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Efficient Particle Filtering for Jump Markov Systems.
Application to Time-Varying Autoregressions

Christophe Andrieu, Manuel Davy, and Arnaud Doucet

Abstract—in this paper, we present an efficient particle filtering  we observe{y;} (¢ > 1), where
method to perform optimal estimation in jump Markov (nonlinear)
systems (JMSs). Such processes consist of a mixture of heteroge- P(yelxo s T1ts Y1:0—1) = Gr, (Yt|Y1:t—1, Tt) 3)
neous models and possess a natural hierarchical structure. We take
advantage of these specificities in order to develop a generic fil- with y, € R™»+ (the number of observations can vary over time).
tering methodology for these models. The method relies on an orig- It is possible to add exogenous variables} in the equations,
inal and nontrivial combination of techniques that have been pre- j g {f:;} and{g,} can also depend an, but we omit them to
sented recently in the filtering literature, namely, the auxiliary par- g gjify notation. Note that the above model could be written
ticle filter and the unscented transform. This algorithm is applied . . . . .
to the complex problem of time-varying autoregressive estimation @S & standard hidden Markov model with mixed continuous/dis-
with an unknown time-varying model order. More precisely, we de-  crete statgx,, ), but we prefer this presentation as it empha-
velop an attractive and original probabilistic model that relies on  sizes the hierarchical structure of the model and motivates our
a flexible pole representation that easily lends itself to interpreta- - methodology.

tions. We show that this problem can be formulated as a JMS and ; P
that the associated filtering problem can be efficiently addressed The class of processes under study here is a generaliza

using the generic methodology developed in this paper. Simulations fion Of the jump Markov linear models (JMLS) considered

demonstrate the performance of our method comparedto standard in [5] and [14]. In the JMLS casef,, ., (z¢|z:—1) [resp.

particle filtering techniques. 9r, (Yt|zt, y1.4-1)] are Gaussian and linear irp_; (resp. in
1), i.e., one has

|. INTRODUCTION
) xy = A(re)zi—1 + B(ri)ve, zo ~ N(mo, Po)
UMP Markov systems (JMSs) are a very important class of
models appearing in signal processing, target tracking, and ¥t = C(r¢)z¢ + D(r¢)e:
econometrics, among others [2], [14]. Different from standard iid. iid. .
(continuous state space) hidden Markov models, JMSs combifaereve <~ N(0, I,,,) ande;, '~"N (0, I,.) are mutually in-

hierarchically discrete/continuous state spaces in the followiff§Pendent sequences of independent and identically distributed

way. Let{r;} (¢ > 1) be a stationary, finite, discrete, first-order(""d') Gaussian_ random variables. I_n th_is context_, Monte Carlo
homogeneous Markov chain taking its values in agetith methods combined with Kalman filtering techniques can be
transition probabilities used [5]. However, it is of great practical interest to relax these

N linearity and Gaussianity assumptions, which are unrealistic in
mij = Pr{ripr = jlre = i}, (i, 7 € S). (1) many real-world applications. As we will see in Section lll,
time-varying autoregressions (TVARs) with time-varying
model order enter the class of IMS, but other examples include
bearings-only tracking for a maneuvering souf®, where
the stater; consists of the location and velocity of the target
P(Te|To:t—1, T1:4) = fr, i, (T|T2-1) (2) and where{r,} is a given maneuver anuultitarget tracking
in clutter noise[2], where r; is the time-varying number of
targets, and the state = (z1,+, ..., ,,,+) consists of the
aggregation of each state target;, ¢ = 1, ..., 4.

We defines as the finite number of elements®fNow, consider
a family of s densities{ f;;(z'|z)}, wherez € R"= andz’ €
R"=", and define the state transition conditional densities

where, for a set of variables;, we denote la:bé
{las lat1, .-+, Ip}. The initial statez, is distributed ac-
cording to a distributiom,. Note thatthe dimension, or nature,
of z; might be a function of the sequenfe }, but we do not 5  Eqtimation Objectives
make this dependence explicit in order to alleviate notation.

Neither the procesgr;} nor {uz;} are observed. Instead, The aim of optimal filtering is to estimatsequentially in
time the unknown “hidden” state$z,, r;} and, more pre-
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where essentially differs from other works on APF in that we propose
an original implementation of the APF idea that relies on the

P(yelyr:e-1) = Z Mre_yre /g,,t (elyr:e—1, 1) UKF. As opposed to previous works, our combination enables
Ti-1,me €S ' both the derivation of an efficient importance sampling density

