
Breaking Up is Hard to Do: Security and Functionality in a
Commodity Hypervisor

Patrick Colp†, Mihir Nanavati†, Jun Zhu‡, William Aiello†,
George Coker∗, Tim Deegan‡, Peter Loscocco∗, and Andrew Warfield†

†Department of Computer Science, University of British Columbia
‡Citrix Systems R&D, ∗National Security Agency

ABSTRACT
Cloud computing uses virtualization to lease small slices of large-
scale datacenter facilities to individual paying customers. These
multi-tenantenvironments, on which numerous large and popular
web-based applications run today, are founded on the beliefthat the
virtualization platform is sufficiently secure to prevent breaches of
isolation between different users who are co-located on thesame
host. Hypervisors are believed to be trustworthy in this role because
of their small size and narrow interfaces.

We observe that despite the modest footprint of the hypervisor it-
self, these platforms have a large aggregate trusted computing base
(TCB) that includes a monolithic control VM with numerous inter-
faces exposed to VMs. We presentXoar, a modified version of Xen
that retrofits the modularity and isolation principles usedin micro-
kernels onto a mature virtualization platform. Xoar breaksthe con-
trol VM into single-purpose components calledservice VMs. We
show that this componentized abstraction brings a number ofben-
efits: sharing of service components by guests is configurable and
auditable, making exposure to risk explicit, and access to the hyper-
visor is restricted to the least privilege required for eachcomponent.
Microrebooting components at configurable frequencies reduces the
temporal attack surface of individual components. Our approach in-
curs little performance overhead, and does not require functionality
to be sacrificed or components to be rewritten from scratch.

1. INTRODUCTION
Datacenter computing has shifted the criteria for evaluating systems
design from one that prioritizes peak capacity and offered load, to
one that emphasizes the efficiency with which computing is de-
livered [2, 5, 47, 45]. This is particularly true for cloud hosting
providers, who are motivated to reduce costs and therefore to mul-
tiplex and over-subscribe their resources as much as possible while
still meeting customer service level objectives (SLOs).

While the efficiency of virtualization platforms remains a primary
factor in their commercial success, their administrative features and
benefits have been equally important. For example, hardwarefail-
ures are a fact of life for large hosting environments; such envi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP ’11, October 23-26, 2011, Cascais, Portugal.
Copyright c©2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

User A’s VM

Hypervisor

Control VM
aka Domain 0

User B’s VM

Monolithic Trust Domain

Administrative Tools

Live Migration

Device Drivers

Device Emulation

Trap/Hypercall API
Individual “Service” APIs

Administrative Network

Figure 1: The control VM is often a full operating system in-
stall, has privilege similar to the hypervisor, and offers multiple
services over numerous interfaces to guest VMs.

ronments rely on functionality such as live VM migration [13] for
planned hardware replacements as well as unexpected failures [8,
15]. Hardware diversity is also inevitable in a large hosting facility;
the use of hardware emulation and unified virtual devices means
that a single VM image can be hosted on hardware throughout the
facility without the need for device driver upgrades withincustomer
VMs. Administrative benefits aside, the largest reason for the suc-
cess of virtualization may be that it requires little or no change to
existing applications. These three factors (resource utilization, ad-
ministrative features, and the support of existing software) have al-
lowed the emergence of large-scale hosting platforms, suchas those
offered by Amazon and Rackspace, that customers can trust tose-
curely isolate their hosted virtual machines from those of other ten-
ants despite physical co-location on the same physical hardware.

Are hypervisors worthy of this degree of trust? Proponents of vir-
tualization claim that the small trusted computing base (TCB) and
narrow interfaces afforded by a hypervisor provide strong isolation
between the software components that share a host. In fact, the TCB
of a mature virtualization platform islarger than that of a conven-
tional server operating system. Even Type-1 hypervisors, such as
Xen [4] and Hyper-V [22], rely on a privileged OS to provide addi-
tional shared services, such as drivers for physical devices, device
emulation, and administrative tools. While the external interfaces to
these services broaden the attack surface exposed to customer VMs,
the internal interfacesbetweencomponents within that OS are not
as narrow or as carefully protected as those between components of

the hypervisor itself. This large control VM is the “elephant in the
room”, often ignored in discussing the security of these systems.

While TCB size may not be a direct representation of risk, theshared
control VM is a real liability for these systems. In Xen, for instance,
this control VM houses a smorgasbord of functionality: device em-
ulation and multiplexing, system boot, administrative toolstack, etc.
Each of these services is presented to multiple customer VMsover
different, service-specific interfaces (see Figure 1). As these ser-
vices are all part of a single monolithic TCB, a compromise ofany
of them places the entire platform in danger.

The history of OS development shows us how to address the prob-
lem of a large TCB: break it into smaller pieces, isolate those pieces
from each other, and reduce each one to the least privilege consistent
with its task [43]. However, the history of OS deployment demon-
strates that “secure by design” OSes often generate larger commu-
nities of readers than developers or users. In this vein, from-scratch
hypervisors [38, 40, 42] have shown that particular security proper-
ties can be achieved by rearchitecting the platform, but they do not
provide the rich set of features necessary for deployment incom-
mercial hosting environments.

The work described in this paper avoids this compromise: we ad-
dress the monolithic TCB presented by the control VMwithout re-
ducing functionality. Instead, we hold the features of a mature, de-
ployed hypervisor as a baseline and harden the underlying TCB.
Our approach is to incorporate stronger isolation for the existing
components in the TCB, increasing our ability to control andreason
about exposure to risk. While full functionality is necessary, it is
not sufficient for commercial deployment. Our approach addsonly
a small amount of performance overhead compared to our starting
point full-featured virtualization platform.

1.1 Contributions
The primary contribution of this paper is to perform a component-
based disaggregation of a mature, broadly deployed virtualization
platform in a manner that is practical to incorporate and maintain.
Our work takes advantage of a number of well-established mecha-
nisms that have been used to build secure and reliable systems: the
componentization of microkernels, freshening of component state
using microreboots [10], and the use of recovery boxes [3] toal-
low a small set of explicitly designated state to survive reboots. The
insight in this work is that these techniques can be applied to an ex-
isting system along the boundaries that already exist between pro-
cesses and interfaces in the control VM.

We describe the challenges of decomposing Xen’s control VM into
a set of nine classes ofservice VMswhile maintaining functional,
performance, and administrative parity. The resulting system, which
we have namedXoar, demonstrates a number of interesting new
capabilities that are not possible without disaggregation:

• Disposable Bootstrap. Booting the physical computer in-
volves a great deal of complex, privileged code. Xoar iso-
lates this functionality in special purpose service VMs and
destroys these VMs before the system begins to serve users.
Other Xoar components are microrebooted to known-good
snapshots, allowing developers to reason about a specific soft-
ware state that is ready to handle a service request.

• Auditable Configurations. As the dependencies between
customer VMs and service VMs are explicit, Xoar is able to
record a secure audit log of all configurations that the system
has been placed in as configuration changes are made. We

show that this log can be treated as a temporal database, en-
abling providers to issue forensic queries, such as asking for a
list of VMs that depended on a known-vulnerable component.

• Hardening of Critical Components. While a core goal of
our work has been to minimize the changes to source in order
to make these techniques adoptable and maintainable, some
critical components are worthy of additional attention. We
identify XenStore, Xen’s service for managing configuration
state and inter-VM communication, as a sensitive and long-
running component that is central to the security of the sys-
tem. We show how isolation and microreboots allow Xen-
Store to be rearchitected in a manner whereby an attacker
must be capable of performing a stepping-stone attack across
two isolated components in order to compromise the service.

We believe that Xoar represents a real improvement to the security
of these important systems, in a manner that is practical to incor-
porate today. After briefly describing our architecture, wepresent a
detailed design and implementation. We end by discussing the se-
curity of the system and evaluate the associated performance costs.

2. TCBS, TRUST, AND THREATS
This section describes the TCB of an enterprise virtualization plat-
form and articulates our threat model. It concludes with a classifi-
cation of relevant existing published vulnerabilities as an indication
of threats that have been reported in these environments.

TCBs: Trust and Exposure. The TCB is classically defined as
“the totality of protection mechanisms within a computer system —
including hardware, firmware, and software — the combination of
which is responsible for enforcing a security policy” [1]. In line with
existing work on TCB reduction, we define the TCB of a subsystem
S as “the set of components thatS trusts not to violate the security
of S” [21, 33].

Enterprise virtualization platforms, such as Xen, VMware ESX, and
Hyper-V, are responsible for the isolation, scheduling, and memory
management of guest VMs. Since the hypervisor runs at the high-
est privilege level, it forms, along with the hardware, partof the
system’s TCB.

Architecturally, these platforms rely on additional components. De-
vice drivers and device emulation components manage and multi-
plex access to I/O hardware. Management toolstacks are required
to actuate VMs running on the system. Further components provide
virtual consoles, configuration state management, inter-VM com-
munication, and so on. Commodity virtualization platforms, such
as the ones mentioned above, provide all of these componentsin a
monolithic domain of trust, either directly within the hypervisor or
within a single privileged virtual machine running on it. Figure 1
illustrates an example of this organization as implementedin Xen.

