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Abstract

Simulated annealing is a popular and much studied method for maximizing functions on
finite or compact spaces. For noncompact state spaces, the method is still sound, but
convergence results are scarce. We show here how to prove convergence in such cases,
for Markov chains satisfying suitable drift and minorization conditions.
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1. Introduction

Simulated annealing is widely used for finding the global maxima of complicated functions.
Theoretical results on the convergence of this method are usually stated (and proved) only for
functions whose domain is finite, or at the most compact [12], [24]. Technically speaking, a
uniform minorization condition (or Doeblin condition) is assumed for both strong and weak
convergence of the process [24].

In this paper, we show how to prove convergence results for simulated annealing when no
such uniform minorization exists. In practice, this means that we can study problems with
noncompact state spaces. Moreover, our results are framed in terms of Foster-Lyapunov drift
conditions, which have already proved very successful in the analysis of homogeneous Markov
chains, especially those related to MCMC (Markov chain Monte Carlo) algorithms [17], [18],
[20], [21], [22]. To the best of our knowledge, such drift conditions have not been used before
in the formulation of simulated annealing problems.

Consider the problem of finding the set of global maxima of some density 7 whose domain
is a set X, usually taken to be R¥. This problem arises commonly in Bayesian statistics, in the
context of maximum a posteriori (MAP) estimation problems, where the complexity is such
that numerical methods are the only option. Simulated annealing is one of them and has found
many applications in statistical image processing [6], statistical signal processing [1], physics
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976 C. ANDRIEU ET AL.

and computer science [24]. The method exploits the fact that extrema are preserved under
monotone transformations. If y is any positive real number, then the probability density

. T
70 = [ ()Y dy

also has the same global maxima. Here dx denotes some o-finite measure on X, typically
Lebesgue measure on R¥, and we assume that the integral in the denominator exists. As y
tends to infinity, the density 7" tends to a mixture delta function concentrated on the set of
global maxima, if & is regular enough. Any stationary, homogeneous Markov chain with
equilibrium density 77 will therefore spend more time in the vicinity of these maxima, the
bigger the value of y.

To perform simulated annealing, we choose an increasing sequence y; and construct a time
inhomogeneous Markov chain X ) whose transition kernels

P, dy|x) :=P(XD edy| X =x)

are such that
fx T (x) Py, (dy | x) dx = T () dy. M

The aim of this paper is to give conditions under which |[P(X?) € .) = 7% || — Oasi — +o0,
where || - || is the total variation norm of distributions. This requires Assumptions 1 and 2 below
on the transition kernels. Moreover, if Assumptions 3 and 4, below, hold, the distributions
(");en converge weakly to a mixture of point masses concentrated on the set

Xmax 1= argmax i (x)
x€X

of global maxima of . In particular, these two results imply immediately that, for all € > 0,

lim PEXD)>1-¢) =1,
i—>+400

where T (x) := w(x)/|7]lco. However, our results are stronger, and we obtain the rate of
convergence of the algorithm.

‘We remark also that it is not possible to prove the even stronger result which would state that
lim; s oo |P(X ) ¢ .y — 7| = 0, when the set Xmax is of null measure, see [7, p. 873]. Of
course, when X is discrete with counting reference measure, this remark does not apply, and
we can then obtain strong convergence under appropriate assumptions [6], [15], [24].

‘We now state and comment upon the four assumptions mentioned above.

Assumption 1. (Drift condition.) There exist a function V : X — [1, 400) and constants
A< 1,b < 4oosuchthat foralli € N*and all x € X,

P, V(x) <AV(x)+ blc(x),
where C := {x:x € X and V(x) < d}, for some constant d > b/(2(1 — 1)) — 1, and
P,V (x) = [x Py (dy [ )V(D).

Most cases treated in the literature assume that the transition kernels P, each satisfy a
uniform ergodicity assumption, i.e. there exist an integer ko and constants &; > 0 such that
P(X@+k0) e dy | X® = x) > &;ui(y)dy forall x € X, where the u; are probability densities.



Convergence of simulated annealing 977

This certainly always holds when the state space X is finite, provided irreducibility is verified.
Assumption 1 is not needed in this case. However, in more realistic situations where X is
unbounded, uniform ergodicity is a very restrictive condition to impose on the transitions.
By using a drift function V as above, it is possible to consider much more general situations,
as commonly encountered in applications. Indeed, it is often easier to verify a series of local
minorization conditions on the set C defined above, as in the following assumption.

Assumption 2. (Minorization condition.) For some ko > 1 and each i € N*, we have
P(XE+h) e dy | XD = x) > e;ui(y)dy, ifx eC.

Here the constants €; are assumed nonincreasing and the pu; are probability densities.

The uniformly ergodic case mentioned above corresponds to choosing C = X. Of course,
this implies that V in Assumption 1 is bounded. In the examples given at the end of the paper,
choosing a bounded V will prove impossible. Assumption 1 is a geometric drift condition
specially modified for the annealing setup. Recent progress on so-called polynomial rates of
convergence [3], [10] parallels the older theory of geometric ergodicity for Markov chains.
We expect that our methods will also generalize in this direction, thus weakening further the
assumptions required, but we do not pursue this here.