X fro_ v (e|Te_1)p(we_1, Te_1|y1.4—1) dzs_1.¢. @ndan accurate estimation of the auxiliary weights without ad-
. . . . ditional computational load.
Th(_are is no closed-form solution to this recursion and for stateWe apply our methodology to nonstationary signal detec-
estimates of the form tion and estimation, using flexible time-varying autoregressions
Eld(zo.t, 1:¢)|y1:t] (TVAR). We adopt here a pole representation of the autoregres-
sive process that allows for the specification of intuitive priors
A
= /Z &(xo.t, ™1:6)P(To:¢, T1:¢|Y1:¢) dZo.+  (€.9., Smoothness or abrupt changes of spectral components)
T and natural interpretations. Furthermore, a direct and naive up-
which include the minimum mean square estimate (MMSE) @fte of the number of AR coefficients can cause unpredictable
the statdE [z, |y, . ] and its covariance, for example. To simplifyand unwanted changes on the existing spectral components. Our
notation, finite sums will be replaced further on by integral@Pproach, on the contrary, allows for additions or removals of

whenever it is convenient. spectral components that have limited effect on existing com-
ponents, as opposed to the models considered in, e.g., [17] and
B. Resolution and Organization of the Paper [19]. However, this choice of parameterization introduces many

We propose here to approxima€zo. ¢, r1:¢|y1:¢) Using nonlinearities and is made complex by the fact that the number

particle filtering methods. The key idea of particle filtering is t&f Poles is unknown and might evolve with time. .
use an adaptive stochastic grid approximation of the posterior! "€ Paper is organized as follows. In Section I, we briefly re-
distribution of the state vector withV >> 1 weighted particles V€W the basic principles of particle filtering techniques, which

(values of the grid) evolving randomly in time according to &® essential for gnderstgnding the further developments that
simulation-based rule, that is, the density is approximated byed to our generic algorithm that take advantage of the JMS
weighted mixture of points structure. In Section Ill, we introduce the TVAR problem, and
N performance of the procedure is demonstrated on synthetic sig-
i nals. A discussion is given in Section IV.
p(deo.e rraelyre) = Y wf” 8,00 (dwo)l e 4 () J
=1 HE7 HE

Il. PARTICLE FILTERING FORJMS

N
Zwti) =1, wﬁi) >0 (4) A. Sequential Importance Sampling and Resampling
=1 We briefly describe here how to apply the sequential impor-
so that, for example tance sampling resampling (SISR) method in order to approxi-
N mately sample fromp(zo .+, 71.¢|y1.+); See [6] for further de-
Elp(zg.¢, 1. 4] & wPe (z0 D) tails.
[b(wo:t, T1:4)Y1:4] Z t ¢( 0:t 1;t)
i=1 At time ¢ — 1, assume we have, say, weighted particles
We will further denotes,, ., (dz, r) = lgy(r) 8z, (da), {a§),_y. 1), } associated with the weighfss;”, } such that
wherel,., (r) is the indicator function such thdt,(r) = 1
if r = ro andl,,(r) = 0 otherwise. The adaptive algo-P(di’f’O:tfl: T1ie-1|y1ie-1)
rithm is designed such that the concentration of particles N
in a given region of the state space, saly represents szg?lém(i) ) (dzo.t—1,T1:4-1)-
the probability of A under the posterior distribution, i.e., i=1 it

Jap(@o:e, T1:4|y1:+) dxo. dr1.,. Therefore, computational , ,

efforts focus on different zones of the state space accordingli¢ want to obtainN particles {«§),, ¥V} distributed ac-

their importance, resulting in efficient algorithms. The particlesording top(zo . ¢, 71:+|y1.+). Attimet, we extend each particle

evolve with time in a series of growing spaces and can eitl‘e&’?hl? r', ;1 by samplingi:f% ft(l) according to a condi-

git\){? birth to offsprir?gd;;farticleshor die, .depen?_ing on tf]:eilﬁonal distribution q(zs, r¢|z’, 1, #{",_,. y1.,) to obtain

ability to represent the different characteristics of interest of t , () (i) ~(i) A, () (i)

posterior distributions, which are dictated by the observatigﬁ nejg) pAartlc(:()es{.Loj(i; Pk where ., = (%:tfl’ )

process and the dynamics of the underlying system. and 7y7, = (ry/;—1, 71 ). To correct for the discrepancy
We propose here to develop a generic approach in order to tietween the distribution of the particles,, 7", and

sign efficient particle filtering techniques adapted to the classofzo:+, 71:¢|y1:¢), wWe use importance sampling so that

JMS described earlier. Our approach is an original and nontrivigizo .+, 71:+|y1.¢) is approximated by the empirical distribu-

combination of several methods that have been recently pt®n

posed in the literature, mainly, the auxiliary particle filter (APF) N

[16] and a suboptimal deterministic filtering method known as _ @ e

the unscented Kalman filter (UKF), which is a particular in- ©~ (dwo.e, racalyiie) = ;wt 850,50, (dT0:4, 1)

stance of the unscented transform (UT) [11], [12]. Our work ’ (5)
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where the importance weights satisfy computation of these predictive likelihoods might prove to be

, , intractable, and approximation is needed. Recall that
wt(z)o< le X

p (?/t Yi:t—1, mﬁ‘_)l, 7”75?1)

~(4) (4) = Z ﬂ-Tii_)le, /gm (yt|y1:t—17 mt)fT’ii_)th (xt
Ty t

~(2
tt—1s T1:¢—15 Y1: reEeS

) (i‘gi)

Ty

p(jg)i:)tv fEZ)t Yi: t)

p (5687 1 fﬁ)t_l’yl :t—l) q (5:5”7 e

zgﬁl ) dxy.