A compromise of any component in the TCB affords the attacker
two benefits. First, they gain the privileges of that component, such
as access to arbitrary regions of memory or control of hardware.
Second, they can access its interfaces to other elements of the TCB
which allows them to attempt to inject malicious requests orre-
sponses over those interfaces.

Example Attack Vectors. We analyzed the CERT vulnerability
database and VMware’s list of security advisories, identifying a to-
tal of 44 reported vulnerabilities in Type-1 hypervisors.1 Of the
reported Xen vulnerabilities, 23 originated from within guest VMs,
1There were a very large number of reports relating to Type-2 hy-

11 of which were buffer overflows allowing arbitrary code execu-
tion with elevated privileges, while the other eight were denial-of-
service attacks. Classifying by attack vector showed 14 vulnerabili-
ties in the device emulation layer, with another two in the virtualized
device layer. The remainder included five in management compo-
nents and only two hypervisor exploits. 21 of the 23 attacks outlined
above are against service components in the control VM.

Threat Model. We assume a well-managed and professionally ad-
ministered virtualization platform that restricts accessto both phys-
ical resources and privileged administrative interfaces.That is, we
are not concerned with the violation of guest VM security by an
administrator of the virtualization service. There are business im-
peratives that provide incentives for good behavior on the part of
hosting administrators.

There is no alignment of incentives, however, for the guestsof a
hosting service to trust each other, and this forms the basisof our
threat model. In a multi-tenancy environment, since guestsmay be
less than well administered and exposed to the Internet, it is pru-
dent to assume that they may be malicious. Thus, the attackerin
our model is a guest VM aiming to violate the security of another
guest with whom it is sharing the underlying platform. This includes
violating the data integrity or confidentiality of the target guest or
exploiting the code of the guest.

While we assume that the hypervisor of the virtualization platform
is trusted, we also assume that the code instantiating the function-
ality of the control VMwill contain bugs that are a potential source
of compromise. Note that in the case of a privileged monolithic
control VM, a successful attack on any one of its many interfaces
can lead to innumerable exploits against guest VMs. Rather than
exploring techniques that might allow for the constructionof a bug-
free platform, our more pragmatic goal is to provide an architecture
that isolates functional components in space and time so that an ex-
ploit of one component is not sufficient to mount a successfulattack
against another guest or the underlying platform.

3. ARCHITECTURE OVERVIEW
Before explaining the design goals behind Xoar, it is worth provid-
ing a very high-level overview of the components, in order tohelp
clarify the complexities of the control plane in a modern hypervi-
sor and to establish some of the Xen-specific terminology that is
used throughout the remainder of the paper. While our implemen-
tation is based on Xen, other commercial Type-1 hypervisors, such
as those offered by VMware and Microsoft, have sufficiently simi-
lar structures that we believe the approach presented in this paper is
applicable to them as well.

3.1 The Xen Platform
The Xen hypervisor relies on its control VM, Dom0, to providea
virtualized I/O path and host a system-wide registry and manage-
ment toolstack.

Device Drivers. Xen delegates the control of PCI-based periph-
erals, such as network and disk controllers, to Dom0, which is re-
sponsible for exposing a set of abstract devices to guest VMs. These
devices may either be virtualized, passed through, or emulated.

Virtualized devices are exposed to other VMs using a “split driver”
model [17]. A backend driver, having direct control of the hardware,

pervisors, most of which assume the attacker has access to the host
OS and compromises known OS vulnerabilities — for instance,us-
ing Windows exploits to compromise VMware Workstation. These
attacks are not representative of our threat model and are excluded.

exposes virtualized devices to frontend drivers in the guest VMs.
Frontend and backend drivers communicate over a shared memory
ring, with the backend multiplexing requests from several frontends
onto the underlying hardware. Xen is only involved in enforcing
access control for the shared memory and passing synchronization
signals. ACLs are stored in the form ofgrant tables, with permis-
sions set by the owner of the memory.

Alternatively, Xen uses direct device assignment to allow VMs other
than Dom0 to directly interface with passed-through hardware de-
vices. Dom0 provides a virtual PCI bus, using a split driver,to proxy
PCI configuration and interrupt assignment requests from the guest
VM to the PCI bus controller. Device-specific operations arehan-
dled directly by the guest. Direct assignment can be used to move
physical device drivers out of Dom0, in particular for PCI hardware
that supports hardware-based IO virtualization (SR-IOV) [28].

Unmodified commodity OSes, on the other hand, expect to run on
a standard platform. This is provided by a device emulation layer,
which, in Xen, is a per-guest Qemu [6] instance, running either as a
Dom0 process or in its own VM [44]. It has privileges to map any
page of the guest’s memory in order to emulate DMA operations.

XenStore. XenStore is a hierarchical key-value store that acts as a
system-wide registry and naming service. It also provides a“watch”
mechanism which notifies registered listeners of any modifications
to particular keys in the store. Device drivers and the toolstack make
use of this for inter-VM synchronization and device setup.

XenStore runs as a Dom0 process and communicates with other
VMs via shared memory rings. Since it is required in the creation
and boot-up of a VM, it relies on Dom0 privileges to access shared
memory directly, rather than using grant tables.

Despite the simplicity of its interface with VMs, the complex, shared
nature of XenStore makes it vulnerable to DoS attacks if a VM mo-
nopolizes its resources [14]. Because it is the central repository for
configuration state in the system and virtually all components in the
system depend on it, it is a critical component from a security per-
spective. Exploiting XenStore allows an attacker to deny service
to the system as a whole and to perform most administrative oper-
ations, including starting and stopping VMs, and possibly abusing
interfaces to gain access to guest memory or other guest VMs.

Other systems (including previous versions of Xen) have used a
completely message-oriented approach, either as a point-to-point
implementation or as a message bus. Having implemented all of
these at various points in the past (and some of them more than
once), our experience is that they are largely isomorphic with regard
to complexity and decomposability.

Toolstack. The toolstack provides administrative functions for the
management of VMs. It is responsible for creating, destroying, and
managing the associated resources and privileges of VMs. Creating
a VM requires Dom0 privileges to map guest memory, in order to
load a kernel or virtual BIOS and to set up initial communication
channels with XenStore and the virtual console. In addition, the
toolstack registers newly created guests with XenStore.

System Boot.In a traditional Xen system, the boot process is sim-
ple: the hypervisor creates Dom0 during boot-up, which proceeds to
initialize hardware and bring up devices and their associated back-
end drivers. XenStore is started before any guest VM is created.

Xoar: Architecture

Xen

Bootstrapper:
Coordinate booting
of the rest of the
system.

Builder:
Instantiate other
VMs.

Toolstack:
Handles
management
requests.

PCIBack:
Virtualizes access
to PCI Bus con!g.

Self-Destructing VMs
Components of TCB
that are destroyed
after initialization.

Restartable VMs
Components where freshness is imposed
using periodic restarts.

Active Runtime
Dependencies

Restarted on
each request

Restarted on
a timer

NetBack:
Physical network
driver exported to
guest VMs.

BlkBack:
Physical storage
driver exported to
guest VMs.

Long-lived VM

XenStore-State:
In-memory contents
of XenStore.

XenStore-Logic:
Processes requests
for inter-VM comms
and con!g state.

Q
e

m
u

Q
e

m
u

Guest VM:
HVM Linux

Guest VM:
HVM Windows

Figure 2: Architecture of Xoar. The figure above shows all theclasses of service VMs along with the dependencies between them.
For clarity, ephemeral dependencies (e.g., between the Builder and the VMs that it builds) are not shown. As suggested inthe figure,
a Qemu service VM is instantiated for the lifetime of each guest.

3.2 Xoar
Figure 2 shows the architecture of Xoar, and will be referredto
throughout the remainder of this paper. In Xoar, the functionality
of Xen’s control VM has been disaggregated into nine classesof
service VMs, each of which contains a single-purpose piece of con-
trol logic that has been removed from the original monolithic control
VM. As is the case with the monolithic TCB, some components may
have multiple instances, each serving different client VMs.

That these individual components may be instantiated more than
once is important, as it allows them to be used as flexible building
blocks in the deployment of a Xoar-based system. Figure 2 shows
a single instance of each component other than the QemuVM. Later
in the paper we will describe how multiple instances of thesecom-
ponents, with differing resource and privilege assignments, can par-
tition and otherwise harden the system as a whole.

From left to right, we begin with two start-of-day components that
are closely tied to booting the hypervisor itself,Bootstrapperand
PCIBack. These components bring up the physical platform and
interrogate and configure hardware. In most cases this functionality
is only required when booting the system and so these components
are destroyed before any customer VMs are started. This is a useful
property in that platform drivers and PCI discovery represent a large
volume of complex code that can be removed prior to the system
entering a state where it may be exposed to attacks.

While PCIBack is logically a start-of-day component, it is actually
created afterXenStoreandBuilder. XenStore is required to virtu-
alize the PCI bus and the Builder is the only component capable of
creating new VMs on the running system. PCIBack uses these com-
ponents to create device driver VMs during PCI device enumeration
by usingudev [27] rules.

