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Efficient Particle Filtering for Jump Markov Systems.
Application to Time-Varying Autoregressions

Christophe Andrieu, Manuel Davy, and Arnaud Doucet

Abstract—In this paper, we present an efficient particle filtering
method to perform optimal estimation in jump Markov (nonlinear)
systems (JMSs). Such processes consist of a mixture of heteroge-
neous models and possess a natural hierarchical structure. We take
advantage of these specificities in order to develop a generic fil-
tering methodology for these models. The method relies on an orig-
inal and nontrivial combination of techniques that have been pre-
sented recently in the filtering literature, namely, the auxiliary par-
ticle filter and the unscented transform. This algorithm is applied
to the complex problem of time-varying autoregressive estimation
with an unknown time-varying model order. More precisely, we de-
velop an attractive and original probabilistic model that relies on
a flexible pole representation that easily lends itself to interpreta-
tions. We show that this problem can be formulated as a JMS and
that the associated filtering problem can be efficiently addressed
using the generic methodology developed in this paper. Simulations
demonstrate the performance of our method compared to standard
particle filtering techniques.

I. INTRODUCTION

J UMP Markov systems (JMSs) are a very important class of
models appearing in signal processing, target tracking, and

econometrics, among others [2], [14]. Different from standard
(continuous state space) hidden Markov models, JMSs combine
hierarchically discrete/continuous state spaces in the following
way. Let ( ) be a stationary, finite, discrete, first-order
homogeneous Markov chain taking its values in a set, with
transition probabilities

(1)

We define as the finite number of elements of. Now, consider
a family of densities , where and

, and define the state transition conditional densities

(2)

where, for a set of variables , we denote
. The initial state is distributed ac-

cording to a distribution . Note thatthe dimension, or nature,
of might be a function of the sequence , but we do not
make this dependence explicit in order to alleviate notation.
Neither the process nor are observed. Instead,
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we observe ( ), where

(3)

with (the number of observations can vary over time).
It is possible to add exogenous variables in the equations,
i.e., and can also depend on , but we omit them to
simplify notation. Note that the above model could be written
as a standard hidden Markov model with mixed continuous/dis-
crete state , but we prefer this presentation as it empha-
sizes the hierarchical structure of the model and motivates our
methodology.

The class of processes under study here is a generaliza-
tion of the jump Markov linear models (JMLS) considered
in [5] and [14]. In the JMLS case, [resp.

are Gaussian and linear in (resp. in
), i.e., one has

where and are mutually in-
dependent sequences of independent and identically distributed
(i.i.d.) Gaussian random variables. In this context, Monte Carlo
methods combined with Kalman filtering techniques can be
used [5]. However, it is of great practical interest to relax these
linearity and Gaussianity assumptions, which are unrealistic in
many real-world applications. As we will see in Section III,
time-varying autoregressions (TVARs) with time-varying
model order enter the class of JMS, but other examples include
bearings-only tracking for a maneuvering source[2], where
the state consists of the location and velocity of the target
and where is a given maneuver andmultitarget tracking
in clutter noise[2], where is the time-varying number of
targets, and the state consists of the
aggregation of each state target , .

A. Estimation Objectives

The aim of optimal filtering is to estimatesequentially in
time the unknown “hidden” states and, more pre-
cisely, the series of posterior distributions .
Their marginals, and in particular the filtering densities

, are of interest in practice. A simple application
of Bayes’ rule allows for an easy formulation of the recursion
that updates to :
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where

There is no closed-form solution to this recursion and for state
estimates of the form

which include the minimum mean square estimate (MMSE) of
the state and its covariance, for example. To simplify
notation, finite sums will be replaced further on by integrals
whenever it is convenient.