In [16], the authors propose (in the nonswitching case) simple
approximations where

©6) /.01»t(yt|zt-/ yize—1)fo (5Ut

The performance of the algorithm depends on the importance = g (yt
densityq(zs, r¢|zo.1—1, T1.1—1, Y1.¢). The “optimal” impor-
tance density, that is, the density minimizing the condition

Y1:t—1, '%gl)) f;.ii)l
jgbz)t—lv fgzz)t—h yl:t)

: 7 -
L 9= \Yt Ty 1) () =(9)

(i) "™ "t t
X Wy 4

) a@t”, 7"

:L’(Ql) dxs
Yi:t—1, € (17521 Tt))

&{here{’(xg?l, r¢) is the mode or mean of ;)
t—1

(@i|zt?y). In

r

variance of the weights conditional upgn. ;_1, is [4] many applications, especially df., (y¢|y1.¢—1, x¢) varies sig-
nificantly over the significant regions g¢f ;) (xt|£§"_)1), then
t—1't
P(Te, Te|To:t—1, T1t-1, Y1:1t) the approximation of the predictive likelihood can be very poor

and lead to performance far below that of the SISR algorithm.
Indeed, one ends up biasing the exploration of the space toward
and the associated importance weight is proportional to the pHilinteresting regions. Itis thus fundamental to be able to prop-
dictive likelihood erly approximate the predictive likelihood. An obvious solution
would consist of using a second-stage Monte Carlo method for

X gr, (i‘/t|y1:t—17 xt)fnqm (xt|xt—1)7rn71rf

Wy X We1 DYl t—15 Te—1, Te—1) (7) each particle. Itis, however, too computationally intensive and

introduces further Monte Carlo variation. Both the inaccuracy
where and computational problems have been overlooked in previous
studies involving APF. In order to overcome these problems, we
P(Ye|y1:1—1, Te_1, T4—1) propose here an efficient solution based on a deterministic ap-

proximation of the predictive likelihood integral with

= Z Try_1mry /g""i (yt|y12t—17 xt)fmfln(xtmt—l)dxt'
rES . /gTt (elyr:e—1, ) f, 0 v (ﬂit

t—1

37521) dxy

This scenario is referred to as “full adaption” in [16]. ~ Py, (1/1:t~ xgi_)l, Tt(l_)l)
Finally, one obtainsV particles{z{",, r{"’,} approximately '

distributed according t@(zo.+, 71:¢[y1:¢) by resampling/se- \nereq, ({7, +).) is a deterministic mapping/integration

lection from the weighted empirical distribution given in (5)technique (we omit the observations, , in 4, () to simplify

There are several resampling procedures available in the litef@tation). The interest of our approach is that it does not require
ture. We adopt here the stratified sampling scheme described ifyjitional computations since it will also be used to form the

[15]. importance distributiory(z, rt|x(()i:)t71, r{i?t,l, Y1:¢), S €x-

This “optimal” importance sampling case deserves speciahined in the next subsection. We propose to estimate the de-
attention. Indeed, the importance weights given by (7) do ;. quantity as

not actually depend ofx;, ;). This means that resampling/se-
lection can be performed before extending trajectories, thus %(yt yrie1, 2, ,nt(i)l) _ Z T (:51(5217 Tt(ljl) )
lecting the most promising trajectories before extension. How- oy
ever, in most practical cases, it is impossible to use the “op- 4 , (8)
timal” importance sampling density as the predictive likelihoodshe SISR extends each partiebéﬁ)t_l, rgﬂ)t_l with weight
of particles [see (7)] do not admit a closed-form expressiop"), by samplingi”, 7" according to a conditional distri-
However, this scenario motivates an glternauve particle filtering tion q(ze, Tt|$gL:)t—17 ng:)t_17 y1.4) to obtain(x((f:)t_l, jgz))
method known as APF [16] (see Section II-B1), where one ana- ., () NON . . o

. : S . —and(r;/,_q, 7y ’); then, the associated weight satisfies (6) and
lytically approximates the predictive likelihoods, or its behavior. : .

can be rewritten as

whenever necessary.

wt(i) x w(?lﬁ (yt

Y1:t—1, i“gz)) fro o (i‘gl)