We next list two conditions which ensure that the sequence of probabilities (777); N con-
verges to a mixture of point masses concentrated on Xmax. The first condition precludes the
possibility of saddle points, and ensures that there exist only a finite number of global maxima.

Assumption 3. (Regularity of maxima.) The set Xmax of global maxima of w is finite and
contained in the interior X, of X. At each point X € Xmax, the Hessian

[_ 82 log w(x) ]

0x;0x;
The final condition is usually required only when the state space is noncompact.

is a k x k matrix whose determinant is nonzero.

Assumption 4. (Finite entropy condition.) The entropy of the probability distribution w is
finite, i.e.

—f w(x)logm(x)dx < +oo0.
x

The plan of this paper is as follows: in Section 2, we state and prove the following
decomposition

i—-1
||P(X(i) €)—w| < "p(x(i) €)— p(X(i) €| xm 7| + Z 7Y+ — 7|

k=m

of the error into an estimation error (the first term on the right) and an approximation bias (the
second term on the right). The estimation error has an asymptotic behaviour which depends upon
the properties of the transition kernel of (X ¥); <y, that is Assumptions 1 and 2. Subsection 2.1 is
devoted to sufficient conditions for the vanishing of this term, as i — +oo. The approximation
bias has an asymptotic behaviour dependent on regularity properties of 7, that is Assumptions 3
and 4. In Subsection 2.2, we discuss sufficient conditions for this term to vanish, as i — +o0.
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The main result is given in Theorem 1 in Subsection 2.3. Finally, in Section 3 we present two
examples based on the commonly used random walk based Metropolis algorithm on R¥, which
is never uniformly ergodic (unless 7 has compact support), hence requiring all four hypotheses.

2. Convergence under general conditions

In this section we study the behaviour of |[P(X®) € -) — 7| asi tends to infinity. As stated
in the introduction, our results are based upon a decomposition into an estimation error and an
approximation bias, which we now prove. Both these terms are then analysed separately, and
finally combined into Theorem 1 in Subsection 2.3.

Proposition 1. For all integers m, and i such that m < i, we have the estimate

i—1
IPXD €) =77 < [P(XT € ) = PXD €| X ~7m)| + ) 7t — 7).

k=m
Proof. We have for m < i the telescoping sum
P(XD e dx) =7 (dx) = P(X? € dx) —P(XV e dx | X"™ ~ 7¥m)
i—1

+ Z P(X(i) €dx| X(k)’\'fy") _ P(X(i) €dx| X(k‘H)NﬁVkH)_

k=m

Upon using the fact that P(X) € dx | X% ~ 77%) = P(X® ¢ dx | X*+D ~ 77), which is
a consequence of the stationarity relation 7% P,, = 7%, we see by the triangle inequality and
the definition ||v|| := sup4cg(x;) [V(A)], that

IP(X® € ) =7 < IP(XD € ) = P(XD € | XM ~777m)]|
i—1
+ 2
k=m
i—1

< IPXD €) —P(X® €| XM ~ )|+ Y T — 7,

k=m

/ P(X(i) €| x® — x) @ (dx) — T+ (dx))
X

where the last inequality is due to the contracting property of the transition kernel.
We now study the asymptotic behaviour of each of these terms.

2.1. Bounding the estimation error
In this section, we bound the estimation error

IPX® € ) —P(XD €| X ~ %)

by a standard coupling construction [11], and using a method pioneered by Rosenthal [20] for
time homogeneous Markov chains. In our time inhomogeneous setup, most of his arguments
can be salvaged, but some subtle changes are required (see Subsections 2.1.1 and 2.1.2). The
main result here is Proposition 2, where a bound on the estimation error is obtained that consists
of a term due to the minorization condition, and another term due to the drift condition.
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From the simulation point of view, the chain (X)), is usually constructed by a sequence
of random maps F; : X — X such that X¢+D = F;(X©). In this case we also have

Py, (dy | x) = P(Fi(x) € dy).
We shall need a pair of auxiliary processes (¢8n)ieN and (¢§'3”),-6N, defined for i > m.

o Initialization ¢\ ~ P(X™ € -), i) ~ 7", d = Oand i = m.

o Iterationi + 1
Ifd=0,

If ¢, 05, ¢ C x Cthen ¢}V = Fi(¢\)), for j=1,2,and i :=i + 1.

1,m>

Else
1. With probability &;, ¢\ +© = ¢+ ~ y;, for j = 1,2, and d = 1.
2. Otherwise ¢ +50) ~ P(XFHD € .| %) ) — &, (X € ) /(1 — &), for
j=12
¢(.+1) '._,¢§u;ko—l) ~ P(XED g . ... xG+k-=D ¢ ,lX(i) ¢(t)

J,m?
X(H-ko) = ¢§,';"°)), for j =1,2,andi := i + ko.