B. Resolution and Organization of the Paper

We propose here to approximate using
particle filtering methods. The key idea of particle filtering is to
use an adaptive stochastic grid approximation of the posterior
distribution of the state vector with weighted particles
(values of the grid) evolving randomly in time according to a
simulation-based rule, that is, the density is approximated by a
weighted mixture of points

(4)

so that, for example

We will further denote ,
where is the indicator function such that
if and otherwise. The adaptive algo-
rithm is designed such that the concentration of particles
in a given region of the state space, say, represents
the probability of under the posterior distribution, i.e.,

. Therefore, computational
efforts focus on different zones of the state space according to
their importance, resulting in efficient algorithms. The particles
evolve with time in a series of growing spaces and can either
give birth to offspring particles or die, depending on their
ability to represent the different characteristics of interest of the
posterior distributions, which are dictated by the observation
process and the dynamics of the underlying system.

We propose here to develop a generic approach in order to de-
sign efficient particle filtering techniques adapted to the class of
JMS described earlier. Our approach is an original and nontrivial
combination of several methods that have been recently pro-
posed in the literature, mainly, the auxiliary particle filter (APF)
[16] and a suboptimal deterministic filtering method known as
the unscented Kalman filter (UKF), which is a particular in-
stance of the unscented transform (UT) [11], [12]. Our work

essentially differs from other works on APF in that we propose
an original implementation of the APF idea that relies on the
UKF. As opposed to previous works, our combination enables
both the derivation of an efficient importance sampling density
and an accurate estimation of the auxiliary weights without ad-
ditional computational load.

We apply our methodology to nonstationary signal detec-
tion and estimation, using flexible time-varying autoregressions
(TVAR). We adopt here a pole representation of the autoregres-
sive process that allows for the specification of intuitive priors
(e.g., smoothness or abrupt changes of spectral components)
and natural interpretations. Furthermore, a direct and naive up-
date of the number of AR coefficients can cause unpredictable
and unwanted changes on the existing spectral components. Our
approach, on the contrary, allows for additions or removals of
spectral components that have limited effect on existing com-
ponents, as opposed to the models considered in, e.g., [17] and
[19]. However, this choice of parameterization introduces many
nonlinearities and is made complex by the fact that the number
of poles is unknown and might evolve with time.

The paper is organized as follows. In Section II, we briefly re-
view the basic principles of particle filtering techniques, which
are essential for understanding the further developments that
lead to our generic algorithm that take advantage of the JMS
structure. In Section III, we introduce the TVAR problem, and
performance of the procedure is demonstrated on synthetic sig-
nals. A discussion is given in Section IV.

II. PARTICLE FILTERING FOR JMS

A. Sequential Importance Sampling and Resampling

We briefly describe here how to apply the sequential impor-
tance sampling resampling (SISR) method in order to approxi-
mately sample from ; see [6] for further de-
tails.

At time , assume we have, say, weighted particles
associated with the weights such that

We want to obtain particles distributed ac-
cording to . At time , we extend each particle

by sampling according to a condi-

tional distribution to obtain

new particles , where ,

and . To correct for the discrepancy
between the distribution of the particles and

, we use importance sampling so that
is approximated by the empirical distribu-

tion

(5)
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where the importance weights satisfy

(6)

The performance of the algorithm depends on the importance
density . The “optimal” impor-
tance density, that is, the density minimizing the conditional
variance of the weights conditional upon , is [4]

and the associated importance weight is proportional to the pre-
dictive likelihood

(7)

where

This scenario is referred to as “full adaption” in [16].
Finally, one obtains particles approximately

distributed according to by resampling/se-
lection from the weighted empirical distribution given in (5).
There are several resampling procedures available in the litera-
ture. We adopt here the stratified sampling scheme described in
[15].

This “optimal” importance sampling case deserves special
attention. Indeed, the importance weights given by (7) do
not actually depend on . This means that resampling/se-
lection can be performed before extending trajectories, thus se-
lecting the most promising trajectories before extension. How-
ever, in most practical cases, it is impossible to use the “op-
timal” importance sampling density as the predictive likelihoods
of particles [see (7)] do not admit a closed-form expression.
However, this scenario motivates an alternative particle filtering
method known as APF [16] (see Section II-B1), where one ana-
lytically approximates the predictive likelihoods, or its behavior,
whenever necessary.

