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@ You are given data {xi}l{vzl ({x",y"}ll.\l:1 in the supervised learning
case).

@ You have a probabilistic model for the data; i.e. typically in most
learning problem

p (xl,xz, ...,XN‘ 0) = ﬁp(xi{ 0)

@ Aim: you want to pick the best 0 € ©.

@ Two main approaches considered here: Maximum Likelihood and
Bayesian.
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Maximum Likelihood Parameter Estimation

@ The most standard approach consists of selecting

§MLE = argmaxp(xl,xz,...,xN‘Q)
PcO®

= argmax log p(xl,x2,...,xN’9>
0c®

@ You select the value of 8 € ® that maximizes the probability of
observing (x!, x?, ..., x") .
o Example: Assume independent {x'} where x' = x{ = x' with

p (X| 9) _ 9]1()(:1) (1 . 9)]I(x:0)

then O = YN, T (X =1) /N.
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Maximum Likelihood for Poisson Data

o Example: Assume you have independent Poisson observations
AN
{x’}izl such that

p(x|0)= e_e%
for0 >0and x=0,1,2, ...
@ In this case, we have
1(0) = log p (xlzN‘ 6)
N N
= —NO+logh in— Zlogxi!
i=1 i=1

o By setting % = 0, we obtain
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Maximum Likelihood for Gaussian Data

. . N
o Example: Assume you independent observations {x’}izl such that

1 1
p(x10) = e~ 0z (= )
where 6 = ((72, ;t) }

o We have
1(0) = log p (XI’N’ 6)
N 9 1Y 2
= —Elog(2m7 ) —ﬁ;(x — )
@ By setting %ﬁ) =0 and agg) = 0, we obtain

1Y 1Y

. . P 2
Hmie = N;X" O’ MLE = N’; (XI _P‘MLE) :
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Maximum Likelihood for Multinomial Data

e Example: Assume you have independent observations {x"}II.V:1 such
that J
pv
p(x|0) = —T]6¢

for 8, > 0, Z‘Zzl Ok =1and x, =0,1,2,..., P with ), xx = P.

@ In this case, we have

1(6) = log p <x1:N‘ 9)

il ()

@ Be careful: It is a constrained optimization problem as 2%:1 O =1.
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Maximum Likelihood for Multinomial Data

@ We introduce a Lagrange multiplier A and propose to maximize
instead w.r.t 6§ and A

I(G,A):I(0)+A<1— iek)

k=1
@ Setting ( MN—o= Y¢_, 6 =1 and setting

d/ (9'/\) Z/ 1%
20, 6

N
—AZO@AGk:ZX}(

o It follows that, as ):z:l Ok =1, then A = ():zzl ):,’-V:l x,’(>

N
~ v X Yihixg

Ok mLE = = -
A YL Y X
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Application to Naive Bayes

o We assume that we have N data (x,y’) € N9 x {0, 1} and we use

the model
[
p(xy=clt) =me —[]0%
| k=1
TTx!
i=1
where 6 = (7‘(1, . 7'Cc,91'1, ...,Gdll, s .91,Cv ...,Gdlc).
@ We have

1(0) = Yh_qlogp (x,y'|6)
_Zc 1(Zk 11[(yk C)) {'08;7Tc+2i:1x,i Iog9k,C+Cste}

yields with N, = Zf(vzl I (y,’( = c)

~ _ Nc ’9\ _
TTe, MLE = N k.c,MLE =

le'vzl X/i]I (}’/( = C)
Yl Y X (yi = c)
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Asymptotics of Maximum Likelihood Estimate

@ Assume you have independent data {x } distributed according to
p (x| 6%); i.e. 0" is the true parameter. Under regularity assumptions,
we have O g — 6% as N — 0.
@ This follows from the fact that first

—zlogp 16) = 1(6) = [ p(x|6")logp (x|0) dx

@ Second, the average log-likelihood /(6) is maximized 6*; for any

0 €0 as

1(6)—1(0%) = /p(x]@*)logmdx
< log </p (x| 6%) ;(():(||99*))dx> (Jensen's inequality)
< 0
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Limitations of Maximum Likelihood

@ Maximum likelihood estimation overfits!
@ Suppose we are N Bernoulli data such that Oy g = Z,Nzl x'"/N=0
then we have

1% <X = ]-|/9\MLE> =0.
° Slmllarly, suppose we have N multmomlal data such that
Ok e =XM1 xi/ EN Y xi = 0 then we have

P (Xl, e Xk—1, XKk — ].,XkJr]_, ...,Xd| 9MLE> =0.

@ Hence if we have not observed such events in our training set, we
predict that we will never observed them, ever!

o Failing to predict that certain events are possible is analogous to a
problem in philosophy called the black swan paradox. This is based on
the ancient Western conception that all swans were white. In that
context, a black swan was a metaphor for something that could not
exist. (Black swans were discovered in Australia by European

explorers in the 17th Century.)
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