Three components are responsible for presenting platform hardware
that is not directly virtualized by Xen.BlkBackandNetBackexpose
virtualized disk and network interfaces and control the specific PCI
devices that have been assigned to them. For every guest VM run-
ning an unmodified OS, there is an associatedQemuVMresponsible
for device emulation.

Once the platform is initialized, higher-level control facilities like
the Toolstacksare created. The Toolstacks request the Builder to
create guest VMs. As a control interface to the system, toolstacks
are generally accessed over a private enterprise network, isolated
from customer VM traffic.

As in Xen, a VM is described using a configuration file that is pro-
vided to the toolstack. This configuration provides runtimeparam-
eters such as memory and CPU allocations, and also device config-
urations to be provided to the VM. When a new VM is to be cre-
ated, the toolstack parses this configuration file and writesthe asso-
ciated information into XenStore. Other components, such as driver
VMs, have watches registered which are triggered by the build pro-
cess, and configure connectivity between themselves and thenew
VM in response. While Xoar decomposes these components into
isolated virtual machines, it leaves the interfaces between them un-
changed; XenStore continues to be used to coordinate VM setup and
tear down. The major difference is that privileges, both in terms of
access to configuration state within XenStore and access to admin-
istrative operations in the hypervisor, are restricted to the specific
service VMs that need them.

4. DESIGN
In developing Xoar, we set out to maintain functional paritywith
the original system and complete transparency with existing man-
agement and VM interfaces, including legacy support, without in-
curring noticeable overhead. This section discusses the approach
that Xoar takes, and the properties that were considered in selecting
the granularity and boundaries of isolation.

Our design is motivated by these three goals:

1. Reduce privilegeEach component of the system should only
have the privileges essential to its purpose; interfaces exposed
by a component, both to dependent VMs and to the rest of the
system, should be the minimal set necessary. This confines
any successful attack to the limited capabilities and interfaces
of the exploited component.

assign_pci_device(PCI_domain, bus, slot)
permit_hypercall (hypercall_id)
allow_delegation(guest_id)

Figure 3: Privilege Assignment API

2. Reduce sharing Sharing of components should be avoided
wherever it is reasonable; whenever a component is shared be-
tween multiple dependent VMs, this sharing should be made
explicit. This enables reasoning and policy enforcement re-
garding the exposure to risk introduced by depending on a
shared component. It also allows administrators to securely
log and audit system configurations and to understand expo-
sure after a compromise has been detected.

3. Reduce stalenessA component should only run for as long
as it needs to perform its task; it should be restored to a known
good state as frequently as practicable. This confines any suc-
cessful attack to the limited execution time of the exploited
component and reduces the execution state space that must be
tested and evaluated for correctness.

To achieve these goals, we introduce an augmented version ofthe
virtual machine abstraction: theservice VM. Service VMs are the
units of isolation which host the service components of the control
VM. They differ from conventional virtual machines in that only
service VMs can receive any extra privilege from the hypervisor or
provide services to other VMs. They are also the only components
which can be shared in the system, aside from the hypervisor itself.

Service VMs are entire virtual machines, capable of hostingfull
OSes and application stacks. Individual components of the control
VM, which are generally either driver or application code, can be
moved in their entirety out of the monolithic TCB and into a service
VM. The hypervisor naturally assigns privilege at the granularity of
the tasks these components perform. As such, there is littlebenefit,
and considerable complexity, involved in finer-grained partitioning.

Components receiving heightened privilege and providing shared
services are targets identified by the threat model discussed in Sec-
tion 2. By explicitly binding their capabilities to a VM, Xoar is able
to directly harden the riskiest portions of the system and provide
service-specific enhancements for security. The remainderof this
section discusses the design of Xoar with regard to each of these
three goals.

4.1 Privilege: Fracture the Monolithic TCB
A service VM is designated as such using aserviceVM block in a
VM config file. This block indicates that the VM should be treated
as an isolated component and contains parameters that describe its
capabilities. Figure 3 shows the API for the assignment of the three
privilege-related properties that can be configured: direct hardware
assignment, privileged hypercalls, and the ability to delegate privi-
leges to other VMs on creation.

Direct hardware assignment is already supported by many x86hy-
pervisors, including Xen. Given a PCI domain, bus, and slot num-
ber, the hypervisor validates that the device is available to be as-
signed and is not already committed to another VM, then allows the
VM to control the device directly.

Hypercall permissions allow a service VM access to some of the
privileged functionality provided by the hypervisor. The explicit
white-listing of hypercalls beyond the default set available to guest

resource= [provider, parameters,
constraint_group=tag]

Figure 4: Constraint Tagging API

SELECT e1, e2 FROM log e1, log e2 WHERE
e1.name = e2.name AND
e1.action = ’create’ AND
e2.action = ’destroy’ AND
e1.dependency = ’NameOfCompromisedNetBack’ AND
overlaps(period_intersect(e1.time, e2.time),

compromise_period);

SELECT e1.name FROM log e1 WHERE
e1.dependency = ’NetBack’ AND
e1.dependency_version = vulnerable_version;

Figure 5: Temporal queries which search for guest VMs that
depended on a service VM that was compromised (top) or vul-
nerable (bottom).

VMs allows for least-privilege configuration of individualservice
VMs. These permissions are translated directly into a Flask[41]
policy, which is installed into the hypervisor.

Access to resources is restricted by delegating service VMsto only
those Toolstacks allowed to utilize those resources to support newly
created VMs. Attempts to use undelegated service VMs are blocked
by the hypervisor, enabling coarse-grained partitioning of resources.
In the private cloud example presented at the end of this section,
each user is assigned a private Toolstack, with delegated service
VMs, and has exclusive access to the underlying hardware.

4.2 Sharing: Manage Exposure
Isolating the collection of shared services in service VMs confines
and restricts attacks and allows an explicit description ofthe rela-
tionships between components in the system. This provides aclear
statement of configuration constraints to avoid exposure torisk and
enables mechanisms to reason about the severity and consequences
of compromises after they occur.

Configuration Constraints. A guest can provide constraints on the
service VMs that it is willing to use. At present, a single constraint is
allowed, as shown in Figure 4. Theconstraint_group param-
eter provides an optional user-specified tag and may be appended to
any line specifying a shared service in the VM’s configuration. Xoar
ensures that no two VMs specifying different constraint groups ever
share the same service VM.

Effectively, this constraint is a user-specified coloring that prevents
sharing. By specifying a tag on all of the devices of their hosted
VMs, users can insist that they be placed in configurations where
they only share service VMs with guest VMs that they control.

Secure Audit. Xoar borrows techniques from past forensics sys-
tems such as Taser [18]. The coarse-grained isolation and explicit
dependencies provided by service VMs makes these auditing ap-
proaches easier to apply. Whenever the platform performs a guest-
related configuration change (e.g., the creation, deletion, pausing,
or unpausing of a VM), Xoar logs the resulting dependencies to an
off-host, append-only database over a secure channel. Currently, we
use the temporal extension for Postgres.

Two simple examples show the benefit of this approach. First,the

Calls from within the service VM:
vm_snapshot()
recoverybox_balloc(size)

VM configuration for restart policy:
restart_policy ([(timer | event), parameters])

Figure 6: Microreboot API

boot and

initialization

request

processing

rollback (triggered by restart policy)

vm_snapshot()

Newly

Created VM

Snapshot

Image

Copy-on-

write

recovery box recovery box

requests and
responses

rollback
activated

Figure 7: Rolling back to a known-good snapshot allows effi-
cient microreboots of components.

top query in Figure 5 determines which customers could be affected
by the compromise of a service VM by enumerating VMs that relied
on that particular service VM at any point during the compromise.
Second, providers frequently roll out new versions of OS kernels
and in the event that a vulnerability is discovered in a specific release
of a service VM after the fact, the audit log can be used to identify
all guest VMs that were serviced by it.

4.3 Staleness: Protect VMs in Time
The final feature of service VMs is a facility to defend thetemporal
attack surface, preserving the freshness of execution state through
the use of periodic restarts. This approach takes advantageof the ob-
servation from work on microreboots and “crash-only software” [10]
that it is generally easier to reason about a program’s correctness at
the start of execution rather than over long periods of time.

Microreboots. Virtual machines naturally support a notion of re-
booting that can be used to reset them to a known-good state. Fur-
ther, many of the existing interfaces to control VM-based services
already contain logic to reestablish connections, used when migrat-
ing a running VM from one physical host to another. There are two
major challenges associated with microreboots. First, full system
restarts are slow and significantly reduce performance, especially of
components on a data path such as device drivers. Second, notall
state associated with a service can be discarded since useful side-
effects that have occurred during that execution will also be lost.

Snapshot and Rollback. Instead of fully restarting a component,
it is snapshotted just after it has booted and been initialized, but
before it has communicated with any other service or guest VM.
The service VM is modified to explicitly snapshot itself at the time
that it is ready to service requests (typically at the start of an event
loop) using the API shown in Figure 6. Figure 7 illustrates the snap-
shot/rollback cycle. By snapshotting before any requests are served
over offered interfaces, we ensure that the image is fresh. Acomple-
mentary extension would be to measure and attest snapshot-based
images, possibly even preparing them as part of a distribution and
avoiding the boot process entirely.