B. Strategies for Efficient Particle Filtering

1) Auxiliary Particle Filter: The idea behind APF is, at
time , to extend existing trajectories that are
the most promising in the sense that their predictive likelihoods

are large. However, the analytical

computation of these predictive likelihoods might prove to be
intractable, and approximation is needed. Recall that

In [16], the authors propose (in the nonswitching case) simple
approximations where

where is the mode or mean of . In

many applications, especially if varies sig-
nificantly over the significant regions of , then

the approximation of the predictive likelihood can be very poor
and lead to performance far below that of the SISR algorithm.
Indeed, one ends up biasing the exploration of the space toward
uninteresting regions. It is thus fundamental to be able to prop-
erly approximate the predictive likelihood. An obvious solution
would consist of using a second-stage Monte Carlo method for
each particle. It is, however, too computationally intensive and
introduces further Monte Carlo variation. Both the inaccuracy
and computational problems have been overlooked in previous
studies involving APF. In order to overcome these problems, we
propose here an efficient solution based on a deterministic ap-
proximation of the predictive likelihood integral with

where is a deterministic mapping/integration
technique (we omit the observations in to simplify
notation). The interest of our approach is that it does not require
additional computations since it will also be used to form the
importance distribution , as ex-
plained in the next subsection. We propose to estimate the de-
sired quantity as

(8)
The SISR extends each particle with weight

by sampling according to a conditional distri-

bution to obtain
and ; then, the associated weight satisfies (6) and
can be rewritten as

(9)
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The interest of this decomposition is that the term

, which is independent of ,
mimics the weight of the “full adaption” scenario de-
scribed earlier. It therefore suggests the possibility of
resampling according to the weights

in order to obtain
particles , which are then approximately
sampled from a distribution “close” to .
We then extend each particle by sampling according
to a conditional distribution .
Contrary to the full adaption case, it is, however, necessary to
re-weight the particles by

as the samples are no longer distributed ac-
cording to (even as ).

The problem of constructing an efficient deterministic map-
ping for our problem is the subject of the following subsec-
tion.

2) Unscented Transform:The unscented Kalman filter
(UKF) is an alternative to the extended Kalman filter (EKF),
which possesses many advantages. Both approaches are moti-
vated by the fact that in most cases, a single dynamic model
defined by standard (nonjump) Markov systems equations can
alternatively be represented in the following manner:

(10)

where and are typically mutually independent
zero-mean i.i.d. sequences, andand are nonlinearities
(similarly, we will introduce and for JMS). Both the
EKF and UKF rely on approximations of the system defined
in (10) but are of a different nature. Nevertheless, for both
scenarios, the result of such approximations is that the se-
ries of predictive and filtering densities and

are replaced with series of Gaussian distributions
and .

The EKF relies on linearizations of the evolution and
observation (10), followed with a direct application of the
Kalman recursions on the first- and second-order moments.
The solution adopted by the UKF is a second-order truncation
of the statistics of the posterior distributions at hand, followed
by the Kalman recursions. More precisely, assume that a set of

points , known as the “sigma points” [12], possess the
correct mean equal to and covariance . Then,

the sample mean and autocovariance of the set
should be a good approximation of and , re-
spectively. Similarly, the sample mean and autocovariance of

should lead to reasonable approximations

of and ,
which are required for the Kalman filter recursion. Following
the same principle, the crosscovariance can
also be computed. Given these quantities, it is then possible

to take into account the new observationand calculate
and with the Kalman filter. Given values for and ,
various methods have been proposed in order to generate a new
set [11], [13].

In the context of JMS, the quantity used to
approximate the predictive likelihood for the APF step (see Sec-
tion II-B1) is computed for every possible new stateusing the
unscented approximation:

(11)
In addition to yielding accurate auxiliary weights, the approxi-
mation of the predictive likelihood of (8) and (11) also provides
an efficient importance distribution for , namely

With this importance distribution, stateswith high predictive
distribution (independently on the future state) are proposed
with high probability, whereas unlikely statesare rarely se-
lected.

C. Algorithm

Based on the elements presented above, it is possible to pro-
pose the following generic particle filtering algorithm for JMS,
where the notations are introduced
to emphasize that these quantities are computed for each pos-
sible transition of .