Y1:t—1; a?j(fi_)17 7"5?1) X

(@)
Ty lq) T 500
i

B. Strategies for Efficient Particle Filtering
1) Auxiliary Particle Filter: The idea behind APF is, at 9-(5) (yt
timet, to extend existing trajectorigs:{”,_,, r\”),_,} thatare - ' CENCRWACEEGING O :
the most promising in the sense that their predictive likelihood$ (?/t Yi:t—1, Ty 1, Tt—1)q(xt » Tt | Toie—15 T1it—1 y1;t)
p(Yelyr - t—1, 1;1(21./ rt@l) are large. However, the analytical 9)
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The interest of this decomposition is that the tewﬁi)lﬁ to take into account the new observatignand calculaten,,
(elyr -1, 221, r®.), which is independent of(", 7"~ andP, with the Kalman filter. Given values for,, and P, ;,

mimics the weight of the “full adaption” scenario de-arious methods have been proposed in order to generate a new

scribed earlier. It therefore suggests the possibility set{z |} [11], [13]. o

resampling {=$’, ., 7", |} according to the weights Inthe context of JMS, the quantity,, (1, r)) used to

/\gi) x wtilﬁ(ytkyl:t—la l‘ti)p rii)l) in order to obtainN a_lpproximgte the predictive likelihood forthe APF step (see Sec-
; tion 11-B1) is computed for every possible new stateising the

articles {z") 70 , which are then approximatel X .
part {20741, T1cp—1J, Whi pproxi Y unscented approximation:

sampled from a distribution “close” (o 11, 71:t—1]Y1:¢)-

We then extend each particle by sampliﬁgé), 7, according @4 1 —

to a conditional distributiong(zy, r|5), 1, Y 1 wree). U (lt_u Tt_1> = z;gn (yt
1=

Y1:t—1, wrgi_)ln (Iggl/ 0))

Contrary to the full adaption case, it is, however, necessary to (11)
re-weight the particles by In addition to yielding accurate auxiliary weights, the approxi-
() mation of the predictive likelihood of (8) and (11) also provides
Wy~ X an efficient importance distribution fat, namely
, N oAV GG ; ‘ , ‘
gopo (11, 387) Fo g0 (@8] ) w0 (oo 282y 70 ) o (3121712
ﬁ(yt O )q(jm FO[0 ) yl_t) o ST o
P =1y Tl L e With this importance distribution, stateswith high predictive

distribution (independently on the future statg are proposed

NORO -
as the samplegz,;,_, 71/, } are no longer distributed ac- it high probability, whereas unlikely statesare rarely se-
cording top(xo.1—1, 71.t—1|y1.¢) (€vEN asV — oo). lected.

The problem of constructing an efficient deterministic map-
ping 1, for our problem is the subject of the following subsece. Algorithm

tion. o :
Based on the elements presented above, it is possible to pro-

2) Unscented TransformThe unscented Kalman filter . . ) o .
(UKF) is an alternative to the extended Kalman filter (EKF)Ioose the following generic pqrtjcle filtering algorithm for JMS,
\here the notationﬁ”bgllt)(rt), Pt(‘:;)(rt); r; € S) are introduced

which possesses many advantages. Both approaches are M . »
vated by the fact that in most cases, a single dynamic mod&aﬁemphas_l;e that these quantities are computed for each pos-
defined by standard (nonjump) Markov systems equations i le transition ofr¢.

alternatively be represented in the following manner:

(10) Particle Filter for IMS

At time ¢ = 0, Step Q Initialization

« For i=1,..., N sample wg‘j ~ p(xo) and set the
weights  w(” = 1/N.

Tty = <P(117t717 Ut) Yt = 7(37757 €t)

where {v;} and {e;} are typically mutually independent
zero-mean i.i.d. sequences, apdand v are nonlinearities
(similarly, we will introducey;; and~;; for IMS). Both the .
. . . t time ¢ > 1,
EKF and UKF rely on approximations of the system define Step 1 Awdliary variable resampling st
in (10) but are of a different nature. Nevertheless, for both P 0) S
. . . . e For : =1,..., N, compute J\;’ ast

scenarios, the result of such approximations is that the se-
ries of predictive and filtering densitie§y(x¢|y1.:—1)} and @ @ S N @
{p(w¢|y1.+)} are replaced with series of Gaussian distributions A; " o w; 4 Z ”rﬁ’_’lrﬁ/’ﬁ (xt_y Tt'_l) ; Z Al =1
{N(@e; myji—1, Pye—1)} and{N (z¢; mype, Py} r€S =1 12

The EKF relies on linearizations of the evolution and G G) _ (12)
observation (10), followed with a direct application of th&/Nere 1/_’7‘1 (5‘7#1»_7}71) Is c((i))mputed as in  (11). The
Kalman recursions on the first- and second-order momen$éme sigma points {7,’,} are used to compute
The solution adopted by the UKF is a second-order truncatiéy|¢(7¢), Py«(re) for all - ryin 5.

