‘time t' n{ ‘1’ among N’ trials where
t=12,..

@ We have
p (6] n%) = Beta (0;n] +a, N' — ni + B)

o At time t > 1, we use
p<9]n%,...,nf) 3 p(n’f‘@)p(@\n%,.. ’1‘1)
= Beta(th—I—an ,3—1-2 —n1>;

i.e. the posterior at time k can be computed using as a prior the
posterior at time k — 1 and the likelihood of the observations at time
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Bayesian Inference with the Binomial-Beta Model
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(left) Updating a Beta(2,2) prior with a Binomial likelihood with n; = 3,
nop = 17 to yield a Beta(5,19); (center) Updating a Beta(5,2) prior with a
Binomial likelihood with n; = 11, ny = 13 to yield a Beta(16,15)
posterior. (c) Sequentially updating a Beta distribution starting with a

Beta(1,1) and converge to a delta function centered on the true value.
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Bayesian Inference with the Binomial-Beta Model

o We have

n+u I (e o
m+a+m+p N+a+p
@ The posterior means behave asymptotically like ny/n (the

‘frequentist’ estimator) and converge to 0*, the ‘true’ value of 0*.
o We have

E (6] m) =

(m +a) (no+B)
(m+a+n+B)° (m+atn+p+1)
Ome (1 —§MLE)

~ for | N
N or large

@ The posterior variance decreases to zero as n — o, at rate n~1: the
information you get on 6 gets more and more precise.

@ For n large enough, the prior is washed out by the data. For a small
n, the prior can have a huge impact.

V(9| n1) =
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Bayesian Inference with the Bernoulli-Beta Model

@ We can compute things like
0.7
Pr(6 € [0.3,07)| m) = / p (6] ) do
0.3

@ Be careful: This has absolutely nothing to do with confidence
intervals.
@ In classical statistics, and for an univariate problem, the confidence

interval at level « is of the form [1/9\ — 2,20,0 + za/Q(?} where 0 is the

classical estimator (say MLE) and © is an estimate of its standard
deviation.

@ In this frequentist perspective, the true value of the parameter is
fixed, and the confidence interval is random, having a probability of
(1 — ) to actually contain this true value (when we repeat the same
experiment a great number of times) and it is not possible to
interpret (1 — &) as the probability that the parameter lies in the
confidence interval for the considered experiment.
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Bayesian Inference with the Bernoulli-Beta Model

@ We can also find the maximum a posterior (MAP)

b\MAP = argmax p(0|n)
argmax logp (6| n)

= argmax logp(ni|0)+logp(0)
nm+a—1 o m+a—1
m4+a—1+nm+p—1 N+at+B—2

p = OmLe When a = B =1 as then log p (6) is constant over
]
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Prediction: Classical vs Bayesian Approaches

@ Assume you have observed n; successes among N trials, we want to
use these data to come up with the distribution of the outcome of the

next trial.
@ Using a Maximum Likelihood approach, we would use the plug-in
prediction
(= 1/8une) = Bune = ™
p{x MLE MLE N

This does not account whatsoever for the uncertainty about §MLE
(and suffer from Black Swan problem)
@ In a Bayesian approach, we will use the predictive distribution

p(x=1m) = /p(x:1|0)p(0|n1)d9

n+u
= Op (0 dd = ———
/ p(8lm) N+atp
so even if n; = 0 then p (x = 1| x.y) > 0 and our prediction takes
into account the uncertainty about 6.
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Prediction: Classical vs Bayesian Approaches

@ Suppose now we want to predict the number my of heads in M future
trials.