Else¢('+l)—F,(¢(')) forj=1,2,andi :=i+1.

We easily verify that the Markov chains constructed in this way are marginally updated at
each iteration according to the transmon kernel P,,. Note that if (¢(') ¢(') ) € C x C, then

1,m?
with probability &; we have ¢1 m= ¢2 m» and then the chains are identical for all subsequent

times. We cannot in general simulate these chains easily, but we shall only use them to get the
theoretical bound.

Proposition 2. Set

Timi=minfi 1i > m+ko — 1, (@}, ¢5)) € C x C)

1,m?
and fork > 2
Tem = 0f{i 1§ 2 ko + Temt,ms (B ., B3 ) € C X C).

1,m*

Then with N; m := max{k : tx m < i} we have for all i, m and j such thati — (j + 1)kg > m,
. . j
IPX® € ) —PX?D €| X™ ~ 7)) < []A — 8i-tke) + PWNikot1,m < ).
I1=1
Proof. Define t¢c pm :=inf{i > m : ¢(') = (’) o) form < i. Then
IPX?D € —PX?D €| X™ ~7m)|| < P, € ) —P@), €l
< PP, # S50

<P(tc,m > i),
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as the event on the second line is included in that of the third line. We have the following
identity
P(tcm > 1) =P(tc,m > i and Ni—gy+1,m = j) + P(tc,m > i and Ni_gg11,m < ). (2)

Now the 14 », are the times, separated by at least ko iterations, when the chains meet in C, and
Ni,m counts the number of times that the chains meet in C before instant i, separated by at
least ko iterations. Since coupling occurs with probability £; whenever both chains are in C we
obtain the bound

J
P(tcm > i and Ni—gor1m = J) < [ [(1 = £iciky),
I=1

since the series ¢; is nonincreasing. Then using (2) we obtain

J
P(tcm > i) < [[( — &iziky) + P(zcm > i and Ni_go1.m < J)
=1

J
< [10 = gi-ikg) + PWi—kg1,m < i),
=1

as
P(t¢c,m > i and Ni—ko+1,m < J) +P(tc,m < i and Ni—kg+1m < J) = P(Ni—ko+1.m < J)-

2.1.1. Bounding the term P(N;_i,+1,m < j). The main result of this section is a bound on the
distribution of N; ,, that will be used in the proof of Theorem 1. It is stated in Proposition 3
(cf. [20, Lemma 3]) and its proof is a direct combination of Lemmas 1 and 2 below.

Proposition 3. There exist constants A, B and A, < 1 such that
P(Ni—ko+1,m < J) < MR A8
foranym and i, j such thati — (j + 1)ko > m.

The constants appearing in the above proposition are the following. Set A, = A +
b/(2(1 +d)) and b, := b(1 + 2d)/(2(1 + d)); then we have
= b1
A=Aosup Vo) +b, Y a5 Bi=—— + SE[VX?).
xeC k=0 1—-A 2

Note that we have A, < 1 by the drift condition (Assumption 1). For later use, we propose
the following sufficient condition for lim;_, 4 oo P(Ni_gg+1,m; < ji) = 0. The meaning of the
constants will become clear at the end.

Corollary 1. Form; = |i —i'~¢/2| where ¢ € (0, 1) and j; = |ri'~%/%| where
1 | —log(As) }

0 in{—,
< r < min {ko log(A)
lim P(Ni—kytt.m, < ji) =0. 3)
i—>—+00

we have
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Proof. We note that for i sufficiently large, then the condition
i—(ri' 2]+ ko > |i —i'7872)

holds, allowing us to use Proposition 3. If A < 1 then (3) holds for any r > 0. If A > 1, then
by noting that for r < —log(A«)/log(A) we have A,A" < 1 the result (3) still holds.

We now prove the first technical lemma used in Proposition 3.

Lemma 1. Fix m,i and j such that i > ko + m and definery = ry;, = t|,m —m and
ri =rim = Ti+l,m — t,-,mfori > 1. We have

P(Ni—ig+1,m < J)
< AR EQMEQ2ER - EQG Y Ity rjot) L L r2) ).

Proof. Let us write

P(Ni—kg+1,m < j) =P(tjr1m >i—ko+ 1)

(S ikos1)

t=1
— P(A: i > )\:(i—ko+l))
J
< A E(l‘[ A:")
t=1
by Markov’s inequality. Then the result follows from the identity E[XY] = E[X E[Y | X]].
This is the second technical lemma we need.

Lemma 2. Define V*(x1, x3) := %[V(xl) + V(x2)]. From the drift and minorization condi-
tions (Assumptions 1 and 2), assuming E[V (X®)] < 400, we have for any m:

1. The expectation E(A; ™) is uniformly bounded in m:

- ; i b 1
E("") < SUpE(V*(@,, $30)) < 7 + 5 EIV(XO)] < +oo.