Particle Filter for JMS

At time , Step 0: Initialization
• For sample and set the
weights .
At time ,

Step 1: Auxiliary variable resampling step
• For , compute as 1

(12)
where is computed as in (11). The

same sigma points are used to compute
for all in .

• Multiply/Discard particles

and the associated statistics ,
, with respect to

high/low importance weights to obtain
particles and the associated

statistics , , .
Step 2: Importance sampling step

• For , sample ,
.

1For t = 1; � in (12) should be replaced with the stationary distri-
bution of the discrete Markov chain.
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• For , extend the trajectories
with .2

• Compute the importance weights as

• Rename the particles into
.

Note that this algorithm could be extended by introducing
Markov chain Monte Carlo (MCMC) steps in order to rejuve-
nate the path of the particles [8]. In the context of JMS, depen-
dent on , the state may lie in subspaces of different di-
mensions, and thus, reversible jump MCMC should be consid-
ered [1], [9].

III. A PPLICATION TO TVAR ESTIMATION

Many applications such as satellite vibration monitoring,
gearbox fault detection, or music processing require the
development of tools for the analysis of spectral trajectories
in the time-frequency plane. Generally, the number of such
spectral trajectories is unknown and evolves in time. More
importantly, no precise model for the evolution of such trajecto-
ries is available. Standard time-frequency techniques [7] yield
comprehensive representations of the signal energy content
but have several drawbacks that preclude their use for spectral
trajectory tracking. On the one hand, representations such as
the Wigner–Ville transform yield very good time-frequency
resolution but cannot be computed online and introduce
interferences, leading to major tracking difficulties. On the
other hand, representations such as the spectrogram can be
computed online and introduce few cross-terms but are known
for their poor resolution. Moreover, it should be added that in
either case, an additional postprocessing of the representation
is required in order to identify the spectral trajectories and
their features (start time, initial frequency,etc.). This extra
step generally leads to both conceptual (i.e., definition of
what a trajectory or a spectral components are) and practical
difficulties (i.e., complex algorithms).

Time-varying autoregressive (TVAR) frequency estimation is
useful in the present context since it is both flexible and parsimo-
nious. Indeed, the relevant information about the spectral con-
tent of the signal being analyzed is summarized with a reduced
number of frequency parameters at each time instant as opposed
to classical time-frequency representations, which compute en-
ergy levels in the entire time-frequency plane. As we will see,
this general modeling allows for rather natural and intuitive def-
initions of trajectories in the time-frequency plane and leads, in
practice, to excellent estimation accuracy compared with alter-
native techniques such as the spectrogram.

A. Problem Description

We are interested in TVAR models, with online estimation
of both the model order (denoted ) at time and the TVAR

2Any other distribution, such as a heavy tailed distribution (e.g., at-distribu-
tion) could also be used.

coefficients (denoted T at time
). The observed signal evolution is then described as

(13)

where is a centered Gaussian noise. Equation (13) can be
written in vector form as

T (14)

For modeling and practical reasons, we prefer to parameterize
the TVAR in terms of its “instantaneous” poles, which are the
zeros of the polynomial associated with the autoregressive
process at time

(15)

The poles can either be complex-conjugate or real-valued,
and we need to distinguish between them. We denote,

the complex-valued poles ( is the number
of distinct pairs of complex poles conjugate of ), and
and denote the real-valued poles. The complex
poles can equivalently be expressed in terms of moduli and
“instantaneous” frequencies as

(16)

It will be useful to introduce the transformation from the set
of poles of to its coefficients, which we will denote . Fi-
nally, the TVAR model is completely described at timeby the
distribution of and . We
consider the problem of estimating online the TVAR poles, the
parameters , and and hyperparameters. In [10], a simpler
model was presented with a fixed number of complex poles and
fixed hyperparameters.