We enable lightweight snapshots by using a hypervisor-based copy-
on-write mechanism to trap and preserve any pages that are about
to be modified. When rolling back, only these pages and the vir-

tual CPU state need be restored, resulting in very fast restart times
— in our implementation, between 4 and 25 ms, depending on the
workload.

Restart Policy. While it is obvious when to take the snapshot of
a component, it is less clear when that component should be rolled
back. Intuitively, it should be as frequently as possible. However,
even though rollbacks are quick, the more frequently a component is
restarted, the less time it has available to offer a useful service. Xoar
specifies rollback policy in the service VM’s configuration file and
we currently offer two policies: notification-based and timer-based.
Restart policy is associated with the VM when it is instantiated and
is tracked and enforced by the hypervisor.

In our notification-based policy, the hypervisor interposes on mes-
sage notificationsleaving the service VM as an indication that a
request transaction has completed, triggering a restart. For low-
frequency, synchronous communication channels (e.g., those that
access XenStore), this method isolates individual transactions and
resets the service to a fresh state at the end of every processed re-
quest. In other words, every single request is processed by afresh
version of the service VM.2

The overhead of imposing a restart on every request would be too
high for higher-throughput, concurrent channels, such as NetBack
and BlkBack. For these service VMs, the hypervisor providesa pe-
riodic restart timer that triggers restarts at a configurable frequency.

Maintaining State. Frequent restarts suffer from the exact symp-
tom that they seek to avoid: the establishment of long-livedstate. In
rolling back a service VM, any state that it introduces is lost. This
makes it particularly hard to build services that depend on keeping
in-memory state, such as configuration registries, and services that
need to track open connections.

We address this issue by providing service VMs with the ability to
allocate a “recovery box” [3]. Originally proposed as a technique
for high availability, this is a block of memory that persists across
restarts. Service VM code is modified to store any long-livedstate
in one of these allocations and to check and restore from it immedi-
ately after a snapshot call. Memory allocated using this technique is
exempted from copy-on-write.

Maintaining state across restarts presents an obvious attack vector
— a malicious user can attempt to corrupt the state that is reloaded
after every rollback to repeatedly trigger the exploit and compromise
the system. To address this, the service treats the recoverybox as
an untrusted input and audits its contents after the rollback. Xen
also tracks the memory pages in the allocation and forcibly marks
all virtual addresses associated with them as non-executable.

Driver VMs, like NetBack and BlkBack, automatically renegotiate
both device state and frontend connections in cases of failures or
restarts, allowing them to discard all state at every restart. In these
performance-critical components, however, any downtime signifi-
cantly affects the throughput of guests. This downtime can be re-
duced by caching a very small amount of device and frontend state
in a recovery box. The desired balance between security and perfor-
mance can be chosen, as discussed in Section 7.2.

Components like XenStore, on the other hand, maintain a large
amount of long-lived state for other components in the system. In

2This mechanism leaves open the possibility that an exploited ser-
vice VM might not send the event that triggers the rollback. To
cover this attack vector, the hypervisor maintains a watchdog timer
for each notification-based service VM. If a timer goes off, the VM
is rolled back; if the restart is triggered normally, the timer is reset.

User A’s VM
(HVM)

User B’s VM
(PV)

Qemu

XenStore

Xen

Interfaces Delegated-to

XenStore-
Logic

User A’s
Toolstack

XenStore-
State

Builder

NetBack
(eth 0)

BlkBack
(sda)

User B’s
Toolstack

NetBack
(eth 1)

BlkBack
(sdb)

Figure 8: Partitioned configuration: In the configuration above,
users A and B use isolated hardware and toolstacks and share
interfaces only with XenStore and Xen itself.

such cases, this state can be removed from the service VM alto-
gether and placed in a separate “state” VM that is accessiblethrough
a special-purpose interface. In Xoar, only XenStore, because of its
central role in the correctness and security of the system, is refac-
tored in this way (see Section 5.2). Only the processing and logic
remain in the original service VM, making it amenable to rollbacks.

Per-request rollbacks force the attacker to inject exploitcode into
the state and have it triggered by another VM’s interaction with
XenStore. However, in the absence of further exploits, access con-
trol and guest ID authentication prevent the injection of such exploit
code into sections of the state not owned by the attacking guest (see
Section 5.2). Thus, an attack originating from a guest VM through
XenStore requires an exploit of more than one service VM.

4.4 Deployment Scenarios
Public clouds, like Amazon Web Services, tightly pack many VMs
on a single physical machine, controlled by a single toolstack. Par-
titioning the platform into service VMs, which can be judiciously
restarted, limits the risks of sharing resources among potentially
vulnerable and exposed VMs. Furthermore, dynamically restarting
service VMs allows for in-place upgrades, reducing the window of
exposure in the face of a newly discovered vulnerability. Finally, in
the case of compromise, secure audit facilities allow administrators
to reason, after the fact, about exposures that may have taken place.

Our design supports greater degrees of resource partitioning than
this. Figure 8 shows a more conservative configuration, in which
each user is assigned separate, dedicated hardware resources within
the physical host and a personal collection of service VMs toman-
age them. Users manage their own service VMs and the device
drivers using a private Toolstack with resource service VMsdele-
gated solely to it.

5. IMPLEMENTATION
This section explains how the design described in Section 4 was im-
plemented on the Xen platform. It begins with a brief discussion of
how component boundaries were selected in fracturing the control
VM and then describes implementation details and challenges faced
during the development of Xoar.

5.1 Xoar Components
The division of service VMs in Xoar conforms to the design goals
of Section 4; we reduce components into minimal, loosely coupled
units of functionality, while obeying the principle of least privilege.
As self-contained units, they have a low degree of sharing and inter-
VM communication (IVC), and can be restarted independently. Ex-
isting software and interfaces are reused to aid development and
ease future maintenance. Table 1 augments Figure 2 by describing
the classes of service VMs in our decomposition of Dom0. While it
is not the only possible decomposition, it satisfies our design goals
without requiring an extensive re-engineering of Xen.

Virtualized devices mimic physical resources in an attemptto of-
fer a familiar abstraction to guest VMs, making them ideal service
VMs. Despite the lack of toolstack support, Xen has architectural
support for driver VMs, reducing the development effort signifi-
cantly. PCIBack virtualizes the physical PCI bus, while NetBack
and BlkBack are driver VMs, exposing the required device backends
for guest VMs. Further division, like separating device setup from
the data path, yields no isolation benefits, since both components
need to be shared simultaneously. This would also add a signifi-
cant amount of IVC, conflicting with our design goals, and would
require extensive modifications. Similarly, the serial controller is
represented by a service VM that virtualizes the console forother
VMs. Further details about virtualizing these hardware devices are
discussed in Section 5.3 and Section 5.4.

Different aspects of the VM creation process require differing sets of
privileges; placing them in the same service VM violates ourgoal of
reducing privilege. These operations can largely be divided into two
groups — those that need access to the guest’s memory to set upthe
kernel, etc., and those that require access to XenStore to write en-
tries necessary for the guest. Breaking this functionalityapart along
the lines of least privilege yields the Builder, a privileged service
VM responsible for the hypervisor and guest memory operations,
and the Toolstack, a service VM containing the management tool-
stack. While the Builder could be further divided into components
for sub-operations, like loading the kernel image, settingup the page
tables, etc., these would all need to run at the same privilege level
and would incur high synchronization costs. The Builder responds
to build requests issued by the Toolstack via XenStore. Oncebuild-
ing is complete, the Toolstack communicates with XenStore to per-
form the rest of the configuration and setup process.

5.2 XenStore
Our refactoring of XenStore is the most significant implementation
change that was applied to any of the existing components in Xen
(and took the largest amount of effort). We began by breakingXen-
Store into two independent service VMs: XenStore-Logic, which
contains the transactional logic and connection management code,
and XenStore-State, which contains the actual contents of the store.
This division allows restarts to be applied to request-handling code
on a per-request basis, ensuring that exploits are constrained in du-
ration to a single request. XenStore-State is a simple key-value store
and is the only long-lived VM in Xoar.