1,m>
i>m - A

2. Foranym,i > landallrim,...,ric1,m

ko—1
E(A:r"'" [T1ms-eesFici,m) < Ai" sup V(x) + by Z Ai.
xeC k=0

Proof. Following [20] and by Theorem 5.2 of [19], observe that by the drift condition
(Assumption 1)

EV*@{),. 090 1600, 68 D1 < v @, ¢500) + bl @i )1c @l D). @)
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Then, following [20], we introduce the functions

)\:(k~m)V*(¢(k) ¢(k) ifk <tim,

1,m>®

im(k) =
8im(k) [0 itk > Tim,

whose series has nonincreasing (in k) expectation from (4) (at least for t;—; + kg < k when
i > 1, as before 7; we do not go into C, and for k > m when i = 1). Thus, and because
V*(-,+) > 1, we obtain

E[A "] < Elg1m(rim)] < E[V*(@{™, ¢5"1)] = L[E[V({")] + E[V (¢35 D]I.
From Assumption 1 we have for appropriate j and i
P, V@) <AV@!)) +b1c@)),),
from which we deduce that:
1. Upon using the fact that 7% P, = 7" foranym > Oandi > m
E[V(@5))] < AE[V($3))] +b,

that is, again for any m > 0 and i > m,
b
ElV@$5,)] < T

2. From the definition of (¢{ ), );en

E[V (¢ t")] < AE[V(¢{))] +b,

which by recursion implies that for any i > 0

i—1
E[V(${))] < VEIVXD)]+5)_ 2,
k=0

that is, if E[V (X ©@)] < 400, then

b
supE[V (#{),)] < 7— +E[V(X®)] < +oo.
ieN
Summarizing, we have shown that for allm > 0

sup E[V*(g{"),, 631 < " = *3 E[V(X“”)] < +o00,

: 1,m>
i=m

which is the first result we wanted to prove.
We now prove the second result. The fact that g; ,, (k) is nonincreasing for k > 7;_1,» + ko
and V*(-, -) > 1 allows us to deduce that:

E[)\* —ti,m |¢(tl 1,m) ¢(Tl lm)] — E[)\*rlm '¢(Tr 1.m) ¢§f;"—'—l,m)]
-—E[)\,t‘ Lm—m+m—T; m |¢(t1 1.m) ¢(tl Im)]
<E[)\tl Im— mg,m(n m)|¢(1'1 1.m) ¢(t1 lm)]
< BT gim Tt + ko) |81 05 ]
—_ i~ 1.m ki i—1.m ki i~1.m i—l.m)
<A koE[V (¢(T 1, o),¢§tm| o))'¢(t -1, )¢(t 1 1.
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Unlike in [20], we cannot yet conclude the proof as the Markov chain is nonhomogeneous. We
therefore find an upper bound for this term. For kg > 1

i—1m i1tk o m it
E[V (¢(r 1, +ko) ¢(T 1,m+ 0))|¢(T 1, ) ¢(T 1 )]
—E[E[V*(¢(t' 1,m+ko) ¢(r, 1m+ko))|¢(n ~1,m+ko—1) ¢(r, 1m+ko— 1)]|¢(t, Lm) ¢(t. lm)]

<)\,*E[V (¢(tl 1,m+ko—1) ¢(t1 —1,mtko— 1))|¢(t1 ~1,m) ¢(tl lm)]+b*’

where we have used (4) to obtain the inequality.
Successively applying this procedure (kg times) we obtain

E[V (¢(t1 —1,m+ko) ¢(T| lm+k0))|¢(71 ~1,m) ¢(t| lm)]
ko % o 4 (Tie lm) (Tl 1,m)
<ALV )+b,,z Ak

which leads to the second result.

2.1.2. Bounding the term ['[{=1(1 — Ei—lky)- The term H{=1(1 — &i_lky) converges to 0 as
Jj = +oo if and only if sz=1 ik, diverges as j — +o00. Clearly the rate at which ¢; in
Assumption 2 goes to zero controls the decay of the estimation error (2). In turn, the vanishing
of the &; in Assumption 2 depends on the transition probabilities of (X));cn and thereby on
the (¥;)ieN- From now on we assume that

T i
g = ea~i=0 "+ witha € (0,1)and & > 0, 5)

as it is a case often met in practice. Such examples will be given in Section 3 for our two
applications with the Metropolis algorithm, but can also be found in [6], [24]. Since the ¢;
are now simple functions of the y; we seek a condition on the series (i)ieN so that the term

['[{___l (1 — &j_x,) converges to 0 as j — +o0 (j being a function of i). We have the following
proposition.

Propesition 4. For all i we assume that (5) holds and we let

_loglite—k+1)
"7 —kolog(@)(1 +¢)

(where o € (0,1), ¢ > 0 and @ > 0). Then for j; = |ri'=%/2| (where ¢ € (0, 1)) with

!