B. Model and State Space Representation

Here, the state vector contains the moduli and instanta-
neous frequencies of the poles but possible hyperparameters
as well. The dimension of is therefore time-varying as the
number of poles is allowed to evolve with time. The Markov
chain will represent here the number of real and imagi-
nary poles and, therefore, takes its values in

, . We assume that the tran-
sition matrix of this Markov chain is such that
if or . This means that the process
is allowed to add/remove no more than one real pole or pair
of conjugate poles at each time instant. Some further restric-
tions are needed for the “boundary” values ofand : When
either number of poles is zero, then no such pole can be re-
moved, and similarly, when either maximum number of poles
is reached, then no such poles can be added. There is an infinite
number of possible specifications for the transition probabili-
ties that depend on the application at hand. Here,
we will assume that the processes are linear Gaussian and aim
at introducing some smoothness prior. The observation equation
consists of the nonlinear transformation from the pole represen-
tation to the coefficients of the polynomial combined with
past observations; more precisely
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C. Example

When the dimension of the AR process is fixed, we assume
linear models for the evolution of the different poles and, more
precisely, order , moving average (MA) processes

(17)

which ensure smooth trajectories for these parameters. For
, we assume that are centered white Gaussian

noises, independent for differentand different , with vari-
ances . These variances are generally unknown, and we
therefore include them as part of the inference problem. In order
to accommodate for possible nonstationarities, we assume the
following evolution model for these hyperparameters. For

, we introduce the notation , and
similarly, . Now, the evolution models for
these variances are, for

(18)

where the are centered white Gaussian noises, indepen-
dent for different and , with variances . Similarly, we
assume that the variance of the observation noise follows the
following law:

where is a centered white Gaussian noise with variance
, independent of all other dynamic noises. The four hyper-

parameters , , , and are fixed.
The hyperparameters and may be unknown and vary

over time. We assume the probabilities
(no dimension change), (add a com-
plex pole), (remove a complex pole),

(add a real pole), and
(remove a real pole); see Section III-B for the “boundary

cases.” Of course, many other prior probabilities are possible,
but different settings do not influence the results much. Here,
we have favored parsimonious models and, thus, limited the ad-
dition of poles. Now, we describe the model on the different
transitions. The mechanism for adding a real pole differs from
that of the complex pole case only by the fact that the frequency
is set to zero. We therefore focus on the complex case.

• Addition of a pole: A new frequency is drawn uniformly
in , and a modulus is proposed from the uniform dis-
tribution on (0, 1). The other existing pole characteristics
are updated according to (17).

• Removal of a pole: Draw uniformly at random a pole to
be deleted and simply remove it.

D. Simulations

We present here some simulation results obtained with syn-
thetic data, whose spectrogram is presented in Fig. 1. This signal
is composed of one stationary tone at normalized frequency

Fig. 1. Spectrogram of the data (1000 time samples long) computed with a
Hamming window (171 time samples long).

Fig. 2. Estimation with fixed hyperparameters and dimension. Solid lines
indicate the actual location of the chirp and tone components.

0.18, a transient tone at frequency 0.3 between time samples
150 and 400, a sine-modulated component with mean normal-
ized frequency 0.4, and a linear chirp. Note that the number of
spectral components is time-varying. A Gaussian white noise is
added to the data such that the SNR is about 20 dB. The fol-
lowing set of parameters was chosen: , and the number
of particles was set to . In order to demonstrate the in-
terest of our approach, we have run our experiment on the same
set of data but with different variants of our model.

For the first two experiments (see Figs. 2 and 3), the dimen-
sion of the model was kept fixed with and ,
whereas the hyperparameters , were esti-
mated for the experiment corresponding to Fig. 3. Finally, both
the hyperparameters and the dimensionof the problem were
estimated (see Fig. 4). The parameters are estimated by MMSE.
In the most complex case, where the dimensions are also sam-
pled, a mixed MMAP/MMSE estimator is implemented: At time
, the estimate is the most represented in terms

of the cumulated weights among the set of particles; the other
parameters and hyperparameters are estimated by MMSE on
the set of particles whose dimension veri-
fies (this second step requires the
weights of particles in to be normalized such that their sum
is one).

The results of the first simulation (see Fig. 2) were ob-
tained with hyperparameter values of for

. As can be seen from the plots, the fre-
quencies were correctly estimated until the chirp crossed



1768 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 7, JULY 2003

Fig. 3. (a) Frequency estimation with fixed dimension, but the hyperparameters are estimated. (b) represents from top to bottom:log (� ) for the chirp, the
stationary tone, the transient tone, the sine-modulated component, andlog (� ).

