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Independence and Conditional Independence of Random
Variables

Consider r.v. X1,X2, ...,Xn with a joint p.m.f. pX1,...,Xn (x1, ..., xn)
then these variables are called independent if and only if

pX1,...,Xn (x1, ..., xn) =
n

∏
i=1
pXi (xi ) .

Consider r.v. X1,X2, ...,Xn with a joint p.m.f. pX1,...,Xn (x1, ..., xn)
then these variables are called independent upon Y if and only if

pX1,...,Xn |Y (x1, ..., xn | y) =
n

∏
i=1
pXi |Y (xi | y) .

Example: Y ∈ {0, 1} indicates spam/non spam and Xi ∈ {0, 1}
indicates whether a prespecified word appears in the email.
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Markov Chains

Consider r.v. X1,X2, ...,Xn with a joint p.m.f. pX1,...,Xn (x1, ..., xn)
then we always have

pX1,...,Xn (x1, ..., xn) = pX1 (x1)
n

∏
k=2

pXk |X1,...,Xk−1 (xk | x1, ..., xk−1) .

A sequence of r.v. {Xk}k≥1 is said to have the Markov property if
and only if

pXk |X1,...,Xk−1 (xk | x1, ..., xk−1) = pXk |Xk−1 (xk | xk−1) ;

i.e. the conditional distribution of Xk only depends on
(X1,X2, ...,Xk−1) through Xk−1; in other words Xk and
(X1,X2, ...,Xk−2) are conditionally independent given Xk−1.

Markov models are ubiquitous models for time series in Machine
learning, EE, Finance etc.
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Markov Chains

Let Xk ∈ {1, 2}; e.g. no rain/rain for day k.
Assume pXk |Xk−1 (xk | xk−1) = p (xk | xk−1), this is an homogeneous
Markov chain then we introduce T the transition matrix such that
Ti ,j = p ( j | i)

T =
(
1− α α
β 1− β

)
.

T is called a stochastic or Markov transition matrix.
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Applications of Markov Chains

Left-to-Right Markov chains (used for speech recognition,
segmentation etc.)

DNA Sequencing and Alignment: DNA sequence
(ADTTGACATTG....)
Global optimization via simulated annealing.
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Applications of Markov Chains

Language Modelling: Xk corresponds to a word or a letter in english.

Left: Proba of observing a letter, Right: Proba of observing one letter
having just observed another one. The size of the white squares is
proportional to the values of the entry. (Based on Darwin’s The Origin of
Species).
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Surfing the Web Randomly

Let X = {1, 2, ...., nx} be the Web consisting of nx webpages
(nx>1010).

Consider you are surfing the Web randomly and let Xk ∈ X be the
index of the k th you have visited.

Whenever you are at a Webpage, you select one of the outbounds
links randomly.

This is a Markov process.
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Chapman-Kolmogorov Equation

Problem: We want to compute recursively in time pXk (xk ) for any
k > 2 given pX1 (x1) and pXk |Xk−1 (xk | xk−1) = p (xk | xk−1) .
Chapman-Kolmogorov equation:

pXk (xk ) = ∑
xk−1∈X

pXk−1,Xk (xk−1, xk )

= ∑
xk−1∈X

pXk |Xk−1 (xk | xk−1) pXk−1 (xk−1)

= ∑
xk−1∈X

p (xk | xk−1) pXk−1 (xk−1)

Assume Xk takes values in X = {1, 2, ..., nx} and let

πk = (pXk (1) pXk (2) · · · pXk (nx ))
T

then Chapman-Kolmogorov can be rewritten as

πT
k = πT

k−1T ⇐⇒ πk = T
Tπk−1

AD () January 2011 8 / 23



Chapman-Kolmogorov Equation

Hence, it follows directly that

πn =
(
TT
)n−k

πk

and in particular πk =
(
TT
)k−1

π1.
One important question is what happens as k → ∞. Do we have a
“limiting”distribution? i.e. do we have

lim
k→∞

πk = π ?

and, if this limit exists, what is its expression?
For the two-state example described earlier

lim
k→∞

πk does not exist for α = β = 1

as, if π1 = (γ 1− γ)T then π2k = (1− γ γ)T and π2k+1 = π1.
For the three-state example, we clearly have for T1,2 > 0 and T2,3 > 0

π = (0 0 1)T
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Existence of a Limiting Distribution

If a limit π exists, then it has to satisfies

π = TTπ

and it is called the stationary of invariant distribution of the Markov
chain. Clearly if π exists then it is an eigenvector of TT associated
the eigenvalue λ = 1.