1
ko’

—log(A4)
“log(A)

O<r<m1n{

we obtain

lim ]"[(1 — i_iky) =

t—>+oo
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[’roaf. We follow [7] for the proof. We denote a := 1/(1 + ¢) and we study the sum
Z{’:] &i—lk, using the fact that 1/(o + x)? is a decreasing function:

Lri' =472 Lri' =472 Lri' =472

ko—1
e Z aZ,‘Lo Yi-lkg+i « ¢ Z akoWi-tkg+kg-1) 5 ¢ Z (i —lko+0)~°

I1=1 =1 I=1
£ i

> (x+0)%dx
koag Ji—ky(rit-¢12

> [l +0)% — (i —kolri' %] + 0)*]
koa¢

= at
€ amelio(i1- M)
> koa{(l+0) [1 (1 e

1-¢/2
£ . ac kori .
1—(1-—at2—— - 400
>koa{(l+g) [ ( al iTo )] asi +

— 400 asi — +00.

Thus for all 0 < r < minf{1/kp, |—log(X«)/log(A)|} we have

Lril=¢72)
. T Vit
lim ¢ E a&i=0 Yi-thti — 5o,

i 00
I—>+ =1

2.2. Bounding the approximation bias

In this subsection the main result is Proposition 5, which gives a sufficient condition for the
approximation bias to vanish in the limit. To understand this result note first that, as y; tends
to infinity, the probability distributions 7" converge weakly to a limit 7° which is a mixture
of point masses concentrated on X max. This is a standard result which relies on Assumption 3
and [8]: .

=00 Y e @y IO 2a(@)sz(dx)
T°(dx) = lim T amiE =
yotoo  Yoon  (uy~1)dim®)/2g(x)

~1/2
x=f] ’

X a(X)8z(dx
7°(dx) = lim 2T X ()i( )
AL TIPS H1C)

when X = R¥. Note that when X = (J;_, R it is necessary to rescale the temperature
according to the dimension of the current subspace to obtain the same result.

where
82 log m(x)
0X, 0Xy,

a(X) = U

which reduces to

Lemma 3. For each y; for which the integral exists, define Z(y;) := |. x TV (x) dx. We have

i—1
DI — 7| < 2log ( Z(y”'))
& Z()

whenever m is sufficiently large.
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Proof. Due to Assumption 4 we extend the proof of Theorem 3.2 in [7, pp. 871-872] as
follows. There it is assumed that —log(r) is bounded on X which allows differentiation under
the integral sign. More generally, note that for i sufficiently large and all x € X

0 > log(7 (x)) exply; log(7 (x))] > log(w (x))7 (x),
which under Assumption 4 and using the dominated convergence theorem allows us to write

_dZ(y)
dy;

=- /x log(7 (x)) exply; log(7 (x))]1dx.

This is the starting point of the proof of Theorem 3.2 in [7], which is then the same.
‘We now prove the main result of this section.
Proposition 5. Forall¢ € (0,1) andm; = |i —i'=%/2), if

_logi+o—ko+1)
"7 —kolog(a)(1+¢)

(where a € (0, 1) is defined in Proposition 4, and ¢ > 0), then

i—1
lim Z |77 — 7Y+ =0
i—>+o00

k=m;

under Assumption 4.

Proof. Under Assumption 4 we can apply the result of Lemma 3, so

i—1
— — Z(Vm~))
nyk — 7 Vk+1 < 21o ( i .
> I < 2log ( Z72

k=m;

It is shown in [8] that
. _ —1ydim(%)/2 -
yng[Z(y) ;e; @Qry™" a(;)] 0,

so by substituting the expression for y; we get

. Z(Vm~)) . [ log(i + 0 —ko+ 1) ]
lim 2log{ ——= ) = lim klo, =0.
i~>+00 g( Z(yi) istoo 8 log(m; + 0 — ko + 1)

2.3. The convergence result

‘We now combine Proposition 1, Proposition 2, Corollary 1, Proposition 4 and Proposition 5
into the following theorem.

Theorem 1. Suppose Assumptions 1, 2, 3, 4 hold with (5), E[V (X©)] < 400 and

_ log(i +0—ko+ 1)
"7 —kolog(a)(1+¢)

(with o > 0),



986 C. ANDRIEU ET AL.

then, as i — +00,

IP(X® € ) — 7|

Ji
<10 - eizig) + A%+ 45718 + klog

[log(i+g—ko+1)]’ ©)
=1

log(m; + 0 — ko + 1)

where A := A sup,cc V(x) + by TR AL, B i= b/(1 — ) + LE[V(XO)], Ay := A +
b/(2(1 +d)) and b, := b(1 + 2d)/(2(1 + d)). Consequently

lim [P(X© e.) -7 =0
i— 400

for j; = |ri'=¢/2] with 0 < r < min{1/ko, |—log(A)/log(A)|} and m; = |i —i'~%/2] for
some ¢ € (0, 1).

The above theorem implies, using Corollary 5.4 of [7, p. 880], that

lim PEXD)>1-¢) =1

=400
for all € > 0.