Unfortunately, partitioning and per-request restarts areinsufficient
to ensure the security of XenStore. As XenStore-Logic is respon-
sible for enforcing access control based on permissions in the store
itself, a compromise of that VM may allow for arbitrary accesses to
the contents of the store. We addressed this problem with twotech-
niques. First, access control checks are moved into a small monitor
module in XenStore-State; a compromise of XenStore-Logic is now
limited to valid changes according to existing permissionsin the

Component P Lifetime OS Parent Depends On Functionality
Bootstrapper Y Boot Up nanOS Xen - Instantiate boot service VMs

XenStore N Forever (R) miniOS Bootstrapper - System configuration registry
Console N Forever Linux Bootstrapper XenStore Expose physical console as virtual consoles to VMs
Builder Y Forever (R) nanOS Bootstrapper XenStore Instantiate non-boot VMs

PCIBack Y Boot Up Linux Bootstrapper
XenStore
Builder
Console

Initialize hardware and PCI bus, pass through PCI devices,
and expose virtual PCI config space

NetBack N Forever (R) Linux PCIBack
XenStore
Console

Expose physical network device as virtual devices to VMs

BlkBack N Forever (R) Linux PCIBack
XenStore
Console

Expose physical block device as virtual devices to VMs

Toolstack N Forever (R) Linux Bootstrapper
XenStore
Builder
Console

Admin toolstack to manage VMs

QemuVM N Guest VM miniOS Toolstack
XenStore
NetBack
BlkBack

Device emulation for a single guest VM

Table 1: Components of Xoar. The “P” column indicates if the component is privileged. An “(R)” in the lifetime column indi cates
that the component can be restarted. Console is only mentioned for the sake of completeness. Since enterprise deployments typically
disable console access, it is not part of the overall architecture.

store. Second, we establish the authenticity of accesses made by
XenStore-Logic by having it declare the identity of the VM that it
is about to servicebeforereading the actual request. This approach
effectively drops privilege to that of a single VM before exposing
XenStore-Logic to any potentially malicious request, and makes the
identity of the request made to XenStore-State unforgeable. The
monitor refuses any request to change the current VM until the re-
quest has been completed, and an attempt to do so results in a restart
of XenStore-Logic.

The monitor code could potentially be further disaggregated from
XenStore-State and also restarted on a per-request basis. Our current
implementation requires an attacker to compromise both XenStore-
Logic and the monitor code in XenStore-State in succession,within
the context of a single request, in order to make an unauthorized
access to the store. Decoupling the monitor from XenStore-State
would add limited extra benefit, for instance possibly easing static
analysis of the two components, and still allow a successfulattacker
to make arbitrary changes in the event of the two successive com-
promises; therefore we have left the system is it stands.

5.3 PCI: A Shared Bus
PCIBack controls the PCI bus and manages interrupt routing for pe-
ripheral devices. Although driver VMs have direct access tothe
peripherals themselves, the shared nature of the PCI configuration
space requires a single component to multiplex all accessesto it.
This space is used during device initialization, after which there
is no further communication with PCIBack. We remove PCIBack
from the TCB entirely after boot by destroying it, reducing the num-
ber of shared components in the system.

Hardware virtualization techniques like SR-IOV [28] allowthe cre-
ation of virtualized devices, where the multiplexing is performed
in hardware, obviating the need for driver VMs. However, provi-
sioning new virtual devices on the fly requires a persistent service
VM to assign interrupts and multiplex accesses to the PCI configu-
ration space. Ironically, although appearing to reduce theamount of
sharing in the system, such techniques may increase the number of
shared, trusted components.

5.4 Driver VMs: NetBack and BlkBack
Driver VMs, like NetBack and BlkBack, use direct device assign-
ment to directly access PCI peripherals like NICs and disk con-
trollers, and rely on existing driver support in Linux to interface
with the hardware. Each NetBack or BlkBack virtualizes exactly
one network or block controller, hosting the relevant device driver
and virtualized backend driver. The Toolstack links a driver VM
delegated to it to a guest VM by writing the appropriate frontend
and backend XenStore entries during the creation of the guest, af-
ter which the guest and backend communicate directly using shared
memory rings, without any further participation by XenStore.

Separating BlkBack from the Toolstack caused some problemsas
the existing management tools mount disk-based VM images as
loopback devices withblktap, for use by the backend driver. Af-
ter splitting BlkBack from the Toolstack, the disk images need to be
created and mounted in BlkBack. Therefore, in Xoar, BlkBackruns
a lightweight daemon that proxies requests from the Toolstack.

5.5 Efficient Microreboots
As described in Section 4.3, our snapshot mechanism copies mem-
ory pages which are dirtied as a service VM executes and restores
the original contents of these pages during rollback, requiring a page
allocation and deallocation and two copy operations for every dirt-
ied page. Since many of the pages being modified are the same
across several iterations, rather than deallocating the master copies
of these pages after rollback, we retain them across runs, obviating
the need for allocation, deallocation, and one copy operation when
the same page is dirtied. However, this introduces a new problem:
if a page is dirtied just once, its copy will reside in memory forever.
This could result in memory being wasted storing copies of pages
which are not actively required.

To address this concern, we introduced a “decay” value to thepages
stored in the snapshot image. When a page is first dirtied after a
rollback, its decay value is incremented by two, towards a maximum
value. On rollback, each page’s decay value is decremented.When
this count reaches zero, the page is released.

5.6 Deprivileging Administrative Tools
XenStore and the Console require Dom0-like privileges to forcibly
map shared memory, since they are required before the guest VM
can set up its grant table mappings. To avoid this, Xoar’s Builder
creates grant table entries for this shared memory in each new VM,
allowing these tools to use grant tables and function without any
special privileges.

The Builder assigns VM management privileges to each Toolstack
for the VMs that it requests to be built. A Toolstack can only man-
age these VMs, and an attempt to manage any others is blocked by
the hypervisor. Similarly, it can only use service VMs that have
been delegated to it. An attempt to use an undelegated service VM,
for example a NetBack, for a new guest VM will fail. Restricting
privileges this way allows for the creation of several Toolstack in-
stances that run simultaneously. Different users, each with a private
Toolstack, are able to partition their physical resources and manage
their own VMs, while still guaranteeing strong isolation from VMs
belonging to other users.

5.7 Developing with Minimal OSes
Bootstrapper and Builder are built on top of nanOS, a small, single-
threaded, lightweight kernel explicitly designed to have the min-
imum functionality needed for VM creation. The small size and
simplicity of these components leave them well within the realm
of static analysis techniques, which could be used to verifytheir
correctness. XenStore, on the other hand, demands more fromits
operating environment, and so is built on top of miniOS, a richer
OS distributed with Xen.

Determining the correct size of OS to use is hard, with a fundamen-
tal tension between functionality and ease of use. Keeping nanOS
so rigidly simple introduces a set of development challenges, es-
pecially in cases involving IVC. However, since these components
have such high privilege, we felt that the improved securitygained
from reduced complexity is a worthwhile trade-off.

5.8 Implicit Assumptions about Dom0
The design of Xen does not mandate that all service components
live in Dom0, however several components, including the hypervi-
sor, implicitly hard-code the assumption that they do. A panoply of
access control checks compare the values of domain IDs to thein-
teger literal ’0’, the ID for Dom0. Many tools assume that they are
running co-located with the driver backends and various paths in
XenStore are hard-coded to be under Dom0’s tree The toolstack ex-
pects to be able to manipulate the files that contain VM disk images,
which is solved by proxying requests, as discussed in Section 5.4.
The hypervisor assumes Dom0 has control of the hardware and con-
figures signal delivery and MMIO and I/O-port privileges foraccess
to the console and peripherals to Dom0. In Xoar, these need tobe
mapped to the correct VMs, with Console requiring the signals and
I/O-port access for the console and PCIBack requiring the MMIO
and remaining I/O-port privileges, along with access to thePCI bus.

6. SECURITY EVALUATION
Systems security is notoriously challenging to evaluate, and Xoar’s
proves no different. In an attempt to demonstrate the improvement
to the state of security for commodity hypervisors, this section will
consider a number of factors. First, we will evaluate the reduction
in the size of the trusted computing base; this is an approachthat we
do not feel is particularly indicative of the security of a system, but
has been used by a considerable amount of previous work and does
provide some insight into the complexity of the system as a whole.

Permission Bootstrapper PCIBack Builder Toolstack BlkBack NetBack
Arbitrarily

X Xaccess
memory

Access and
Xvirtualize

PCI devices
Create VMs X X

Manage VMs X X X
Manage

X Xassigned
devices

Table 2: Functionality available to the service VMs in Xoar.
Components with access to no privileged hypercalls are not
shown. In Xen, Dom0 possesses all of these functionalities.

Component Shared Interfaces

XenStore-Logic
XenStore-State, Console,

Builder, PCIBack,
NetBack, BlkBack, Guest

XenStore-State XenStore-Logic
Console XenStore-Logic
Builder XenStore-Logic

PCIBack XenStore-Logic, NetBack, BlkBack
NetBack XenStore-Logic, PCIBack, Guest
BlkBack XenStore-Logic, PCIBack, Guest
Toolstack XenStore-Logic
Guest VM XenStore-Logic, NetBack, BlkBack

Table 3: Interfaces shared between service VMs

Second, we consider how the attack surface presented by the control
VM changes in terms of isolation, sharing, and per-component priv-
ilege in an effort to evaluate the exposure to risk in Xoar compared
to other systems. Finally, we consider how well Xoar handlesthe
existing published vulnerabilities first described in Section 2.

Much of this evaluation is necessarily qualitative: while we have
taken efforts to evaluate against published vulnerabilities, virtual-
ization on modern servers is still a sufficiently new technology with
few disclosed vulnerabilities. Our sense is that these vulnerabilities
may not be representative of the full range of potential attacks.

In evaluating Xoar’s security, we attempt to characterize it from an
attacker’s perspective. One notable feature of Xoar is thatin order
for an adversary to violate our security claim, more than oneservice
VM must have a vulnerability, and a successful exploit must be able
to perform a stepping-stone attack. We will discuss why thisis true,
and characterize the nature of attacks that are still possible.