Proposition: Any stochastic matrix T admits 1 as eigenvalue. Hence
TT admits 1 as an eigenvalue.

Proof : We have ∑j Ti ,j = 1 for any i so for e = (1 1 · · · 1)T

T e = e

and 1 is an eigenvalue of T . As
det (T − I ) = 0 = det

(
(T − I )T

)
= det

(
TT − I

)
then 1 is an

eigenvalue of TT.
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Non-uniqueness of The Eigenvector associated to one

π is not necessarily unique; e.g. think of two non-communicating sets
of states

T =


0.85 0.15 0.00 0.00
0.50 0.50 0.00 0.00
0.00 0.00 0.70 0.30
0.00 0.00 0.15 0.85


then the eigenvalue 1 of TT has two associated eigenvectors(

0.77 0.23 0.00 0.00
)T
,(

0.00 0.00 0.33 0.67
)T
.

An even simpler counterexample, think of T = I .
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The Other Eigenvalues

Proposition: All the eigenvalues {λi} of T , equivalently of TT,
satisfy |λi | ≤ 1.
Proof : Assume u is an eigenvector of T associated to λ then

Tu = λu⇔∑
j
Ti ,juj = λui .

Let select imax such that |uimax | is the largest of the components |uj |’s
then

∑
j
Timax,juj = λuimax ⇒

∣∣∣∣∣∑j Timax,juj
∣∣∣∣∣ = |λ| |uimax |

⇒ ∑
j
Timax,j |uj | ≥ |λ| |uimax |

However we have by definition of |uimax |

∑
j
Timax,j |uj | ≤∑

j
Timax,j |uimax | ≤

(
∑
j
Timax,j

)
|uimax | = |uimax | .
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Stationary Distribution as an Eigenvector

Perron-Froebenius Theorem. If there exists k > 0 such that

Pr (Xk = j |X1 = i) > 0

for all i , j ; i.e.
(
TT
)k−1

is a matrix with strictly positive entries then
π is unique and whatever being π1

lim
k→∞

πk = π

with π (i) > 0 and ∑i π (i) = 1.

In layman’s terms, whatever your initial distribution you will
eventually has Pr (Xk = i) ≈ π (i) for large k .
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Application to Google PageRank

When one searches for a webpage using a search engine, the system
find all the web pages containing the query terms that you specified.

There are often far too many matches, so the system has to estimate
the relevance of each page, it needs to rank them.

A key idea of Google in the late 90’s was to propose a revolutionary
approach to ranking known as PageRank.

There are two equivalent ways to present it

it is a system where the importance π (i) of each webpage i is made to
be proportional to the sum of the importances of all the sites that link
to it (with π (i) ≥ 0 and ∑i π (i) = 1).
if a random surfer was exploring the web, then in the long run he/she
will end up on webpage i with proba π (i) .
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A Simplified World Wide Web
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Figure 30.8: A very small world wide web. Produced by pagerankDemo, written by Tim Davis.

p = 1
2 ; this is an irreducible and recurrent chain, yet it does not have a stationary distribution. The intuitive reason is that the

distribution keeps spreading out over a larger and larger set of the integers, and never converges.
This motivates the following definitions. Let

fij(n) = P (X1 6= j,X2 6= j, . . . , Xn−1 6= j,Xn = j|X0 = i) (30.88)

be the probability that the first visit to state j, starting from i, takes place at the n’th step. Define

fij =
∞∑
n=1

fij(n) (30.89)

to be the probability that the chain ever visits j, starting from i. Obviously j is recurrent iff fjj = 1. Define the mean
recurrence time µi of a state recurrent state i as

µi =
∑
n

nfii(n) (30.90)

We define µi =∞ if i is transient. Finally, define a recurrent state i as null if µi =∞, and as non-null or positive if µi <∞.
We have the following important theorem.

