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Sample Space and Events

Definition. The sample space S of an experiment (whose outcome is
uncertain) is the set of all possible outcomes of the experiment.

Example (ranking movies): Assume Mr. X has been asked to rank 3
movies: “Karate Kid”, “The Bounty Hunter”and “Citizen Kane”.
The outcome of the experiment is a ranking and

S = {all 3! permut. of “Karate Kid”, “Bounty Hunter”& “Citizen Kane”} .

Definition. Any subset E of the sample space S is known as an
event; i.e. an event is a set consisting of possible outcomes of the
experiment.

Example (ranking movies): The event
E = {all rankings in S starting with “Citizen Kane”} is the event
that Mr. X puts “Citizen Kane”at the top of his ranking.
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Union and Intersection of Events

Given events E and F , E ∪ F is the set of all outcomes either in E or
F and in both E and F . E ∪ F occurs if either E or F occurs. E ∪ F
is the union of events E and F
Example (ranking movies): If we have

E = {all outcomes in S starting with “Citizen Kane”} ,
F = {all outcomes in S finishing with “Karate Kid”}

then E ∪ F is the event that Mr. X put “Citizen Kane”at the top OR
“Karate Kid”at the bottom.

Given events E and F , E ∩ F is the set of all outcomes which are
both in E and F . E ∩ F is also denoted EF or E ,F
Example (ranking movies): E ∩ F is the event that at the top your
ranking you put “Citizen Kane”at the top and “Karate Kid”at the
bottom.
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Axioms of Probability

Consider an experiment with sample space S . For each event E , we
assume that a number P (E ), the probability of the event E , is
defined and satisfies the following 3 axioms.

Axiom 1
0 ≤ P (E ) ≤ 1

Axiom 2
P (S) = 1

Axiom 3. For any sequence of mutually exclusive events {Ei}i≥1, i.e.
Ei ∩ Ej = ∅ when i 6= j , then

P (∪∞
i=1Ei ) =

∞

∑
i=1
P (Ei )
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Interpretation of Probability

Consider an event E of the sample space S . Assume you replicate the
experiment n times, then it is tempting to define “practically”

P (E ) = lim
n→∞

n (E )
n

where n (E ) is the number of times the event E occurred in the n
experiments.
This is known as the frequentist approach: you should repeat an
infinite number of times an experiment and the probabilities
corresponds to the limiting frequencies.
Problem. This kind of approach makes sense if you toss a coin but
you cannot ask Mr. X one million times to rank these three movies.
In many scenarios, probabilities are measures of the individual’s
degree of belief: this is subjective.
This does not have any impact on the mathematical “machinery”as
long as you define the axioms 1,2 and 3 are satisfied.
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Conditional Probabilities and Independence

Conditional Probability. Consider an experiment with sample space
S . Let E and F be two events, then the conditional probability of E
given F is denoted by P (E | F ) and satisfies if P (F ) > 0

P (E | F ) = P (E ∩ F )
P (F )

=
P (E ,F )
P (F )

Intuition: If F has occured, then, in order for E to occur, it is
necessary that the occurence be a point both in E and F , hence it
must be in E ∩ F . Once F has occured, F is the new sample space.
Independence: Two events E and F are said to be independent if

P (E ,F ) = P (E )P (F )

which implies
P (E | F ) = P (E )

Example (ranking movies): E = {“Karate Kid” top movie for Mr. X}
and F = {Mr. X is a fan of martial arts} then you definitely want a
probability model such that P (E | F ) 6= P (E ) .
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Bayes Formula

Bayes Formula. We have directly by symmetry

P (E | F ) = P (F |E )P (E )
P (F )

where
P (F ) = P (F |E )P (E ) + P (F |E c )P (E c ) .

In many practical machine learning problems, you “build”P (E ,F )
either from

P (E ,F ) = P (F |E )P (E )
or

P (E ,F ) = P (E |F )P (F ) .
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Conditional Independence

We say that the events E and F are conditionally independent given
G if

P (E ,F |G ) = P (E |G )P (F |G ) .
Example: Kevin separately phones two students, Alice and Bob. To
each, he tells the same number; i.e. event
G = {Kevin said ‘7’to Alice and bob}. Due to the noise in the
phone, Alice and Bob each imperfectly (and independently) draw a
conclusion about what number Kevin said. Let us define the events
E = {Alice heard number 7} and F = {Bob heard number 7}
respectively then E and F are conditionally independent given G as

P (E ,F |G ) = P (E |G ,F )P (F |G ) = P (E |G )P (F |G )
but we definitely expect

P (E | F ) > P (E )
so the events E and F are not (marginally) independent.
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Random Variables and Discrete Random Variables

In many scenarios, we are interested in a function of the outcome as
opposed to the actual outcome; e.g. we are interested in the sum of
two dice and not in the separate values of each die or simply as it is
easier to encode. Real-valued functions defined on the sample space
are random variables; e.g. your score at the SAT test etc.
A discrete r.v. X takes value in an at most countable set X and is
defined by its p.m.f.

pX (x) = P (X = x)

where
pX (x) ≥ 0 and ∑

x∈X
pX (x) = 1.

Expected value/mean and Variance

µ = E (X ) = ∑
x∈X

x pX (x) ,

Var (X ) = E
(
(X − µ)2

)
= E

(
X 2
)
− µ2.
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Conditional Distributions: Discrete Case

Assume X ,Y are discrete-valued r.v. and take values in X ×Y with
a joint p.m.f. p (x , y) then the conditional p.m.f. of X given Y = y is

P (X = x |Y = y) = pX |Y (x | y) =
pX ,Y (x , y)
pY (y)

=
pY |X (y | x) pX (x)

pY (y)

where
pY (y) = ∑

x∈X
pX ,Y (x , y)

Example: X ∈ {0, 1, 2, ..., 9} is a digit, Y is a 16× 16 image where
each pixel can take 256 values.

Example: X ∈ {0, 1} corresponding to spam/non spam and
Y ∈ {0, 1}n is a vector of n binary variables indicating whether some
prespecified words, e.g. "viagra", "money", "huge”appear in an
email.
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Independence and Conditional Independence of Random
Variables

Consider r.v. X1,X2, ...,Xn with a joint p.m.f. pX1,...,Xn (x1, ..., xn)
then these variables are called independent if and only if

pX1,...,Xn (x1, ..., xn) =
n

∏
i=1
pXi (xi ) .

Consider r.v. X1,X2, ...,Xn with a joint p.m.f. pX1,...,Xn (x1, ..., xn)
then these variables are called independent upon Y if and only if

pX1,...,Xn |Y (x1, ..., xn | y) =
n

∏
i=1
pXi |Y (xi | y) .

Example: Y ∈ {0, 1} indicates spam/non spam and Xi ∈ {0, 1}
indicates whether a prespecified word appears in the email.
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Markov Chains

Consider r.v. X1,X2, ...,Xn with a joint p.m.f. pX1,...,Xn (x1, ..., xn)
then we always have

pX1,...,Xn (x1, ..., xn) = pX1 (x1)
n

∏
i=2
pXi |X1,...,Xi−1 (xi | x1, ..., xi−1) .

A sequence of r.v. {Xk}k≥1 is said to have the Markov property if
and only if

pXi |X1,...,Xi−1 (xi | x1, ..., xi−1) = pXi |Xi−1 (xi | xi−1) ;

i.e. the conditional distribution of Xi only depends on
(X1,X2, ...,Xi−1) through Xi−1.

Markov models are ubiquitous models for time series in Machine
learning, EE, Finance etc.
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