6.1 Reduced TCB
The Bootstrapper, PCIBack, and Builder service VMs are the most
privileged components, with the ability to arbitrarily modify guest
memory and control and assign the underlying hardware. These
privileges necessarily make them part of the TCB, as a compromise
of any one of these components would render the entire systemvul-
nerable. Both Bootstrapper and PCIBack are destroyed aftersystem
initialization is complete, effectively leaving Builder as the only ser-
vice VM in the TCB. As a result, the TCB is reduced from Linux’s
7.6 million lines of code to Builder’s 13,500 lines of code, both on
top of the hypervisor’s 280,000 lines of code.3

6.2 Attack Surface
Monolithic virtualization platforms like Xen execute service com-
ponents in a single trust domain, with every component running at
3All lines of code were measured using David Wheeler’s SLOC-
Count fromhttp://www.dwheeler.com/sloccount/

Component Arbitrary Code Execution DoS File System Access
Hypervisor 0 / 1 0 / 1 0 / 0

Device Emulation 8 / 8 3 / 3 3 / 3
Virtualized Drivers 1 / 1 1 / 1 0 / 0

XenStore 0 / 0 1 / 1 0 / 0
Toolstack 1 / 1 2 / 2 1 / 1

Table 4: Vulnerabilities mitigated in Xoar. The numbers repre-
sent total mitigated over total identified.

the highest privilege level. As a result, the security of theentire sys-
tem is defined by that of the weakest component, and a compromise
of any component gives an attacker full control of the system.

Disaggregating service components into their own VMs not only
provides strong isolation boundaries, it also allows privileges to be
assigned on a per-component basis, reducing the effect a compro-
mised service VM has on the entire system. Table 2 shows the priv-
ileges granted to each service VM, which corresponds to the amount
of access that an attacker would have on successfully exploiting it.

Attacks originating from guest VMs can exploit vulnerabilities in
the interfaces to NetBack, BlkBack, or XenStore (see Table 3). An
attacker breaking into a driver VM gains access only to the degree
that other VMs trust that device. Exploiting NetBack might allow
for intercepting another VM’s network traffic, but not access to ar-
bitrary regions of its memory. On hosts with enough hardware, re-
sources can be partitioned so that no two guests share a driver VM.

Where components reuse the same code, a single vulnerability could
be sufficient to compromise them all. Service VMs like NetBack,
BlkBack, Console, and Toolstack run the same core Linux kernel,
with specific driver modules loaded only in the relevant component.
As a result, vulnerabilities in the exposed interfaces are local to the
associated service VM, but vulnerabilities in the underlying frame-
work and libraries may be present in multiple components. For bet-
ter code diversity, service VMs could use a combination of Linux,
FreeBSD, OpenSolaris, and other suitable OSes.

Highly privileged components like the Builder have very narrow
interfaces and cannot be compromised without exploiting vulner-
abilities in multiple components, at least one of which is XenStore.
Along with the central role it plays in state maintenance andsyn-
chronization, this access to Builder makes XenStore an attractive
target. Compromising XenStore-Logic may allow an attacking guest
to store exploit code in XenStore-State, which, when restoring state
after a restart, re-compromises XenStore-Logic. The monitoring
code described in Section 5.2, however, prevents this malicious state
from being restored when serving requests from any other guest
VM, ensuring that they interact with a clean copy of XenStore.

6.3 Vulnerability Mitigation
With a majority of the disclosed vulnerabilities against Xen involv-
ing privilege escalation against components in Dom0, Xoar proves
to be successful in containing all but two of them. Table 4 taxono-
mizes the vulnerabilities discussed in Section 2 based on the vulner-
able component and the type of vulnerability, along with thenumber
that are successfully mitigated in Xoar.

The 14 device emulation attacks are completely mitigated, as the
device emulation service VM has no rights over any VM except
the one the attacker came from. The two attacks on the virtualized
device layer and the three attacks against the toolstack would only
affect those VMs that shared the same BlkBack, NetBack, and Tool-
stack components. The vulnerability present in XenStore did not
exist in our custom version. Since Xoar does not modify the hyper-

Component Memory Component Memory
XenStore-Logic 32 MB XenStore-State 32 MB

Console 128 MB PCIBack 256 MB
NetBack 128 MB BlkBack 128 MB
Builder 64 MB Toolstack 128 MB

Table 5: Memory requirements of individual components

visor, the two hypervisor vulnerabilities remain equally exploitable.

One of the vulnerabilities in the virtualized drivers is against the
block device interface and causes an infinite loop which results in
a denial of service. Periodically restarting BlkBack forces the at-
tacker to continuously recompromise the system. Since requests
from different guests are serviced on every restart, the device would
continue functioning with low bandwidth, until a patch could be ap-
plied to prevent further compromises.

7. PERFORMANCE EVALUATION
The performance of Xoar is evaluated against a stock Xen Dom0
in terms of memory overhead, I/O throughput, and overall system
performance. Each service VM in Xoar runs with a single virtual
CPU; in stock Xen Dom0 runs with 2 virtual CPUs, the configura-
tion used in the commercial XenServer [12] platform. All figures
are the average of three runs, with 95% confidence intervals shown
where appropriate.

Our test system was a Dell Precision T3500 server, with a quad-core
2.67 GHz Intel Xeon W3520 processor, 4 GB of RAM, a Tigon 3
Gigabit Ethernet card, and an Intel 82801JIR SATA controller with a
Western Digital WD3200AAKS-75L9A0 320 GB 7200 RPM disk.
VMX, EPT, and IOMMU virtualization are enabled. We use Xen
4.1.0 and Linux 2.6.314 pvops kernels for the tests. Identical guests
running an Ubuntu 10.04 system, configured with two VCPUs, 1 GB
of RAM and a 15 GB virtual disk are used on both systems. For
network tests, the system is connected directly to another system
with an Intel 82567LF-2 Gigabit network controller.

7.1 Memory Overhead
Table 5 shows the memory requirements of each of the compo-
nents in Xoar. Systems with multiple network or disk controllers
can have several instances of NetBack and BlkBack. Also, since
users can select the service VMs to run, there is no single figure
for total memory consumption. In commercial hosting solutions,
console access is largely absent rendering the Console redundant.
Similarly, PCIBack can be destroyed after boot. As a result,the
memory requirements range from 512 MB to 896 MB, assuming a
single network and block controller, representing a savingof 30%
to an overhead of 20% on the default 750 MB Dom0 configuration
used by XenServer. All performance tests compare a completecon-
figuration of Xoar with a standard Dom0 Xen configuration.

7.2 I/O performance
Disk performance is tested using Postmark, with VMs’ virtual disks
backed by files on a local disk. Figure 9 shows the results of these
tests with different configuration parameters.

Network performance is tested by fetching a 512 MB and a 2 GB
file across a gigabit LAN usingwget, and writing it either to disk,
or to /dev/null (to eliminate performance artifacts due to disk
performance). Figure 10 shows these results.

4Hardware issues forced us to use a 2.6.32 kernel for some of the
components.

1Kx50K 20Kx50K 20Kx100K 20Kx100Kx100

O
pe

ra
tio

ns
 /

S
ec

on
d

0

5000

10000

15000
Dom0 Xoar

Figure 9: Disk performance using Postmark (higher is better).
The x-axis denotes (files x transactions x subdirectories).

/dev/null (512MB) Disk (512MB) /dev/null (2GB) Disk (2GB)

T
hr

ou
gh

pu
t (

M
B

/s
)

0

25

50

75

100

125
Dom0 Xoar

Figure 10: Network performance with wget (higher is better)

Overall, disk throughput is more or less unchanged, and network
throughput is down by 1–2.5%. The combined throughput of data
coming from the network onto the diskincreasesby 6.5%; we be-
lieve this is caused by the performance isolation of runningthe disk
and network drivers in separate VMs.

Restart Interval (s)
1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
B

/s
)

20

30

40

50

60

70

80

90

100

baseline

slow (260ms)

fast (140ms)

Figure 11: wget throughput while restarting NetBack at differ-
ent time intervals

To measure the effect of microrebooting driver VMs, we ran the
2 GB wget to /dev/null while restarting NetBack at intervals
between 1 and 10 seconds. Two different optimizations for fast mi-
croreboots are shown.

In the first (marked as “slow” in Figure 11), the device hardware
state is left untouched during reboots; in the second (“fast”), some
configuration data that would normally be renegotiated via Xen-

S
ec

on
ds

0

50

100

150

200

250

300

350

400

450

500

Dom0 (local)

Xoar (local)

Dom0 (nfs)

Xoar (nfs)

Restarts (10s)

Restarts (5s)

Figure 12: Linux kernel build run on Dom0 and Xoar, locally,
over NFS and over NFS with NetBack restarts.

Store is persisted. In “slow” restarts the device downtime is around
260 ms, measuring from when the device is suspended to when itre-
sponds to network traffic again. The optimizations used in the “fast”
restart reduce this downtime to around 140 ms.

Resetting every 10 seconds causes an 8% drop in throughput, as
wget’s TCP connections respond to the breaks in connectivity. Re-
ducing the interval to one second gives a 58% drop. Increasing it
beyond 10 seconds makes very little difference to throughput. The
faster recovery gives a noticeable benefit for very frequentreboots
but is worth less than 1% for 10-second reboots.

