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Classification

We have training data
{
xk , y k

}N
k=1.

x corresponds to a vector of features.
Y ∈ {1, 2, ...,C} is a class label.
Aim: Given

{
xk , y k

}N
k=1, we want to learn a probabilistic model

pX,Y (x, y) to compute given a new input x

p (Y = c |X = x) = pY |X (c | x) .

We will often use a non-rigorous notation: p (y = c | x) .
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Document Classification

Assume you want to classify emails into 3 classes:
Y ∈ {spam,urgent,normal} .
We use a dictionary with d prespecified words and X = (X1, ...,Xd )
are binary features where

Xi = I (word i is present in message) ;

this is called a bag-of-words model.
Example: Consider the following dictionary

1 2 3 4 5 6 7
Words John Mary sex money send meeting “unknown”

For the following sentence “John sent money to Mary after the
meeting about money”, we obtain

x = (1, 1, 0, 1, 0, 1, 1) .
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Bayes Rule for Classifiers

We have

p (y = c | x) = p (x| y = c) p (y = c)
p (x)

where

p (x) =
C

∑
j=1
p (x| y = j) p (y = j)

p (y = c | x) is the class posterior.
p (y = c) is the prior.

p (x| y = c) is the class conditional distribution of the features.
p (x) is the (unconditional) distribution of the features.
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Naive Bayes Assumption

What is the probability of generating a d−dimensional feature vector
for each possible class {1, 2, ...,C}? It requires specifying
p (x| y = c) .
Naive Bayes assumes that

p (x| y = c) =
d

∏
i=1
p (xi | y = c) .

E.g. proba of seeing "send" is assumed to be independent of seeing
"money" given that we know this is a spam email.
We can simply model p (xi | y = c) using the Bernoulli distribution of
parameter θi ,c ∈ [0, 1] ; i.e.

p (xi | y = c) = θ
I(xi=1)
i ,c (1− θi ,c )

I(xi=0)

= θxii ,c (1− θi ,c )
1−xi
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Estimated class conditional densities p (xi = 1| y = c) = θ̂i ,c for two
document classes, corresponding to “X Windows”and “MS Windows”.
The spike corresponds to the word “subject” and we use
θ̂i ,c = ∑N

k=1 I
(
xki = 1, y

k = c
)

/ ∑N
k=1 I

(
y k = c

)
.
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Count Features for Document Classification

Suppose now that we take

Xi = Number of occurrences of word i in message.

We have now Xi ∈ {0, 1, 2, ...} so the Bernoulli distribution cannot be
used to model p (xi | y = c) .
We can use the Poisson distribution

p (xi | y = c) = exp (−θi ,c )
θxii ,c
xi !

where θki ,c > 0.

We have E (Xi ) = V (Xi ) = θi ,c .

We could estimate θi ,c through
θ̂i ,c = ∑N

k=1 x
k
i I
(
y k = c

)
/ ∑N

k=1 I
(
y k = c

)
.
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Count Features for Document Classification

An alternative model is

p (x1, ..., xd | y = c) =

(
P

x1 x2 · · · xd

) d

∏
i=1

θxii ,c

= P !
d

∏
i=1

θxii ,c
xi !

where P = ∑d
i=1 xi =number of words in document, θi ,c ≥ 0,

∑d
i=1 θi ,c = 1.

This is a multinomial distribution of parameters (θ1,c , . . . , θd ,c ,P).
Interpretation: In class c , we have a population with θi ,c% of words
i and p (x1, ..., xd | y = c) is the probability of observing x1 words 1,
x2 words 2,....,xd words d .
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In this model we have p (x1, ..., xd | y = c) 6=
d

∏
i=1
p (xi | y = c).

We could estimate θi ,c through

θ̂i ,c =
∑N
k=1

x ki
(∑d

j=1 x
k
j )

I
(
y k = c

)
∑N
k=1 I (y k = c)

or through

θ̂i ,c =
∑N
k=1:y k=c x

k
i

∑N
k=1:y k=c

(
∑d
j=1 x

k
j

) .
What is the “best” estimate intuitively?
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Which Class-Conditional Density?

For document classification, the multinomial model is found to work
best. For sake of simplicity, we will mostly focus on the multivariate
Bernoulli (binary features) model.

We can easily handle features of different types; e.g. x1 ∈ {0, 1} ,
x2 ∈ R, x3 ∈ R+, x4 ∈ {0, 1, 2, 3, . . .} .
We can use Gaussians, Gamma, Bernoulli etc.
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Class Prior

To encode Y ∈ {1, 2, ...,C}, we simply use

p (y) =
C

∏
i=1

π
I(y=i )
i .

We can alternatively use C binary variables (Y1,Y2, ...,YC ) ∈ {0, 1}C
such that ∑C

i=1 Yi = 1; i.e. Y = 2 ⇔ (Y1,Y2,Y3) = (0, 1, 0) for
C = 3 so

p (y1, ..., yC ) =
C

∏
i=1

πyii

where πi ≥ 0, ∑C
i=1 πi = 1. This is a multinomial distribution of

parameters (π1, . . . ,πC , 1) also known as a multinoulli distribution of
parameters (π1, . . . ,πC ) .
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Class Posterior

Bayes rule yields for the multivariate Bernoulli model

p (y = c | x) =
p (y = c) p (x| y = c)

p (x)

=

πc
d

∏
i=1

θ
I(xi=1)
i ,c (1− θi ,c )

I(xi=0)

p (x)

In practice, numerator and denominator are very small, so need to use
logs to avoid underflow; i.e.

log p (y = c | x) = logπc +∑d
i=1 I (xi = 1) log θi ,c

+I (xi = 0) log (1− θi ,c )− log p (x)
How to compute the normalizing constant

log p (x) = log

(
C

∑
c=1

p (x,y = c)

)
= log

(
C

∑
c=1

πc fc

)

AD () February 2011 12 / 15



Log-sum-exp Trick

Define

log p (x) = log

(
C

∑
c=1

πc fc

)
,

bc = logπc fc = logπc + log fc

log p (x) = log

(
C

∑
c=1

ebc
)
= log

((
C

∑
c=1

ebc
)
e−B eB

)

= log

(
C

∑
c=1

ebc−B
)
+ B,

B = max
c
bc ;

e.g.

log
(
e−120 + e−121

)
= log

(
e−120

(
e0 + e−1

))
= log

(
1+ e−1

)
− 120.
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Missing Features

Suppose the value of x1 is unknown.

We can still use the classifier, just drop the term p (x1| c). Indeed we
have

p (y = c | x2:d ) ∝
∫
p (y = c, x1:d ) dx1

= p (y = c)
∫
p (x1:d | y = c) dx1

= p (y = c)
∫ d

∏
i=1
p (xi | y = c) dx1

= p (y = c)
d

∏
i=2
p (xi | y = c)

This is a big advantage of generative classifiers which specify
p (x| y = c) over discriminative classifiers which learn p (y = c | x)
directly.
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Parameter Learning

So far we have assumed that the parameter of p (x| y = c) and
p (y = c) are known.

Obviously in practice, we are going to have to learn them from the
training data

{
xk , y k

}N
k=1 .

We have come up with intuitive estimates: e.g. for the multivariate
Bernoulli model p (x| y = c) and p (y = c) we took

θ̂i ,c =
∑N
k=1 I

(
xki = 1, y

k = c
)

∑N
k=1 I (y k = c)

,

π̂c =
∑N
k=1 I

(
y k = c

)
N

.

Is there any rational for this? Can we do any better?
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