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Independence and Conditional Independence of Random

Variables

e Consider r.v. X1, X2, ..., X, with a joint p.m.f. px, . x, (x1,..., Xn)
then these variables are called independent if and onIy if

PXy,... X, (X1, - pr (x;) .

e Consider r.v. Xi, Xa, ..., X, with a joint p.m.f. px, . x, (X1, ..., Xn)
then these variables are called independent upon Y |f and only if

n
Pxy,...X, Y (X1, xnly) = HPX,-|Y (xily).
=1

e Example: Y € {0,1} indicates spam/non spam and X; € {0,1}
indicates whether a prespecified word appears in the email.
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Markov Chains

e Consider r.v. Xi, Xo, ..., X, with a joint p.m.f. px,  x, (X1, ..., Xn)
then we always have

k=2

@ A sequence of r.v. {Xk}k21 is said to have the Markov property if
and only if

pXk‘Xl ,,,,, X1 (Xkl X1, ---vXk—l) - ka‘x,ﬁl (Xk| Xk_]_) ’

i.e. the conditional distribution of X only depends on
(X1, Xa, ..., Xk—1) through Xy_1; in other words Xy and
(X1, X2, ..., Xk—2) are conditionally independent given Xj _;.

@ Markov models are ubiquitous models for time series in Machine
learning, EE, Finance etc.
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Markov Chains

o Let Xk € {1,2}; e.g. no rain/rain for day k.

o Assume py,|x, ; (Xk| xk—1) = p (k| xk—1), this is an homogeneous
Markov chain then we introduce T the transition matrix such that

Tij=p(li)
(5" 1)

l-a l—ﬁ

g

@ T is called a stochastic or Markov transition matrix.
AD ()
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Applications of Markov Chains

o Left-to-Right Markov chains (used for speech recognition,
segmentation etc.)

@ DNA Sequencing and Alignment: DNA sequence
(ADTTGACATTG....)

@ Global optimization via simulated annealing.
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Applications of Markov Chains

@ Language Modelling: X, corresponds to a word or a letter in english.

Bigrams
Unigrams _abcdefghijklmonopgrastuvuxyz

1 0.16098 _ — B
z D0.066E87 a a

3 0.01414 b =

4 0.02938 c c

5 0.03107 o =

= 0.11055 e =

7 0.02325 £ i

8 0.015320 o q

El 0.03174 5] 5]

10 0.06233 i i

11 0.000s80 5 5

1z 0.00309 k R

13 0.03515 L Iy -

14 0.02107 ™ m |

15 0.06007 n n

15 0.06086 o o

17 0.01594 B sl

iz 0.00077 o q

19 0.05265 r r

20 0.05761 = =

z1 0.07588 t t

zz 0.02149 a u

23 0.00993 v v

z4 0.01341 w w

25 0.00z08 x x

26 0.01381 ¥ ¥

z7 0.000329 = =

Left: Proba of observing a letter, Right: Proba of observing one letter
having just observed another one. The size of the white squares is
proportional to the values of the entry. (Based on Darwin’s The Origin of

Necie
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Surfing the Web Randomly

o Let X ={1,2,...., nc} be the Web consisting of n, webpages
(nx>1010).

o Consider you are surfing the Web randomly and let X € X’ be the
index of the k" you have visited.

@ Whenever you are at a Webpage, you select one of the outbounds
links randomly.

@ This is a Markov process.
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Chapman-Kolmogorov Equation

e Problem: We want to compute recursively in time px, (xx) for any
k > 2 given px, (x1) and px,|x,_, (%] Xk-1) = p (x| xk—-1) -
@ Chapman-Kolmogorov equation:

pXk (Xk) = Z pkal,Xk (kaly Xk)
Xk-1€X
= ) Pxxic Okl xXk-1) px s (e-1)
Xx_1EX
= Z P(Xk! Xk—1) PXi_1 (Xk—1)
Xg_1E€EX

o Assume Xj takes values in X ={1,2,...,nc} and let

7t = (px (1) px, (2) -+ px, (m))'

then Chapman-Kolmogorov can be rewritten as

T T T
T =1 T = m=T
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Chapman-Kolmogorov Equation

@ Hence, it follows directly that
n—k
Ty = (TT> Tk

. : k—1
and in particular 7T, = (TT) 7Tq.

@ One important question is what happens as k — oc0. Do we have a
“limiting" distribution? i.e. do we have

lim T, = 7

k—o0

and, if this limit exists, what is its expression?
@ For the two-state example described earlier

klim 7t does not exist for a = B =1
as, if my = (y 1— 'y)T then 7ty = (1 — 'y)T and 7ok = 7.
@ For the three-state example, we clearly have for T2 > 0and Tp3 > 0
7=0 0 1)7
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Existence of a Limiting Distribution

@ If a limit 7t exists, then it has to satisfies
Tr=T"'n

and it is called the stationary of invariant distribution of the Markov
chain. Clearly if 7T exists then it is an eigenvector of T' associated
the eigenvalue A = 1.

@ Proposition: Any stochastic matrix T admits 1 as eigenvalue. Hence
TT admits 1 as an eigenvalue.

® Proof: We have }; T;; = 1 for any i so fore=(11 --- 1)T
Te=e

and 1 is an eigenvalue of T. As
det (T —1) =0 =det (T~ 1)) = det (TT 1) then L is an
eigenvalue of TT.
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Non-uniqueness of The Eigenvector associated to one

@ 7T is not necessarily unique; e.g. think of two non-communicating sets

of states
0.85

0.50
0.00
0.00

0.15
0.50
0.00
0.00

0.00
0.00
0.70
0.15

0.00
0.00
0.30
0.85

then the eigenvalue 1 of TT has two associated eigenvectors

(077 023 000 000)",
(000 000 033 067 ).