of the statistics of the posterior distributions at hand, followed Multiply/Discard particles {x((f:)tfl' , Tgi;)tﬂ}
by the Kalman recursions. More precisely, assume that a set@tl the associated statistics {tr, (33521./ r,(f_)l),

n points{fgl_)l}, known as the “sigma points” [12], possess th%ﬁf)(”): pf(‘i)(rt); s c S} with respect to
correct mean equal te,_;_; and covariancé’, _;;_;. Then, L N
the sample mean and autocovariance of the{ e¢E 5?1, 0)}
should be a good approximation af,;_, and P;_,, re-
spective!%/. Similarly, the sample mean and autocovariance ¥
{wp(zg’_h 0), 0)} should lead to reasonable approximations
A L]
of yupe—1 =E(y(p(e-1, ve), €0)lyr:1-1) andcov(yelyr:-1), ()
which are required for the Kalman filter recursion. Following!:¢~1

the same principle, the crosscovarianee(z, y:[y1:+-1) C&N  1korr — 1,7, . in (12) should be replaced with the stationary distri-
also be computed. Given these quantities, it is then possibigion of the discrete Markov chain.

high/low importance weights /\f’) to obtain N
particles (#8071 and the associated
atistics {4, (312, 712,), m{|) (1), P (r0); 70 € S}
Step 2 Importance sampling step .

or i = 1,..., N, sample fﬁl) ~ q(relyr .+, ié’?t_l,
~(4) )

) X W%Ei)lnwri (575:)17 Ti—1
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sFor i = 1,..., N, exterjdl the trajectories coefficients (denotedy, + = (a1,+, as ¢, - .., ak, +)* attime
with 39 ~ N (z; mg‘?(fﬁ”), Pt(l?(ﬁ(”))ﬁ t). The observed signal evolution is then described as

» Compute the importance weights as

Y¢ = 01, ¢Yi—1 + Q2 tYi—2 + -+ o, Y-k, + e (13)

, ~(z’)) o (~(i) () )
~ (i X ~(i) ~(i) | T Ty~
wt(i)o( ‘?’“ﬁ : (yt ’ ngjlri )' ‘ : ! I wherewv; is a centered Gaussian noise. Equation (13) can be
b (5:52_)1, ft@l)N (;;;9; mglzt) (ft(”), Pt(l? (f«t(z))) written in vector form as
- - . i _ T i
* Rename the particles @, #y into {«f?,, Yo =01k, ¢ Yt-1:0-K, + Ut (14)
r Y:)t . For modeling and practical reasons, we prefer to parameterize

the TVAR in terms of its “instantaneous” poles, which are the

Note that this algorithm could be extended by introducingeros of the polynomial associated with the autoregressive
Markov chain Monte Carlo (MCMC) steps in order to rejuveprocess at time

nate the path of the particles [8]. In the context of IMS, depen-
dent onry .4, the stater, may lie in subspaces of different di- Xt(r) =1 — a1z — ay, ® == aKt,twKt~ (15)

mensions, and thus, reversible jump MCMC should be consLF— . .
ered [1], [9]. he poles can either be complex-conjugate or real-valued,

and we need to distinguish between them. We dengte

i = 1, ..., k; the complex-valued poleg:{ is the number
of distinct pairs of complex poles conjugate 5f,), andn; ,
Many applications such as satellite vibration monitoringandi = 1, ..., k' denote the real-valued poles. The complex

gearbox fault detection, or music processing require thgles can equivalently be expressed in terms of moduli and
development of tools for the analysis of spectral trajectoriefstantaneous” frequencies as

in the time-frequency plane. Generally, the number of such \ _
spectral trajectories is unknown and evolves in time. More Zijg = pie€ T i=1, L kg (16)