7.3 Real-world Benchmarks
Figure 12 compares the time taken to build a Linux kernel, both
in stock Xen and Xoar, off a local ext3 volume as well as an NFS
mount. The overhead added by Xoar is much less than 1%.

The Apache Benchmarkis used to gauge the performance of an
Apache web server serving a 10 KB static webpage 100,000 times
to five simultaneous clients. Figure 13 shows the results of this test
against Dom0, Xoar, and Xoar with network driver restarts at10, 5,
and 1 second intervals. Performance decreases non-uniformly with
the frequency of the restarts: an increase in restart interval from 5
to 10 seconds yields barely any performance improvements, while
changing the interval from 5 seconds to 1 second introduces asig-
nificant performance loss.

Dropped packets and network timeouts cause a small number ofre-
quests to experience very long completion times — for example,
for Dom0 and Xoar, the longest packet took only 8–9 ms, but with
restarts, the values range from 3000 ms (at 5 and 10 seconds) to
7000 ms (at 1 second). As a result, the longest request interval is
not shown in the figure.

Overall, the overhead of disaggregation is quite low. This is largely
because driver VMs do not lengthen the data path between guests
and the hardware: the guest VM communicates with NetBack or
BlkBack, which drives the hardware. While the overhead of driver
restarts is noticeable, as intermittent outages lead to TCPbackoff, it
can be tuned by the administrator to best match the desired combi-
nation of security and performance.

8. RELATED WORK
With the widespread use of VMs, the security of hypervisors has
been studied extensively and several attempts have been made to
address the problem of securing the TCB. This section looks at some
of these techniques in the context of our functional requirements.

Build a Smaller Hypervisor. SecVisor [38] and BitVisor [40] are
examples of tiny hypervisors, built with TCB size as a primary con-

Total Time (s) Throughput (req/s) Latency (s) Transfer Rate (MB/s)

R
el

at
iv

e
sc

or
e

to
 D

om
0

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

30
.9

5

32
30

.8
2

1.
55

36
.0

4

31
.4

3

31
82

.0
3

1.
57

35
.4

9

44
.0

0

22
73

.3
9

2.
20

25
.3

6

45
.2

8

22
08

.7
1

2.
26

24
.6

4

11
4.

39

88
3.

18

5.
72

9.
85

Dom0 Xoar Restarts (10s) Restarts (5s) Restarts (1s)

Figure 13: Apache Benchmark run on Dom0, Xoar, and Xoar with network driver restarts at 10s, 5s, and 1s.

cern, that use the interposition capabilities of hypervisors to retrofit
security features for commodity OSes. While significantly reducing
the TCB of the system, they do not share the multi-tenancy goals of
commodity hypervisors and are unsuitable for such environments.

Microkernel-based architectures like KeyKOS [20] and EROS[39],
its x86-based successor, are motivated similarly to Xoar and allow
mutually untrusting users to securely share a system. Our Builder
closely resembles thefactory in KeyKOS. While multiple, isolated,
independently administered UNIX instances, rather like VMs, can
be hosted on EROS, this requires modifications to the environment
and arbitrary OSes cannot be hosted. More recently, NOVA [42]
uses a similar architecture and explicitly partitions the TCB into
several user-level processes within the hypervisor. Although capa-
ble of running multiple unmodified OSes concurrently, the removal
of the control VM and requirement for NOVA-specific drivers sac-
rifice hardware support for TCB size. Also, it is far from complete:
it cannot run Windows guests and has limited toolstack support.

NoHype [23] advocates removing the hypervisor altogether,using
static partitioning of CPUs, memory, and peripherals amongVMs.
This would allow a host to be shared by multiple operating systems,
but with none of the other benefits of virtualization. In particular, the
virtualization layer could no longer be used for interposition, which
is necessary for live migration [13], memory sharing and compres-
sion [19, 32], and security enhancements [11, 30, 46, 16].

Harden the Components of the TCB.The security of individ-
ual components of the TCB can be improved using a combination
of improved code quality and access control checks to restrict the
privileges of these components. Xen’s XAPI toolstack is written
in OCaml and benefits from the robustness that a statically typed,
functional language provides [37]. Xen and Linux both have mech-
anisms to enforce fine-grained security policies [31, 36]. While use-
ful, these techniques do not address the underlying concernabout
the size of the TCB.

Split Up the TCB, Reduce the Privilege of Each Part.Murray
et al. [33] removed Dom0 userspace from the TCB by moving the
VM builder into a separate privileged VM. While a step in the right
direction, it does not provide functional parity with Xen orremove
the Dom0 kernel from the TCB, leaving the system vulnerable to
attacks on exposed interfaces, such as network drivers.

Driver domains [17] allow device drivers to be hosted in dedicated
VMs rather than Dom0, resulting in better driver isolation.Qubes-
OS [35] uses driver domains in a single-user environment, but does
not otherwise break up Dom0. Stub domains [44] isolate the Qemu
device model for improved performance and isolation. Xoar builds
on these ideas and extends them to cover the entire control VM.

9. DISCUSSION AND FUTURE WORK
This idea of partitioning a TCB is hardly new, with software parti-
tioning having been explored in a variety of contexts before. Micro-
kernels remain largely in the domain of embedded devices with rel-
atively small and focused development teams (e.g., [26]), and while
attempts at application-level partitioning have demonstrated bene-
fits in terms of securing sensitive data, they have also demonstrated
challenges in implementation and concerns about maintenance [7,
9, 24, 34], primarily due to the mutability of application interfaces.

While fracturing the largely independent, shared servicesthat run
in the control VM above the hypervisor, we observe that thesecon-
cerns do not apply to nearly the same degree; typically the com-
ponents are drivers or application code exposing their dominant in-
terfaces either to hardware or to dependent guests. Isolating such
services into their own VMs was a surprisingly natural fit.

While it is tempting to attribute this to a general property of vir-
tualization, we also think that it was particularly applicable to the
architecture of Xen. Although implemented as a monolithic TCB,
several of the components were designed to support further com-
partmentalization, with clear, narrow communication interfaces.

We believe the same is applicable to Hyper-V, which has a simi-
lar architecture to Xen. In contrast, KVM [25] converts the Linux
kernel itself into a hypervisor, with the entire toolstack hosted in a
Qemu process. Due to the tight coupling, we believe that disaggre-
gating KVM this aggressively would be extremely hard, more akin
to converting Linux into a microkernel.

9.1 Lessons
In the early design of the system our overall rule was to take aprac-
tical approach to hardening the hypervisor. As usual, with the hind-
sight of having built the system, some more specific guidelines are
clear. We present them here as “lessons” and hope that they may be
applied earlier in the design process of future systems.

Don’t break functionality. From the outset, the work described
in this paper has been intended to be applied upstream to the open
source Xen project. We believe that for VM security improvements
to be deployed broadly, they must not sacrifice the set of functional-
ity that has made these systems successful, and would not expect a
warm reception for our work from the maintainers of the system if
we were to propose that facilities such as CPU overcommit simply
didn’t make sense in our design.

This constraint places enormous limitations on what we are able to
do in terms of hardening the system, but it also reduces the major
argument against accepting new security enhancements.

Don’t break maintainability. Just as the users of a virtualization
platform will balk if enhancing security costs functionality, devel-
opers will push back on approaches to hardening a system thatre-
quire additional effort from them. For this reason, our approach to
hardening the hypervisor has been largely astructural one: indi-
vidual service VMs already existed as independent applications in
the monolithic control VM and so the large, initial portion of our
work was simply to break each of these applications out into its own
virtual machine. Source changes in this effort largely improved the
existing source’s readability and maintainability by removing hard-
coded values and otherwise generalizing interfaces.

By initially breaking the existing components of the control VM out
into their own virtual machines, we also made it much easier for
new, alternate versions of these components to be written and main-
tained as drop-in replacements: our current implementation uses
largely unchanged source for most of the service VM code, butthen
chooses to completely reimplement XenStore. The original version
of XenStore still works in Xoar, but the new one can be droppedin
to strengthen a critical, trusted component of the system.

There isn’t always a single best interface.The isolation of com-
ponents into service VMs was achieved through multiple imple-
mentations: some service VMs use a complete Linux install, some
a stripped-down “miniOS” UNIX-like environment, and some the
even smaller “nanOS”, effectively a library for building small single-
purpose VMs designed to be amenable to static analysis.

Preserving application state across microreboots has a similar diver-
sity of implementation: driver VMs take advantage of a recovery-
box-like API, while for the reimplementation of XenStore itbe-
came more sensible to split the component into two VMs, effectively
building our own long-lived recovery box component.

Our experience in building the system is that while we might have
built simpler and more elegant versions of each of the individual
components, we probably couldn’t have used fewer of them without
making the system more difficult to maintain.

9.2 Future Work
The mechanism of rebooting components that automatically rene-
gotiate existing connections allow many parts of the virtualization
platform to be upgraded in place. An old component can be shut
down gracefully, and a new, upgraded one brought up in its place
with a minor modification of XenStore keys. Unfortunately, these
are not applicable to long-lived components with state likeXenStore
and the hypervisor itself. XenStore could potentially be restarted by
persisting its state to disk. Restarting Xen under executing VMs,
however, is more challenging. We would like to explore techniques
like those in ReHype [29], but usingcontrolled reboots to safely
replace Xen, allowing the complete virtualization platform to be up-
graded and restarted without disturbing the hosted VMs.

