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Classification

We have training data {xk,yk}ivzl.

x corresponds to a vector of features.
Y €{1,2,...,C} is a class label.

. . N e
Aim: Given {xk,yk}kzl, we want to learn a probabilistic model
px.y (x,y) to compute given a new input x

p(Y =c|X=x)=pyx(c|[x).

We will often use a non-rigorous notation: p(y = c|x).
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Document Classification

@ Assume you want to classify emails into 3 classes:
Y € {spam,urgent,normal} .

e We use a dictionary with d prespecified words and X = (X1, ..., Xy)
are binary features where

X; = I (word i is present in message) ;

this is called a bag-of-words model.
o Example: Consider the following dictionary

1 2 3 4 5 6 7
Words | John | Mary | sex | money | send | meeting | “unknown”

For the following sentence “John sent money to Mary after the
meeting about money”, we obtain

x=(1,1,0,1,0,1,1).
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Bayes Rule for Classifiers

@ We have (x| o )
p(xly=c)ply=c
p(y=clx) = ey
where
c
=) P(xly=i)p(y=J)
j=1
e p(y = c|x) is the class posterior.
e p(y = c) is the prior.
e p(x|y = c) is the class conditional distribution of the features.
@ p(x) is the (unconditional) distribution of the features.
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Naive Bayes Assumption

@ What is the probability of generating a d—dimensional feature vector
for each possible class {1, 2, ..., C}? It requires specifying
p(xly =c).

@ Naive Bayes assumes that

d
p(xly=c) :Hp xily =¢).
1

=

@ E.g. proba of seeing "send" is assumed to be independent of seeing
"money" given that we know this is a spam email.

e We can simply model p (x;| y = c) using the Bernoulli distribution of
parameter 0, . € [0,1]; i.e.

plxly=c) = 007 (1=,
= 07 (1—0;c) "

February 2011 5/15



POi— 11y —1)>

0000
- 0
T T T T T T T T

ik st ol |.|.. llhll::o()‘h oL ‘Ilil'l“l‘lo'l)l A \l]lrfnllh .ll i I(LOO

|I.|-|L bl
oS

\
0

PO<i—1 Iy —2=)>

.LIJM J.l.u.dj S e m.LJ JILI h.

Estimated class conditional densities p (x; = 1|y = ¢) = 6,,C for two
document classes, corresponding to "X Windows" and "“MS Windows”.
The splke corresponds to the word “subject” and we use

=Y h I(xk =1y =c) /i T(y*=c).
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Count Features for Document Classification

@ Suppose now that we take
X; = Number of occurrences of word i in message.

e We have now X; € {0,1,2,...} so the Bernoulli distribution cannot be
used to model p (xij|y = ¢).

@ We can use the Poisson distribution

0ic
p(xily =c)=exp(=bic) —
x;!
where foc > 0.
@ We have E (X,) =V (X,) = 9,"5.
o We could estimate 0 through
Oic = Lhor XL (yF = ¢) /Z¥ T (v* = ¢).
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Count Features for Document Classification

@ An alternative model is

P .
p(xi,...xqly =c) = @“y“M>H%

d_ g%
. 1 1,C
= P.I | |
i=1 "

i=1
Xj.

where P = 27‘1:1 x; =number of words in document, 6; . > 0,

Y9 10i.=1
@ This is a multinomial distribution of parameters (01 ,...,04.¢, P).
e Interpretation: In class ¢, we have a population with 6; -% of words

iand p(x1,....xq| y = c) is the probability of observing x; words 1,
Xxo words 2,....,xy words d.
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d
o In this model we have p (xi, ..., xq|y = ¢) # [ [ p(xily = ¢).

@ We could estimate 0; . through

9. — j=1%
" ChiaI(yk = ¢
or through
~ Ezlzlzyk:c xf

@ What is the "best” estimate intuitively?
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Which Class-Conditional Density?

@ For document classification, the multinomial model is found to work
best. For sake of simplicity, we will mostly focus on the multivariate
Bernoulli (binary features) model.

@ We can easily handle features of different types; e.g. x; € {0,1},
x> € R, X3 € ]R+, Xy € {0,1,2,3,...}.

@ We can use Gaussians, Gamma, Bernoulli etc.
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Class Prior

e Toencode Y € {1,2,..., C}, we simply use

9

ply)=T]="=".

i=1

@ We can alternatively use C binary variables (Y1, Y, ..., Y¢) € {0, 1}C
such that ¥, Vi =1;ie. Y =2 < (Y1, Ya, ¥3) = (0,1,0) for

C=3s0
C

p(yi,.yc)=[1n7

i=1

where 7; > 0, Ziczl 71; = 1. This is a multinomial distribution of
parameters (711, ..., 7t¢, 1) also known as a multinoulli distribution of
parameters (711, ..., 7).
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Class Posterior

@ Bayes rule yields for the multivariate Bernoulli model
ply=c)p(xly=c)
p(x)

e H9 (xi=1) 1 . 9i,c)H(Xi:0)

p(x)
@ In practice, numerator and denominator are very small, so need to use
logs to avoid underflow; i.e.

ply=clx) =

logp(y =c|x) =logme + Y% T (x; =1)logh;.
+I(x; =0)log(1—6;c)— logp(x)

@ How to compute the normalizing constant

log p (x —Iog(zp y=C))='°g<iﬂcfc>
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Log-sum-exp Trick

@ Define
log p (x)
bc
log p (x)
B
e.g.

C
l%<2n£>,
c=1

log 7t fe = log 7t + log f-

(£ ) (£ ) o)

C
log <Z ech> + B,
c=1

max b.;
C

log (e 71+ e 1?!) =log (e 71 (e +e7!)) =log (1 + ') — 120.
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Missing Features

@ Suppose the value of x; is unknown.

@ We can still use the classifier, just drop the term p (x| c). Indeed we
have

p(y =clxq) o /P(y:CvXI:d)dxl

= p(yZC)/p(XLd\yZC)dxl
d
- p(y:c>/1‘{p(x,-|y=c>dxl

d
= P(yZC)_Ilp(XfWZC)

e This is a big advantage of generative classifiers which specify
p (x| y = ¢) over discriminative classifiers which learn p (y = c|x)
directly.
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Parameter Learning

@ So far we have assumed that the parameter of p (x| y = ¢) and
p(y = c) are known.

@ Obviously in practice, we are going to have to learn them from the
training data {xk,yk}zlzl .

@ We have come up with intuitive estimates: e.g. for the multivariate
Bernoulli model p (x| y = ¢) and p (y = c) we took

A M (Rt
" Zivzlﬂ(yk = C) ,
R N_ I k —

. = k=1 5\;’ C)_

@ Is there any rational for this? Can we do any better?
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