Remark 1. It is possible to further simplify the bound in (6) in order to obtain a convergence
rate, but we do not pursue this here.

3. Examples of applications

In this section we give a couple of examples of Markov chains to which the results of the
previous section apply. Using the Metropolis—Hastings method, many homogeneous chains
satisfying 7 P = m can be designed, where P denotes the transition kernel and 7 is a positive
and continuously differentiable arbitrary target distribution, and these chains can be adapted to
the problem of interest. Note that the assumptions on the distribution can be weakened, at the
expense of longer developments. Here we shall present two classes of chains that are among
the simplest geometrically, but not uniformly, ergodic ones (Subsections 3.2 and 3.3). Specific
examples are given in Subsection 3.4.

As explained in the introduction, it is usually assumed in the literature that the annealing
chains (which are time inhomogeneous) satisfy a uniform minorization condition. In Assump-
tion 2 this corresponds to taking C = X. To construct such chains we usually start with a family
of time homogeneous chains with respective stationary distributions 7Y, all of which satisfy
some uniform minorization condition. The latter is equivalent to uniform ergodicity [14]. If
each chain with stationary distribution 7 is only geometrically ergodic, a uniform minorization
is impossible. This is when Assumptions 1 and 2 become useful. For each example below,
our presentation focuses on checking the drift condition (Assumption 1) and the minorization
condition (Assumption 2), after which Theorem 1 applies, for a suitable cooling schedule. No
attempt has been made to discover a fastest cooling schedule.

3.1. On the condition involving A, d and b

We start by proving a result that shows that the conditiond > b/(2(1 — 1)) — 1 necessary
in Assumption 1 can be satisfied when the drift function V (x) satisfies very general conditions.
This result is implicitly used in the remaining sections of this paper.
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Lemma 4. Under the following assumptions:

o the following limit exists:
PV(x)

xl=>+o0 V(x) A<l M

e forany d > 0 the set Cqg = {x; V(x) < d} is small, i.e. Assumption 2 is satisfied (see
also [14]);

e PV(x) is bounded on any compact set;
e V(x) goes to infinity when |x| is large:

lim V() =+o0; 8)

|x|—>+o00

there exists d such that
PV(x) < AV (x) + balc,(x),

with Cg = {x; V(x) < d},
PV (x)

Ag = sup , )
xeCfi V(x)
bg = sup (PV(x) — AqV (x))
xe€Cq
and b
d

Proof. For x sufficiently large, we have

PV(x) =2V (x) = (PV(x)/V(x) — Ag)V(x)
=g4(x)V (x),

and we can write
e4(x) = (PV(x)/V(x) = A+ A —Ag),

where from (7) and (9)
PV(x)
—A=0,
|x|—l->n-}l-oo V(x)
lim A—X3=0".
d—>+o00

Thus for any & > O there exist do . and ap . > O such that ford > dp ¢, @ > ap, and x € Sg,
where Sg := {x; |x| < B} for B > 0, then

£4(x)
—_— < €.
2(1 — Ag)

Choosing ¢ such that for any x
Vix)>eV(x)—1,
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we deduce that for d > do . and x € S5 and when Cq N S5 # @

d=supV(x)> sup V(x)>e sup V(x)-—1,
xeCy xeCyNSE xeCyNS§

and thus Py v
d> sup x) —AVx)

T recynse 21— Aq)

1. (10)

We now consider the case when x € C; N S,. We notice that
sup (PV(x) —AgV(x)) < sup (PV(x)—AV(x))
xeCgqNSy x€CgNSy
< sup(PV(x) — 1) < 400
XESy

from the assumptions on PV (x) and V(x). Note that the upper bound is independent of d.
From (8) there exists d > d; ¢ sufficiently large such that for @ > ap . as defined above

su PV(x)—AgV
d > sup V(x) > Prec,ns, (PV(X) = A4V (x)) 4
xeCy 2(] _)‘d)

and together with (10) we conclude the proof.

3.2. Metropolis simulated annealing on R¥

We begin with a simple and well known example of a Markov chain with specified target
distribution. Suppose that we define an annealing algorithm as follows: set X {0) ~ v, where v
is some probability distribution, and X fi"'l) = Fi(X gi)), where

x+ww~gq) if(@x+w)/ax) >&~ Upoi,

Fi(X)={ an
X

otherwise,

and ¢ is a symmetric density with respect to the Lebesgue measure on R¥, bounded away from
zero and +00 on a neighbourhood of the origin in R¥ and such that there exist 8 and ¢ so that

lwl<d = qw)>e. (12)

Note that if we were to choose a sequence (¥;);¢N to be constant and equal to 1, we would have
an ordinary random walk based Metropolis algorithm with stationary density = on X. Such a
Markov chain is never uniformly ergodic (assuming 7 is not compactly supported), but can be
geometrically ergodic. The maps F; have transition probabilities

a(y=x+w)
(x)

Yi
P(Fi(x) € dy) := g(w) min {1, ( ) } + 0, (dy)ry, (x)

so that (1) holds. The quantity r,, (x) is chosen such that Py, (R* | x) = 1. We shall make the
following assumptions on 7 [9].

o The density 7 is continuously differentiable and its tails are lighter than any exponential,

lim — -Vlognr(x) =—o0. (13)

X
lx|—=>+o00 |x|
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o The contours dA(x) = {y : m(y) = m(x)} are asymptotically regular, i.e.

lim sup x| V2l)
|x]—=>+00 x| |V (x)l

(14

We can now state convergence of simulated annealing for this process.