Although the overall design allows for it, our current implementa-
tion does not include cross-host migration of VMs. We are in the
process of implementing a new service VM that contains the live
VM migration toolset to transmit VMs over the network. Whilethis
component is not currently complete, it has begun to demonstrate an
additional benefit of disaggregation: the new implementation strikes
a balance between the implementation of a feature that requires con-
siderable privilege to map and monitor changes to a VM’s memory
in the control VM, and the proposal to completely internalize mi-
gration within the guest itself [13]. Xoar’s live migrationtool al-
lows the guest to delegate access to map and monitor changes to its
memory to a trusted VM, and allows that VM to run, much like the

QemuVM, for as long as is necessary. We believe that this technique
will further apply to other proposals for interposition-based services,
such as memory sharing, compression, and virus scanning.

10. CONCLUSION
Advances in virtualization have spurred demand for highly-utilized,
low-cost centralized hosting of systems in the cloud. The virtualiza-
tion layer, while designed to be small and secure, has grown out of
a need to support features desired by enterprises.

Xoar is an architectural change to the virtualization platform that
looks at retrofitting microkernel-like isolation properties to the Xen
hypervisor without sacrificing any existing functionality. It divides
the control VM into a set of least-privilege service VMs, which not
only makes any sharing dependencies between components explicit,
but also allows microreboots to reduce the temporal attack surface
of components in the system. We have achieved a significant reduc-
tion in the size of the TCB, and address a substantial percentage of
the known classes of attacks against Xen, while maintainingfeature
parity and incurring very little performance overhead.

11. ACKNOWLEDGMENTS
We would like to thank our shepherd, Bryan Ford, the anonymous
reviewers, Steve Hand, Derek Murray, Steve Gribble, Keir Fraser,
David Lie, and the members of the systems research groups at the
University of British Columbia and at the University of Cambridge
for their suggestions and feedback. This work was partiallysup-
ported through funding from the NSERC Internetworked Systems
Security Network (ISSNet) and from the Communications Security
Establishment Canada (CSEC).

12. REFERENCES
[1] Department of Defense Trusted Computer System Evaluation

Criteria. DoD 5200.28-STD. U.S. Department of Defense,
Dec. 1985.

[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy
nodes. InProc. 22nd ACM SOSP, pages 1–14, Oct. 2009.

[3] M. Baker and M. Sullivan. The recovery box: Using fast
recovery to provide high availability in the UNIX
environment. InProc. USENIX Summer Conference, pages
31–43, June 1992.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. InProc. 19th ACM SOSP, pages 164–177, Oct.
2003.

[5] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing.IEEE Computer, 40:33–37, December 2007.

[6] F. Bellard. QEMU, a fast and portable dynamic translator. In
Proc. USENIX ATC, pages 41–46, Apr. 2005.

[7] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge:
splitting applications into reduced-privilege compartments. In
Proc. 5th USENIX NSDI, pages 309–322, Apr. 2008.

[8] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault
tolerance. InProc. 15th ACM SOSP, pages 1–11, Dec. 1995.

[9] D. Brumley and D. Song. Privtrans: automatically
partitioning programs for privilege separation. InProc. 13th
USENIX Security Symposium, pages 57–72, Aug. 2004.

[10] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot — a technique for cheap recovery. InProc. 6th
USENIX OSDI, pages 31–44, Dec. 2004.

[11] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports.
Overshadow: a virtualization-based approach to retrofitting
protection in commodity operating systems. InProc. 13th
ASPLOS, pages 2–13, Mar. 2008.

[12] Citrix Systems, Inc.Citrix XenServer 5.6 Admininistrator’s
Guide. June 2010.

[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. InProc. 2nd USENIX NSDI, pages
273–286, May 2005.

[14] P. Colp. [xen-devel] [announce] xen ocaml tools.
http://lists.xensource.com/archives/html/
xen-devel/2009-02/msg00229.html.

[15] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield. Remus: high availability via asynchronous
virtual machine replication. InProc. 5th USENIX NSDI,
pages 161–174, Apr. 2008.

[16] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware
analysis via hardware virtualization extensions. InProc. 15th
ACM CCS, pages 51–62, Oct. 2008.

[17] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,and
M. Williamson. Safe hardware access with the Xen virtual
machine monitor. InProc. 1st OASIS, Oct. 2004.

[18] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The Taser
intrusion recovery system. InProc. 20th ACM SOSP, pages
163–176, Oct. 2005.

[19] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference
engine: harnessing memory redundancy in virtual machines.
In Proc. 8th Usenix OSDI, pages 85–93, Oct. 2008.

[20] N. Hardy. The KeyKOS architecture.Operating Systems
Review, 19(4):8–25, October 1985.

[21] M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro.
Reducing TCB size by using untrusted components: small
kernels versus virtual-machine monitors. InProc. 11th ACM
SIGOPS EW, Sept. 2004.

[22] K. Kappel, A. Velte, and T. Velte.Microsoft Virtualization
with Hyper-V. McGraw-Hill, 1st edition, 2010.

[23] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype:
virtualized cloud infrastructure without the virtualization. In
Proc. 37th ACM ISCA, pages 350–361, June 2010.

[24] D. Kilpatrick. Privman: A library for partitioning
applications. InProc. USENIX ATC, pages 273–284, June
2003.

[25] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm: the Linux virtual machine monitor. InProc. Linux
Symposium, pages 225–230, July 2007.

[26] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
formal verification of an OS kernel. InProc. 22nd ACM
SOSP, pages 207–220, Oct. 2009.

[27] G. Kroah-Hartman.udev: A userspace implementation of
devfs. InProc. Linux Symposium, pages 263–271, July 2003.

[28] P. Kutch. PCI-SIG SR-IOV primer: An introduction to
SR-IOV technology. Application note 321211-002, Intel
Corporation, Jan. 2011.

[29] M. Le and Y. Tamir. ReHype: Enabling VM survival across
hypervisor failures. InProc. 7th ACM VEE, pages 63–74,
Mar. 2011.

[30] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor support
for identifying covertly executing binaries. InProc. 17th
USENIX Security Symposium, pages 243–258, July 2008.

[31] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the Linux operating system. InProc.
USENIX ATC, pages 29–42, June 2001.

[32] G. Milos, D. G. Murray, S. Hand, and M. A. Fetterman.
Satori: Enlightened page sharing. InProc. USENIX ATC,
pages 1–14, June 2009.

[33] D. G. Murray, G. Milos, and S. Hand. Improving Xen security
through disaggregation. InProc. 4th ACM VEE, pages
151–160, Mar. 2008.

[34] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege
escalation. InProc. 12th USENIX Security Symposium, pages
231–242, Aug. 2003.

[35] J. Rutkowska and R. Wojtczuk.Qubes OS Architecture.
Version 0.3. Jan. 2010.http://qubes-os.org/.

[36] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez,
S. Berger, J. L. Griffin, and L. van Doorn. Building a
MAC-based security architecture for the Xen open-source
hypervisor. InProc. 21st ACSAC, pages 276–285, Dec. 2005.

[37] D. Scott, R. Sharp, T. Gazagnaire, and A. Madhavapeddy.
Using functional frogramming within an industrial product
group: perspectives and perceptions. InProc. 15th ICFP,
pages 87–92, Sept. 2010.

[38] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a tiny
hypervisor to provide lifetime kernel code integrity for
commodity OSes. InProc. 21st ACM SOSP, pages 335–350,
Oct. 2007.

[39] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast
capability system. InProc. 17th ACM SOSP, pages 170–185,
Dec. 1999.

[40] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai, Y. Oyama,
E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato.
BitVisor: a thin hypervisor for enforcing I/O device security.
In Proc. 5th ACM VEE, pages 121–130, Mar. 2009.

[41] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen,
and J. Lepreau. The Flask security architecture: System
support for diverse security policies. InProc. 8th USENIX
Security Symposium, pages 123–139, Aug. 1999.

[42] U. Steinberg and B. Kauer. NOVA: a microhypervisor-based
secure virtualization architecture. InProc. 5th EuroSys, pages
209–222, Apr. 2010.

[43] A. S. Tanenbaum, J. N. Herder, and H. Bos. Can we make
operating systems reliable and secure?IEEE Computer,
39(5):44–51, May 2006.

[44] S. Thibault and T. Deegan. Improving performance by
embedding HPC applications in lightweight Xen domains. In
Proc. 2nd HPCVIRT, Mar. 2008.

[45] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing
the energy efficiency of a database server. InProc. ACM
SIGMOD, pages 231–242, June 2010.

[46] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel
rootkits with lightweight hook protection. InProc. 16th ACM
CCS, pages 545–554, Nov. 2009.

[47] J. Wilkes, J. Mogul, and J. Suermondt. Utilification. InProc.
11th ACM SIGOPS EW, Sept. 2004.