@ The standard MLE approach would give use

p <m1‘/9\MLE> = Bin(ml;/G\MLE, M) = ( ,I:i )ﬁmE (1 _’éfA’/ILE)M—ml

@ The Bayesian approach yields

T'(N+a+B) T(mi+n+a)I(N+M—m1—n1+B)
T'(n+a)L(N—n1+p) T(N+M+a+p)

p(mi|n)= [p(m|6)p(6|n)do
M T(N+a+ miFm—1 N+M—my—n;—1
= ( my > F n1+¢x 7\/‘Bnl+ﬁ f@ e (1 9) mem de
()

m
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Prediction: Classical vs Bayesian Approaches

prior predictive posterior predictive plugin predictive
W W 0
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(left) Prior predictive dist. for a Binomial likelihood with M = 10 and a
Beta(2,2) prior. (center) Posterior predictive after having seen
n = 3, N = 20. (right) Plug-in approximation using 0y, g).

AD () February 2011 15 / 31



From Coins to Dice: Multinomial

. : M
e Assume you have independent observations {x'} " such that

i

for 8, > 0, Z‘Zzl Ok =1and x, =0,1,2,..., P with ¥, xx = P.
@ We have seen that

M i
9Ak MLE = —Z;:1Xk = %
, — M «d P

=1 Lk=1 X N

@ We want now to perform a Bayesian analysis

, x| 6) p (6
p (6 xM) = P p(x\m)ﬂ)p( )
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Dirichlet Prior

@ The Dirichlet density is given by
<Zk 10‘k>
[T

for ax > 0 and corresponds to a Beta density for d = 2. It is defined
n {Q:Gk > 0 and zgzlekzl}.

o np = ZZ:1 ay controls how peaky the distribution is and the wy
controls where the peak is located.

Dir (9, (le, .. Dcd)

Heﬂék 1

@ We have

ap —1 ap (o — )

— 2 mode =
E (6) = =, mode (6)) VO = )

L4} (Xo—d
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Dirichlet Prior

e=1000 w010

(left) Support of the Dirichlet density for d = 3 (center) Dirichlet density
for ax = 10 (right) Dirichlet density for ay = 0.1.
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Dirichlet Prior

Samples from Dir (alpha=0.1) Samples from Dir (alpha=1) Samples from Dir (alpha=5)
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Bayesian Inference with the Multinomial-Dirichlet Model

@ We obtain

p (0

@ This implies necessarily that
p (0] x1:m) =Dir(6; a1 + Ny

p (XI:M‘ 9) p (9)
p (xM)

d d
1ot [T
k=1 k=1
Ii[ 90;/(+Nk71

k=1

Déd+Nd).
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Predictive Distribution with the Multinomial-Dirichlet

Model

@ We have for a single categorical variable
Pr (x = k|x1:M) = /Pr(x =k|0)p (9|xl:M) de

_ /ka<9\x1:M)d9
_ /ka(9k|x1:M>d9k

&+ Ny
ag+ N

@ Once more this avoids the black-swan problem.
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Bayesian Naive Bayes for Multinomial Data

o We assume that we have M data (x/,y’) € N9 x {0, 1} and we use

the model
P A
p(x,y=c|0)=rm. dinekkc
| k=1
TTx!
i=1
where (71, ..., 7m¢, 011, ....04.1, -+ ,01,c, ..., 04,c) are the unknown
parameters.
o If we do MLE, then
~ c Nk c

where M. =nb. documents class ¢, Ny . =nb. occurrences word k in
classc, M=Y5 Mc, Ne = Y91 Ny
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Bayesian Naive Bayes for Multinomial Data

@ In a Bayesian context, we can set independent Dirichlet priors

p(m) = Dir((my,....7tc) By Be)
p(@c) = Dir((@lyc,...,dec);leyc,...,(xd,c), C:1,...,C

and obtain
p(my,....mc| D) = Dir((my,....,tc); By + M1, ..., B + Mc),
p(96|D) = Dir((gl,c,---,gd,c);“1,c+Nl,c|---vad,c+Nd,c)-

~

e From this posterior, you can compute 7Tpap, 0c map or
ﬁMI\/ISE =E (7'(/\/]’ D) , 9c,MM5E =E (QC‘ D) and use

p(y=clx0) cp(y=cl7)p(xly=cd)
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Bayesian Naive Bayes for Multinomial Data