importantly, no precise model for the evolution of such traject?- . . .
L . ) ; Tt will be useful to introduce the transformation from the set
ries is available. Standard time-frequency techniques [7] ylelg ; e . . )
. . . of poles ofy; to its coefficients, which we will denoté. Fi-
comprehensive representations of the signal energy conten : . .
. ally, the TVAR model is completely described at timigy the
but have several drawbacks that preclude their use for specyal b i n ,
_ : . istribution ofv; and{k}, n1. k7 ¢, k7, P18zt V1:k= ). WE
trajectory tracking. On the one hand, representations such _as . P, ty Ty B i
the Wianer—Ville transform vield verv aood time-frequenc consider the problem of estimating online the TVAR poles, the
9 y Yy goo -d arameters;, andk; and hyperparameters. In [10], a simpler
resolution but cannot be computed online and introduce . .
. . ) ) e model was presented with a fixed number of complex poles and
interferences, leading to major tracking difficulties. On th
other hand, representations such as the spectrogram can
computed online and introduce few cross-terms but are knogn
for their poor resolution. Moreover, it should be added that in ] ) .
either case, an additional postprocessing of the representatioh{€re. the state vectar; contains the moduli and instanta-
is required in order to identify the spectral trajectories an¢fUS frequencies of the poles but possible hyperparameters
their features (start time, initial frequenogtc). This extra @S Well. The dimension of, is therefore time-varying as the
step generally leads to both conceptual (i.e., definition GH/mPer of poles is allowed to evolve with time. The Markov
what a trajectory or a spectral components are) and practi€3in {7} Will represent here the number of real and imagi-
difficulties (i.e., complex algorithms). nary poles and,. therefore, takes its values'in= {(i, j); ¢ €
Time-varying autoregressive (TVAR) frequency estimation i€ « - -+ Finax}: 7 € {0, .., kL.« }}. We assume that the tran-
useful in the present context since itis both flexible and parsimgton mlatrlx of th'S,Mar!fOV chain is such thaf;, ), (ir, j») = 0
nious. Indeed, the relevant information about the spectral cdhl? = ¢ > 1 or [j —j’| > 1. This means that the process
tent of the signal being analyzed is summarized with a reducSg@lowed to add/remove no more than one real pole or pair
number of frequency parameters at each time instant as oppoXfoniugate poles at eac“h time instant. Some fu‘r‘ther restric-
to classical time-frequency representations, which compute &qnS are needed for the “boundary” valuesiaind j: When
ergy levels in the entire time-frequency plane. As we will se§ither number of poles is zero, then no such pole can be re-
this general modeling allows for rather natural and intuitive def0ved, and similarly, when either maximum number of poles
initions of trajectories in the time-frequency plane and leads, is,reached, then no such poles can be added. There is an infinite

practice, to excellent estimation accuracy compared with alt@4mbper of possible specifications for the transition probabili-
native techniques such as the spectrogram. ties{ fi;(z'|z)} that depend on the application at hand. Here,
we will assume that the processes are linear Gaussian and aim

A. Problem Description atintroducing some smoothness prior. The observation equation
We are interested in TVAR models. with online estimatioﬁonSiStS of the nonlinear transformation from the pole represen-

of both the model order (denotdd,) at timet¢ and the TVAR tation to the cqefﬁments ofthe_polynom@(a:) combined with
past observations; more precisely

I1l. APPLICATION TO TVAR ESTIMATION

|>§éj hyperparameters.

Model and State Space Representation

2Any other distribution, such as a heavy tailed distribution (e.g-dstribu-
tion) could also be used. Yo = (e, T)Yr—1:1—1c, + Vr.
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C. Example

When the dimension of the AR process is fixed, we assume
linear models for the evolution of the different poles and, more
precisely, ordeiM/, moving average (MA) processes

0.3
1
Vit = Wi Witm1+Vit—o+ -+ Vitop) + Uy, ¢
0.18§
1
Pi.t =31 (Pi,t—1 + pijt—2 + -+ pije—nr) + Up, 1
L (i1 i+ eoar) + (17)
; [— . _ ; _ P . _ u
Mi,t Vi N, t—1 T Ni, t—2 Mi, t—M Ni,t 0 150 200 500 B0 1000

which ensure smooth trajectories for these parameters\ Eor Fig. 1. Spectrogram of the data (1000 time samples long) computed with a
{l/ P, 77} we assume that)\ ,t are centered white GaUSS|an—|amm|ng window (171 time samples long).

noises, mdependent for differentand different), with vari-
anceso; ,. These variances are generally unknown, and we
therefore include them as part of the inference problem. In order .

to accommodate for possible nonstationarities, we assume the 0-4M
following evolution model for these hyperparameters. Ko

{v, p, n}, we mtroduce the notation; , = log(U?\ht_l), and 0.3

similarly, o , = log(oy ;_,). Now, the evolution models for
these variances are, fare {v, p, n}

ai)‘,t = af\,t—1 T wx,, ¢ (18)

where thew,,, ; are centered white Gaussian noises, indepen-

dent for different; and A, with varianceséizt. Similarly, we %0 200 600 800 1000
assume that the variance of the observation noise follows the
following law: Fig. 2. Estimation with fixed hyperparameters and dimension. Solid lines

indicate the actual location of the chirp and tone components.
a;l',j,t:ai'j,t—l + wy, ¢ ) .
0.18, a transient tone at frequency 0.3 between time samples
wherew, . is a centered white Gaussian noise with variances0 and 400, a sine-modulated component with mean normal-

&, +» independent of all other dynamic noises. The four hypeized frequency 0.4, and a linear chirp. Note that the number of

parameters’ ,, 6> ,, 6, ,, andé, , are fixed. spectral components is time-varying. A Gaussian white noise is
The hyperparametelks: and k" may be unknown and vary added to the data such that the SNR is about 20 dB. The fol-
over time. We assume the probabllltleg,]), (,7) = 10/22  lowing set of parameters was choséii:= 10, and the number