Theorem 30.7.4. An irreducible chain has a unique stationary distribution π iff all the states are non-null recurrent. In this
case, πi = 1/µi, where µi is the mean recurrence time.

It can be shown (e.g., [GS92, p143]) that for the random walk on the integers, µi = ∞ if p = 1
2 . (Intuitively, it takes

infinitely long, on average, to return to where you started.) Hence if p = 1
2 , all the states are recurrent, but null. (If p 6= 1

2 ,
all states are transient.) Thus this Markov chain does not have a stationary distribution. However, one can show that for a
finite-state Markov chain, all recurrent states are non-null. By Theorem ??, all states of a finite-state irreducible Markov chain
are recurrent; this justifies our earlier claim that every finite-state irreducible Markov chain has a unique stationary distribution.

30.7.5.3 Ergodic states

To ensure the stationary distribution is independent of the starting state, we require that the chain be aperiodic. So let us define
a state as ergodic if it is recurrent, non-null and aperiodic. Define a chain to be ergodic if all its states are ergodic. We can now
state our main theorem.

Theorem 30.7.5. Every irreducible, ergodic Markov chain has a limiting distribution, which is equal to π, its unique stationary
distribution.

This generalizes Theorem 30.7.2, since for irreducible finite-state chains, all states are recurrent and non-null, so ergodicity
becomes equivalent to aperiodicity.

30.7.6 Application: Google’s PageRank algorithm
We now discuss an important application of stationary distributions of finite-state Markov chains. When you search for a web
page using a search engine, the system finds all the web pages that contain the query terms thay you specified. This can be done
efficiently using a data structure called an inverted index. Unfortunately, there are often many pages that match, so the system
then has to estimate the relevance of each page.

c© Kevin P. Murphy. Draft — not for circulation.

We introduce an adjency matrix G of size n× n where n is the
number of webpages. G is defined by

Gi ,j =
{
1 if outbound link from i to j ,
0 otherwise.

In this case, a random surfer has a transition matrix

Ti ,j =
{
Gi ,j/

(
∑j Gi ,j

)
if ∑j Gi ,j > 0

0 otherwise
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Adding Some Noise

Clearly, there are two absorbing states ‘5’and ‘6’: not good!

To avoid getting trapped, Google considers

Ti ,j =
{
p× Gi ,j/

(
∑j Gi ,j

)
+ (1− p)× 1/n if ∑j Gi ,j > 0

1/n otherwise

where typically p = 0.85.

In this context, we have Ti ,j > 0 for all i , j so lim
k→∞

πk = π whatever

being π1.
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Example
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Figure 30.9: (a) Web graph of 500 sites rooted at www.harvard.edu. This was created by running the surfer function, written by Cleve
Moler, with the specified url as an argument. (b) Corresponding page rank vector. Generated by pagerankDemoPmtk.

Listing 30.4: Part of pagerankDemoPmtk
c = sum(G,1);
k = find(c˜=0); % non zero outdegree
D = sparse(k,k,1./c(k),n,n);
e = ones(n,1);
I = speye(n,n);
p = 0.85;
pi = (I - p*G*D)\e;
pi = pi/sum(pi);

30.7.6.2 Power method for the Pagerank algorithm

Although solving large sparse linear systems is relatively efficient, this method still cannot scale to the web. In Section 31.7.2,
we discuss a method to find the leading eigenvector of a matrix, known as the power method, which only relies on matrix-vector
multiplication. If, as in the case of the web, the matrix is very sparse (see Figure 30.9(a)), this can be quite efficient.

In the context of our small web example, we can implement the power method as follows.

Listing 30.5: Part of pagerankDemoPmtk
z = ((1-p)*(c˜=0) + (c==0))/n;
e = ones(n,1);
x = e/n; % initialize
for i=1:10

x = normalize((p*G*D)*pi + e*(z*x)); % x = Mx
end

This rapidly converges to the solution (within 10 or so iterations). In this example, we started from the uniform distribution,
but in general, we can start from the distribution computed using last month’s web graph. (See [LM06] for details.)