Fig. 4. Joint on-line estimation and detection of spectral components. (a) Estimated frequencies. (b) Estimated number of spectral components. The
hyperparameters� = 0:01, � 2 f�; �; �; yg are also estimated but not plotted since they are very similar to those in Fig. 3(b).

the tone.3 After this point, the filter required 300 iterations
before converging again toward the true frequencies with good
accuracy. In Fig. 3, the hyperparameters ,
were estimated on-line (with and ). This
resulted in better estimation accuracy and more robustness
as the hyperparameters tuning the “reactivity” of the filter
adapted automatically to local situations. The best estimation
results, however, were obtained in the third experiment, where

was estimated in addition to the hyperparameters,
. In Fig. 4, both the number of components and

the frequency trajectories were estimated with good accuracy.
In order to compare the efficiency of our improved particle

filter with a standard algorithm, we ran a second set of simula-
tions. The spectrogram of the data is plotted in Fig. 5. Our al-
gorithm is compared to the standard SIR algorithm4 in the case
where , and , were estimated online.
Fig. 6 displays five simulations results for the three following
cases: our algorithm with [column (a)],
SIR algorithm with [column (b)]—the

3For all the simulations, the amplitudes of the poles are not plotted since their
behavior is fairly standard and less instructive than that of the frequencies.

4In the SIR algorithm, the importance distribution for the number of poles
is the prior defining the movesupdate, add, removedescribed earlier, and the
importance distribution used to sample the parameters is the prior distribution
defined in (17).

Fig. 5. Spectrogram of the second data (1000 time sample long) computed
with a Hamming window (171 time sample long).

computation time is then similar to that of our algorithm with
—and SIR algorithm with

[column (c)]. When the number of particles used in each
algorithm is the same ( )
[columns (a) and (c)], our algorithm is more precise and more
robust. When the computation time is the same [in order to ob-
tain a fair comparison, both filters have been programmed in C
language and share as many common subroutines as possible;
see Fig. 6(a) and (b)], our filter is more robust. The estimation
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Fig. 6. Comparison of our particle filter with the standard SIR algorithm. (a) Five frequency estimations with our algorithm (N = 500 particles).
(b) Five frequency estimations with the SIR algorithm (N = 1800 particles). This number of particles yields the same computation time as in (a). (c) Five
frequency estimations with the SIR algorithm (N = 500 particles).

accuracy was better with our particle filter compared with the
SIR algorithm, whenever or

.
Moreover, 100 simulations were run for the three scenarios

, and

. Out of 100 simulations, our filter, with
, failed5 eight times, with no case of major failure. For the

5We consider that a simulation fails whenever the trajectories are lost for more
than 100 time samples. Major failures occur when the trajectories are lost and
never found again.
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SIR algorithm with , 24 simulations failed,
including 17 major failures, whereas 74 simulations failed (in-
cluding 53 major failures) when . These results
demonstrate the superiority, expected by the careful design of
the algorithm, in terms of robustness. It is always capable of con-
verging again toward the trajectories after losing them, which is
not the case for the SIR algorithm (even with more than three
times as many particles).

Finally, simulations were run with .
In this case, our algorithm has a deterministic behavior since all
the simulations provided the same results.

These simulations show that it is possible to track an unknown
number of spectral trajectories in the time-frequency plane. Our
simulations were much successful than, e.g., those presented in
[3] in a similar context, and many real applications are possible,
such as music transcription, which will shortly be investigated.

IV. CONCLUSION

In this paper, we develop efficient particle filtering techniques
especially tailored for Jump Markov systems. We apply our
strategy to the estimation of time-varying autoregressive pro-
cesses in the scenarios where the number of poles is unknown
and evolves with time. Application of our algorithm to synthetic
signals demonstrates the interest of our modeling and the supe-
rior efficiency of the algorithm over standard particle filtering
techniques. Application of our methodology to complex multi-
target tracking scenarios is currently being investigated.
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