(no dimension change); ;) (i+1,;) = 1/22 (add a com- of particles was set t&y = 1000. In order to demonstrate the in-
plex pole),m(; j), i-1,5) = 5/22 (remove a complex pole), terest of our approach, we have run our experiment on the same
T, 5), (i, j+1) = 1/22 (add a real pole), and; ;) i, j—1) = set of data but with different variants of our model.
5/22 (remove a real pole); see Section I1I-B for the *boundary For the first two experiments (see Figs. 2 and 3), the dimen-
cases.” Of course, many other prior probabilities are possibion of the model was kept fixed witk® = 4 and k" =
but different settings do not influence the results much. Herighereas the hyperparametéﬁst, A€ {v, p, n, y} were estl-
we have favored parsimonious models and, thus, limited the agated for the experiment correspondmg to Fig. 3. Finally, both
dition of poles. Now, we describe the model on the differemhe hyperparameters and the dimengiprof the problem were
transitions. The mechanism for adding a real pole differs frogstimated (see Fig. 4). The parameters are estimated by MMSE.
that of the complex pole case only by the fact that the frequengythe most complex case, where the dimensions are also sam-
is set to zero. We therefore focus on the complex case. pled, amixed MMAP/MMSE estimator isimplemented: Attime
* Addition of a pole: A new frequency is drawn uniformly ¢, the estimaték?, k) is the mostrepresentéd;, k;) interms
in (0, =), and a modulus is proposed from the uniform dissf the cumulated weights among the set of particles; the other
tribution on (0, 1). The other existing pole characteristigsarameters and hyperparameters are estlmated by MMSE on

are updated according to (17). the setA of particles whose dimensiofk;” @ k@) veri-
» Removal of a pole Draw uniformly at random a pole to fijeg (k2 » (@) KD (@ )) = (kZ, k:}) (this second step requires the
be deleted and simply remove it. weights of par'ucles ind to be normalized such that their sum
) ) is one).
D. Simulations The results of the first simulation (see Fig. 2) were ob-
We present here some simulation results obtained with sytained with hyperparameter values 6f , = 0.01 for

thetic data, whose spectrogram is presented in Fig. 1. This sighale  {v, p, 1, y}. As can be seen from the plots, the fre-
is composed of one stationary tone at normalized frequengyencies were correctly estimated until the chirp crossed
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(b)
_oF ]
—6F ]
—2F ]

A
-6t 1
-2

—4r W
-6

0 T T T
-1 wwm |
0 150 400 600 800 1000 -2 150 400 600 800 1000

Fig. 3. (a) Frequency estimation with fixed dimension, but the hyperparameters are estimated. (b) represents from top eghgtifin;) for the chirp, the
stationary tone, the transient tone, the sine-modulated componerit@pds? ).

(a) (b)
5
0.4\’__,;/(.%
. 4r —_— ——. v — ]
0.3r
33— _—
0.18
2 - [RPR 4
et E
0 150 400 600 800 1000 1 150 400 600 ‘800 1000

Fig. 4. Joint on-line estimation and detection of spectral components. (a) Estimated frequencies. (b) Estimated number of spectral components. The
hyperparameter®; , = 0.01, A € {», p, n, y} are also estimated but not plotted since they are very similar to those in Fig. 3(b).

the tone After this point, the filter required 300 iterations  9-5
before converging again toward the true frequencies with good ,
accuracy. In Fig. 3, the hyperparameté},st, Ae{v, p,m, y} 0.4
were estimated on-line (with* = 4 and k" = 0). This
resulted in better estimation accuracy and more robustness 0.3 Gl
as the hyperparameters tuning the “reactivity” of the filter o0.25
adapted automatically to local situations. The best estimation
results, however, were obtained in the third experiment, where
ki was estimated in addition to the hyperparameté}r,g,
A € {v, p, n, y}. InFig. 4, both the number of components and
the frequency trajectories were estimated with good accuracy. ol
In order to compare the efficiency of our improved particle 250 500 750 1000
filter with a standard algorithm, we ran a second set of simula- .
tions. The spectrograrr%J of the data is plotted in Fig. 5. Our a%ﬁ"’ﬁ g'anﬁfn?;fg"g;;fgogj E;‘?fg;%”gaﬂ?;f; %?13?. time sample long) computed
gorithm is compared to the standard SIR algorithmthe case
wherek?, k' andé? ,, A € {v, p, n, y} were estimated online.
Fig. 6 displays five simulations results for the three followin

cases: our algorithm wittVimproved algo. = 500 [column (a)], - : :
. . mproved aigo. 500 [column (c)]. When the number of particles used in each
SIR algorithm with Ngrr aigo. = 1800 [column (b)]—the algorithm is the SameNimproved aigo. = NSIR algo, = 500)

3For all the simulations, the amplitudes of the poles are not plotted since thB#0lumns (a) and (c)], our algorithm is more precise and more
behavior is fairly standard and less instructive than that of the frequencies. robust. When the computation time is the same [in order to ob-

4In the SIR algorithm, the importance distribution for the number of polegin a fair comparison both filters have been programmed inC
is the prior defining the movespdate, add, removeescribed earlier, and the ’

importance distribution used to sample the parameters is the prior distribut,@rngufige and share as ma_ny C_Ommon subroutines asl pOS_Sible;
defined in (17). see Fig. 6(a) and (b)], our filter is more robust. The estimation

computation time is then similar to that of our algorithm with
Improved algo. = 900—and SIR algorithm withVsig aigo. =
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280 500 70 To00 250 500 70 To00 =0 500 750 To00

Fig. 6. Comparison of our particle filter with the standard SIR algorithm. (a) Five frequency estimations with our algdfithym,(ca a150. = 500 particles).