@ A better way to do it is to

o Given a new input x, we compute using
p(y =c|xD)op(y=c|D)p(xly =c D)

where
B+ M.+1
—¢|D :/ — ¢|D. )p (7| D)drr = Pe T Me T2
p(y=c|D) ply=¢[D.m)p(n|D) B M1

:TCC

p(xly=cD) = /p(x| D.0.) p(6c| D) dbc = ...
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Bayesian Inference for Normal Data

@ Assume you have independent data {x"}N:1 such that

i

_ 1 (x—p)°
p(x]0) = WGXP <_Zr2>

where 6 = (]1,02) .
@ We have seen that
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Bayesian Inference for Normal Data

@ In a Bayesian framework, the conjugate prior is

p(1.0%) = p(ulc®) p(c?) where

2
(1) = (s ) = ko - “éo-z"“)

p(0?) =TG (%0, p) =1y (2) ™ exp (~B/0%) Lo (02).

e The posterior is given by p (8] xt7) = p (02| xt) p (p| xt, 0?)
where
p (u|x, 0?) :N(ﬂ; Koyt Ny _o? )

ko+N " ko+N
p(c?|xn) =16 (02;zx +N/2,B+ 5 o+ iy (e — y0)2>

@ Once more we see clearly the influence of the prior on the posterior
and, as N — oo, the posterior concentrates around ﬁML and 02y, .
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Bayesian Model Selection

@ Suppose we have K different models for the data D; each model
being associated to some parameters ;.
@ Using a Bayesian approach, we can compte
oy P(M=0)p(D|M=i)
M=1iD) =

where
Z p(M=i)p(D|M=i)
@ The marginal likelihood or ev:dence p(D|M =) is given by

p(DIM=i)= [ p(D|6)p(®:) do
which is the normalizing constant of

| D)y — PLO1) P(DI6i)
P<91|D)_ p(D) :
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Bayes Factors

@ To compare two models, we can use posterior odds of Bayes factors

p(M=ilD) p(DIM=i)p(M=i)

p(M=jID)  p(DIM=j)p(M=j)

posterior odds Bayes factor prior odds

@ The Bayes factor is a Bayesian version of a likelihood ratio test, that
can be used to compare models of different complexity.

@ Bayes factors and posterior odds tell you whether one should prefer
M =ito M = j: it does NOT tell you whether these models are
sensible!
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Example: Is the Euro coin biased?

@ Suppose we toss a coin N = 250 times and observe n; = 141 heads
and np = 109 tails:

p (XLN‘ 9) =0m(1-6)"

e Consider two models/hypotheses: M; = coin unbiased, that is
61 = 0.5 and M, =coin biased and p (62) = Beta (62; a1, &p).

@ We have
p(D|M;) = 0.5™ (1 —0.5)" =0.5"
e I (a0 + mo) T (a1 + n1) T (ap + a1)
®g + ng x4+ n oo + o
D|M,) =
p(DIM) T(ao+ar+N) T (ao)T (ay)
SO

p (D|Ms) _ T (wo+no)T (ar +m) T (wo+ar1) 0.5-N
p (D|My) T(awog+a1+N)  T(ag)T (a1)
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Computation of Bayes Factors

@ Let o = ag = a1 varying over 0 to 1000.

o 200 400 s00 00 hls s w] 1200

Bayes factor p (D|M,) /p (D|M;) as a function of a.

@ The largest BF in favor of M, (biased coin) is only 2.0, which is very

weak evidence of bias.
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Bayesian Computation

@ For complex Bayesian models, we cannot compute the posterior and
marginal likelihood analytically.

@ In such cases, analytical (Laplace, variational) and Monte Carlo
methods approximations are necessary.

@ For example, a crude approximation of the marginal likelihood is
provided by the Bayesian Information Criterion

d
log p (D|M;) = log p (DI G,MLE> — 5 logn

where n is the number of data and d is the dimension/number of free
parameters
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