It is possible to implement the power method without using any matrix multiplications, by simply sampling from the
transition matrix and counting how often you visit each state. This is essentially a Monte Carlo approximation to the sum
implied by x = Mx.

This is implemented in the function pagerankpow, written by Cleve Moler (the founder of Mathworks, the company
that makes Matlab). Applying this to the data in Figure 30.9(a) yields the stationary distribution in Figure 30.9(b). (This took
13 iterations and 0.07 seconds.) See also the function pagerankDemo, by Tim Davis, for an animation of the algorithm in
action, applied to the small web example.

30.7.7 Application: MCMC
Markov chain Monte Carlo is a method that draws samples from a Markov chain in order to simulate sampling from a probability
distribution whose normalization constant is intractable to compute. See Chapter 12 for details.

30.8 Constrained optimization
In this section, we consider the following constrained optimization problem

θ∗ = arg min
θ∈Ω

f(θ) (30.98)

c© Kevin P. Murphy. Draft — not for circulation.

Left: Adjency matrix, Right: PageRank.
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How to Compute the Invariant Distribution

To compute the invariant distribution, any algorithm to compute
eigenvectors can be used. However, we have here n > 109 so some
specific methods have to be developed!

A simple so-called Monte Carlo approach consists of simulating the
Markov chain a very long time and to say

π (i) ≈ 1
P

P

∑
k=1

I (Xk = i)

A law of large numbers hold for this (dependent) process. Such
approaches are the basis of Markov chain Monte Carlo methods.
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The Power Method

A powerful method to compute the largest eigenvector consists of the
following method.

Select v0 ∈ Rn a column vector and iterate for k ≥ 1

wk =
(
TT
)
vk−1,

vk =
wk
‖wk‖

.

For a1 = vT0 π 6=0, we have

lim
k→∞

vk = sgn (a1) π

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0.
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Outline of the Proof

Consider the eigenvalues {λi} of TT ordered such that
λ1 = 1 > |λ2| ≥ · · · ≥ |λn | with associated orthonormal eigenvectors
u1 = π,u2, ....,un. We can rewrite

v0 = a1 π +
n

∑
i=2
ai ui

Rescaling operation vk = wk/ ‖wk‖, just ensure that ‖vk‖ = 1 for
any k; i.e. we can write alternatively

vk =

(
TT
)
vk−1

‖(TT) vk−1‖
=

(
TT
)k v0∥∥∥(TT)k v0∥∥∥

We have (
TT
)
v0 = a1

(
TT
)

π +
n

∑
i=2
ai
(
TT
)
ui

= a1π+
n

∑
i=2
ai λiui

AD () January 2011 20 / 23



Outline of the Proof

Iterating, we obtain(
TT
)k
v0 = a1π+

n

∑
i=2
ai λki ui

≈ a1π for large k

as 1 > |λ2| ≥ · · · ≥ |λn | . Hence we have∥∥∥∥(TT)k v0∥∥∥∥ ≈ |a1| for large k
It follows that

vk =

(
TT
)k v0∥∥∥(TT)k v0∥∥∥ ≈ sgn (a1) π for large k

and the convergence is geometric with rate |λ2|.
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Geometric Rate of Convergence

Convergence of PageRank is geometric.

We have for large k

‖vk −π‖ ≈
∣∣∣∣a2a1
∣∣∣∣ |λ2|k

1− |λ2| is known as the spectral gap: the larger the faster the
convergence.

How to estimate λ2 without knowing π? See assignment.
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Outline of the Proof

Without loss of generality, consider a1 > 0 so that sgn(a1) = 1 then

We want to study ‖vk −π‖ where

vk =

(
TT
)k v0∥∥∥(TT)k v0∥∥∥

=
a1π+∑n

i=2 ai λki ui∥∥∥a1π+∑n
i=2 ai λki ui

∥∥∥
≈ π+

a2
|a1|

λk2u2

so

‖vk −π‖ ≈
∥∥∥∥a2a1 λk2u2

∥∥∥∥ = ∣∣∣∣a2a1
∣∣∣∣ |λ2|k
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