(b) Five frequency estimations with the SIR algorithiVis(r .15.. = 1800 particles). This number of particles yields the same computation time as in (a). (c) Five
frequency estimations with the SIR algorithiN{ir .1... = 500 particles).

accuracy was better with our particle filter compared with th&00. Out of 100 simulations, our filter, WittN1r,proved algo. =
SIR algorithm, wheneveNgig alzo. = 500 OF Nsir algo. = 500, failedb eight times, with no case of major failure. For the

1800.
M 100 si lati f he th . SWe consider that a simulation fails whenever the trajectories are lost for more
oreover, simulations were run for the three scenarigs, 100 time samples. Major failures occur when the trajectories are lost and

Nimproved algo. = 500, NSIR algo. = 1800 and Nsigr algo. =  never found again.
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SIR algorithm withNsiR aigo. = 1800, 24 simulations failed, [11] S. J. Julier and J. K. Uhimann, “A general method for approximating

including 17 major failures, whereas 74 simulations failed (in- nor_mlinear transformations of probability distributions,” Eng. Dept.,
luding 53 ior fail heN —500.Th It Univ. Oxford, Oxford, U.K., Tech. Rep..
cluding 53 major failures) w SIR algo. = - IneseresullsS 1121 s.J. Julier and J. K. Unimann, “A new extension of the Kalman filter to

demonstrate the superiority, expected by the careful design of  nonlinear systems,” ifroc. AeroSenserlando, FL, 1997.
the algorithm, in terms of robustness. Itis always capable of cori33] 3. J. Juller, "The scaled unscented transformatiorf?toe. Amer. Contr.
. . . . . . . ont, .
verging again toward the trajectories after losing them, whichi$;4; ¢ ;" kim and C. R. NelsonState-Space Models With Regime

not the case for the SIR algorithm (even with more than three  Switching Cambridge, U.K.: MIT Press, 1999.

times as many particles). [15] G Kitagawa, “Monte Carlci filter and smoother fc_>r non-Gaussian non-
FinaIIy simulations were run With i soved ateo. = 10 000. linear state space models).”Comput. Graph. Statistvol. 5, pp. 1-25,
] proved algo. 1996.
In this case, our algorithm has a deterministic behavior since aji6] M. K. Pittand N. Shephard, “Filtering via simulation: Auxiliary particle

. . L . 17] R. Prado and G. Huerta, “Time-varying autoregressions with model
These simulations show that it is possible to track an unknowfi order uncertainty.” J. Time Series Anal., 2002, to be published.

number of spectral trajectories in the time-frequency plane. Outs] C. P. Robert and G. Casell&lonte Carlo Statistical Methods New
simulations were much successful than, e.g., those presented jn_ York: Springer-Verlag, 1999.

3 imil text d | licati .ble[lg] J. Vermaak, C. Andrieu, A. Doucet, and S. J. Godsill, “Particle methods
[ ] Ina simifar context, and many real applications are possible, for Bayesian modeling and enhancement of speech signft&E

such as music transcription, which will shortly be investigated.  Trans. Speech Audio Processingl. 10, pp. 173-185, Mar. 2002.

IV. CONCLUSION

In th.ls papgr, we develop efficient partice filiering teChmqueéhristophe Andrieu was born in France in 1968. He received the M.S. degree
especially tailored for Jump Markov systems. We apply O@bm institut National des Télécommunications, Paris, France, in 1993 and the
strategy to the estimation of time-varying autoregressive pr:E.A. degree in 1994 and the Ph.D. degree in 1998 from the University of Paris

cesses in the scenarios where the number of poles is unkndt . ) )
P Iprom 1998 to September 2000, he was a research associate with the Signal

and evolves with time. Application of our algorithm to synthetig qcessing Group, Cambridge University, Cambridge, U.K. He is now a lec-
signals demonstrates the interest of our modeling and the sutpeer with the Department of Mathematics, Bristol University, Bristol, U.K. His

; : i ; ; : indesearch interests include spectral analysis, source separation, Markov chain
ror eff|C|ency of the algonthm over standard partlcle flIterInEi/lonte Carlo methods, sequential Monte Carlo methods, stochastic optimiza-

techniques. Application of our methodology to complex multion, and stochastic approximation and their applications.
target tracking scenarios is currently being investigated.
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