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2.1

The function is in getPowers.m, the plots are generated by q2_1.m
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2.2
The figures are generated by q2_2.m




2.3

RMSE for training and test set as function of polynomial degree
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The RMSE is the square root of the ML estimate of 2.
Minimum training error for M = 19
Minimum test error for M = 12
The figures are generated by q2_3.m
2.4
The figures are generated by q2_4.m
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2.5
The figures are generated by q2_5.m

RMSE for training and test set as function of number of kernels
1400 T T T

test RMSE
1200 -

1000 -

800 -

RMSE

400 -

200 -

The lowest test error is for M = 8 The lowest train error is for M = 24
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2.6

We have the following distributions:
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p(w, X,Y)
p(X,Y)
p(w, X,Y)
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We wish to solve the following optimization problem:
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Now, we solve for critical points
Vo (wh (ao?T + XTX)w - 20XTY) =0 <= 2(ac’T + X" X)w - XY =0

w= (o’ T+ XTX) 1 (XT)Y
The figures are generated by q2_6.m



Regularized fits for M = 100 62 =400 and o = 0.01
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The usual methods for getting M.L. estimates will fail because the matrix
XTX will be singular. Even if an alternate solution was found, such as finding
a minimum norm solution or using a QR decomposition, the matrix will still be
extrmely ill-behaved. In short, getting reasonable ML estimates is not possible
for the case M = 100.

Q2.7

e The smallest training error for the polynomial case is obtained for a =
0.00000001

e The smallest test error for the polynomial case is obtained for o = 0.000001831
e The smallest training error for the rbf case is obtained for e = 0.00000001

e The smallest test error for the rbf case is obtained fora = 0.013848864



Error on training and test sets for polynomial family
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Error on training and test sets for R.B.F family
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Q2.8

Q2.9

For both the polynomial and the R.B.F. case, the values of alpha which min-
imized the test errors and maximized the marginal likelihood are close. This
suggests a way to bypass both cross validation and estimate regularization pa-
rameters and detecting overfitting without access to extra data.
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