Proposition 6. Let X fiH) = F;(X fi)) where F; is defined by (11). Assume that Assumption 3,
(13), (14) and E[V(Xgo))] < 400 (with V(x) = ﬁ'l/z(x)) are satisfied and that we choose

the series .
_logi+e—ko+1)

T —log(@)(1+4¢)

(where « is obtained from (15), below, to correspond to the definition in Proposition 4; the
quantities {, o are also defined in Proposition 4). Then Theorem 1 holds.

We now discuss the four assumptions necessary for Theorem 1 to apply.

3.2.1. Drift condition. Assumption 1 is a direct consequence of the following lemma. Note that
with our choice of drift function V/, the constant X is best possible for all kernels P, .

Lemma 5. If(13) and (14) hold, then there exist d, C, A and b such that for any y > 1
P,V(x) < AV(x) + blc(x).

Proof. Jamner and Hansen [9] have shown the result for y = 1. Here we notice simply that
fory > 1,
P, V(x)=V(x)+ (P, —)V(x)

(where [ is the transition kernel identity, i.e. I (x, dy) := 8,(dy)). Then
Y
PV(x) =V + / q(x, dy) min {1, (59—)) F 2@ - f"ﬂ(x)}}
x 7 (x)
()
X

< V(x)+/ q(x,dy)min{l,
% 7 (x)

720 - ﬁ-l/"’(x)}} =PV),

and the inequality holds because whenever 77 (y) <m? (x) we also have 712 ) =7~ 12(x).

3.2.2. Minorization condition. Using (12), we obtain the minorization condition (Assump-
tion 2).

Lemma 6. For all i > 0 the compact subsets of R* are small for Py,.
Proof. See Lemma 4 in [16] and its proof. We obtain for all x
P,(dy|x) > en? (x, 38) dy, as)

infyeB(x,5/2) T (W)
SUPyep(x,5/2) T (W)

n(x, 38) :=

where B(x, L) is the ball of radius L centred at x, and ¢, § are as in (12). Then, by convolving
the transition kernels, we see that every compact set is a small set (See Proposition 5.5.5(ii) and
Theorem 5.5.7 in [14]).
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3.2.3. Regularity of maxima and finite entropy conditions. The regularity Assumption 3 is
assumed and Assumption 4 (finite entropy) follows by (13).

3.3. Random scan hybrid Metropolis simulated annealing on R*

We wish to illustrate here how to handle the case of updates which occur one direction at a
time only. Therefore, let us consider a variation on the previous example.

Let us consider the Markov chain X g) that satisfies X éo) ~ v, with v some probability
distribution, and X{*V = F;(x{"), where

J~ U, k)
Fi(x) = \x+wjej (wj ~q)) if(w(x+wje;)/m(x)" > &~ U1,
X otherwise.

Here, e denotes the jth coordinate vector and ¢ ; denotes a symmetric proposal distribution that
updates x in direction e;. We shall assume that (g;) j—1,...x is a family of symmetric densities
with respect to the Lebesgue measure such that there exist positive constants ¢; and §; such
thatforall j =1,...,k
qj(wj) >¢e; for|wj| < ;.
Contrary to the Markov chain described in the previous subsection, here the k components
are updated ‘one variable at a time’ at random. The homogeneous version of this algorithm
(vi = 1) corresponds to the Metropolis algorithm ‘one at a time’ [23].
Foreach y > 1,let Py, j(dy|x) :=P(F;(x) € dy| j, x) be the kernel

7y =x+wjej)
m(x)

Yi
Py, jdy|x) = g;(w;) min {l’ ( ) } + 8 (dy)ry, ;(x),

where r, j(x) is such that Py, j(]Rk | x) = 1 and let P, gs be the kernel generating X ;“ ,

k
1
Pyrs(dy | x) :=P(Fi(x) € dy) = ) Py j(dy ).
j=1
Conditions for the geometric convergence of the homogeneous Markov chain when y; = 1 for
all i have been proposed [16], but are further simplified in [4]. We state here two assumptions.
Assumption 5 is the weakest, and probably the most difficult to check in practice, but is implied
by Assumption 6 which is generally easier to check.