@ An even simpler counterexample, think of T = /.

AD ()

January 2011 11 /23



The Other Eigenvalues

o Proposition: All the eigenvalues {A;} of T, equivalently of TT,
satisfy |A;| < 1.
@ Proof: Assume u is an eigenvector of T associated to A then
Tu= Au <:>Z T,'JUJ' = Ay;
J
Let select imax such that |uj | is the largest of the components |uj|'s
then

uj| = |A] |t |

Imax.J

Y Tty = Ay, =
J
= ) T ] = (A i, |
J

However we have by definition of |u; _ |

Z Timax:j |UJ| S Z -,_imaer ’uimax| S (Z 7-’ma><.l> |u’ma>< |uimax| .
J J J

AD () January 2011 12 / 23



Stationary Distribution as an Eigenvector

@ Perron-Froebenius Theorem. If there exists k > 0 such that
PI’(Xk :J|X1 = i) >0

L k-1 . o . . .
forall i, j;i.e. (TT)" " is a matrix with strictly positive entries then
7t is unique and whatever being 7t

limm,=7m

k—o00

with 7t (i) > 0and }_; 7 (i) = 1.
@ In layman’s terms, whatever your initial distribution you will
eventually has Pr (Xx = i) ~ 7t (i) for large k.
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Application to Google PageRank

@ When one searches for a webpage using a search engine, the system
find all the web pages containing the query terms that you specified.

@ There are often far too many matches, so the system has to estimate
the relevance of each page, it needs to rank them.

@ A key idea of Google in the late 90's was to propose a revolutionary
approach to ranking known as PageRank.

@ There are two equivalent ways to present it

e it is a system where the importance 7t (i) of each webpage i is made to
be proportional to the sum of the importances of all the sites that link
to it (with 7t (i) > 0and }_; 7t (i) = 1).

o if a random surfer was exploring the web, then in the long run he/she
will end up on webpage 7 with proba 7t (i) .
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A Simplified World Wide Web

1 >4

X3

X6 x5

@ We introduce an adjency matrix G of size n X n where n is the
number of webpages. G is defined by

G — 1 if outbound link from i to j,
"/ 71 0 otherwise.

@ In this case, a random surfer has a transition matrix

T — { Gij/ (5 Gij) if X Gij >0
1, 0

otherwise
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Adding Some Noise

o Clearly, there are two absorbing states ‘5" and '6’: not good!

o To avoid getting trapped, Google considers

T { px Gjj/ (Zj G,',j) + (1—p)x1/n if Zj Gij>0
I,J -

1/n otherwise

where typically p = 0.85.
@ In this context, we have T;; > 0 for all /,j so klim 7T, = 7T whatever
— 00

being 7.
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Example

0.02

0.018

0.016

0.014

0.012

0.008

0.006

wof f v 0.004

450 SR 0.002

0 100 200 300 400 500

500

Left: Adjency matrix, Right: PageRank.
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How to Compute the Invariant Distribution

@ To compute the invariant distribution, any algorithm to compute
eigenvectors can be used. However, we have here n > 109 so some
specific methods have to be developed!

@ A simple so-called Monte Carlo approach consists of simulating the
Markov chain a very long time and to say

- ,
71'(/) ] F Z]I(szl)
k=1
@ A law of large numbers hold for this (dependent) process. Such

approaches are the basis of Markov chain Monte Carlo methods.
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The Power Method

@ A powerful method to compute the largest eigenvector consists of the
following method.

@ Select vg € IR" a column vector and iterate for kK > 1

wy = (TT>VI<—1,
Wy

v, = ——.
[[w |

e For aj = vOTn' #0, we have
lim v =sgn(a1)
k—o0

where sgn(x) = 1 if x > 0 and sgn(x) = —1if x < 0.
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Outline of the Proof

o Consider the eigenvalues {A;} of TT ordered such that
A1 =1> |Ay| > --- > |A,| with associated orthonormal eigenvectors
u; = 7T,uy, ...., u,. We can rewrite

n
vozal7T+Za;u;

i=2
@ Rescaling operation v, = wy/ ||wy||, just ensure that ||vk| =1 for
any k; i.e. we can write alternatively
_ (Mwia _ (T)'w
R I R Teas U
@ We have

(T)w = a (T)m+ Lo (T7)w

n
= a7+ 23,’ Aju;
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Outline of the Proof

o lterating, we obtain

k n
(TT> Vg = a1+ Za,- /\f‘u,-
=2
~ ayr for large k

as 1> |Ay| > -+ > |A,|. Hence we have

H(TT>kvO

~ |a;| for large k

o It follows that

~ sgn (a1) 7t for large k

and the convergence is geometric with rate |A,|.
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Geometric Rate of Convergence

@ Convergence of PageRank is geometric.

@ We have for large k

i = 7| & |22 e

a
ai

@ 1 —|Ay| is known as the spectral gap: the larger the faster the
convergence.

@ How to estimate Ay without knowing 717 See assignment.
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Outline of the Proof

e Without loss of generality, consider a; > 0 so that sgn(a;) = 1 then

e We want to study ||vx — 7t|| where

(TT) v
(77w

a T+ Z?:Z aj Af-‘u,-

k
H317T—|— 2?22 aj A,- u,-H

Vi =

~ 7'L'—i—i A§U2
|a1 |

SO
a

lvi = 7t|| ~ = |22"

an
— )\/2<U2
al
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