Assumption 5. ([4].) For any sequence x'V) € X such that limj_, 1o x| = +o0, a
subsequence XU’ can be extracted such that for some i € {1, ..., k) and all y € RT,

70 7U) + ve:
PO o ognd tim PYTEYA) (16)
j=+o0 p(XY) £ ye;) jotoo  p(XW)
Assumption 6. ([4].) The target distribution 7 is continuously differentiable for large |x| and
foralli €{1,...,k}
lim sup Vilogm(x) = —oo0,
HOF e [k

17)
lim inf V;ilog w(x) = +o0,
X +00 (x_je [—x;,xi k1)
where x; is the ith coordinate of x € X, x_; the remaining coordinates and V; f the partial
derivative of f in direction e;.
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We can now state convergence of simulated annealing for this process.

Proposition 7. Define (X\);e as above, and suppose that (16) or (17), E[V (X3")] < 400
(with V(x) = T~¢(x) and some c € (0, 1)) hold and that

~_logi+e—ko+1)
T —kolog(@)(1 +¢)

(where a is obtained from (20), below, to correspond to the definition in Proposition 4). The
quantities ¢, o are also defined in Proposition 4 and kg depends on the choice of the small set

C defined in Lemma 8, below. Then Theorem 1 holds for the chain (X;i)),-eN.

The assumptions made can probably be simplified in the spirit of [9] with adaptations from
[16], but we shall not investigate this here. We now discuss the four assumptions for Theorem
1 to apply.

3.3.1. Drift condition. The required drift condition is obtained through the following lemma.

Lemma 7. If(16) and (17) hold, then for any compact set C and any temperature y > 1
P, psV(x) < AV(x) + blc(x),

where V (x) = 7 (x)~¢ for some ¢ € (0, 1).

Proof. In Theorem 1 of [4] the geometric convergence of the homogeneous chain corre-
sponding to y; = 1 was proved for some ¢ € (0, 1). In particular it was proven that for the test
function Vp(x) = 77°(x)

I P1,rsVo(x)
im sup —————

|x]—>+00 Vo(x) <l 18

We can easily check that the proof extends to the test function V (x) = 7 ~¢(x). In our case we
would like to prove that

P, psV
lim sup —vRST D) (x)

|x|—>+00 Vx) <! 19

uniformly for y. Here for contradiction, suppose that we have a sequence of points x) such
that

’

P, gsV(x®
lim sup “rRSTE .(x )z
iotoo  V®)

but then, with an argument similar to that used in Lemma 5,
Py, rsV(x) < P1,rsV (x)

for y > 1 and necessarily
lim su Py rsVo(x?)
s VoG®) T

which contradicts (18). Therefore (19) holds uniformly for y.
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3.3.2. Minorization condition. To prove the minorization condition, we will need the following
lemma.

Lemma 8. Forall i > 0 the compact subsets of R* are small for Py, Rs.

Proof. The proof is straightforward, and follows the proof of Lemma 4 in [16], see also
Lemma 6 in the present paper. Calling sy, (x, y) the continuous component of the transition
kernel Py, rs, we have for suitable constants a1, a; and &

l+k 1

Sy oo Sy (X, Y) = ]_[ a;,’  whenever |w;| < %8 fori=1,...,k.

Then by composition for any N and x € [—%N 3, %N 8]

i+kN—1
Sy -+ Syian 1 (6 9) 2 2zval kN ]_[ a;’  whenever |w;| < iN&fori =1,...,k (20)

which shows that [—%N S, %N 8] is a small set for P}’,‘NR - The end of the proof is the same as
for Lemma 4 in [16].

3.3.3. Regularity of maxima and finite entropy conditions. The regularity condition (Assump-
tion 3) is assumed. The finite entropy condition (Assumption 4) follows by the assumptions
on .

3.4. Examples

Specific examples of distributions for which the Metropolis algorithm and the random scan
Metropolis algorithm are geometrically ergodic are reported in [9] and [4] respectively. Note
that the examples given here are mostly trivial from an optimization point of view. They could
be made more complex by adding a function difficult to optimize to 7 (see Equation (1.33) in
[12] for example). However the examples given here are interesting as they demonstrate that
simulated annealing is sound for global optimization on a noncompact set, as long as some tail
properties are satisfied.

Example 1. The conditions of Theorem 1 are satisfied for a random walk Metropolis annealing
algorithm in order to maximize the density (defined on R*)

w(x) oc exp(—|x|*) withs > 1.

Example 2. The conditions of Theorem 1 are not satisfied for a random walk Metropolis
annealing algorithm in order to maximize the density

T(xy, x2) X exp(—O.Ol()c,2 + x12x22 + x%)).
See Figure 1 for a contour plot of 7.

Example 3. However, the conditions of Theorem 1 are satisfied for the random scan random
walk Metropolis annealing algorithm in order to optimize

(xy, x2) X e:xp(—O.Ol(xl2 + x12x22 + x%)).

demonstrating the interest of such a ‘one variable at a time’ scheme, often recommended in
practice.
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FiGuUrE 1: Contour plot of exp(—O.Ol()cl2 + xlzxg + x%)).
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