Breaking Up is Hard to Do: Security and Functionality in a
Commodity Hypervisor

Patrick Colp', Mihir Nanavatif, Jun Zhu*, William Aiellof,
George Coker*, Tim Deegan?, Peter Loscocco*, and Andrew Warfield!

TDepartment of Computer Science, University of British Columbia
ICitrix Systems R&D, *National Security Agency

ABSTRACT

Cloud computing uses virtualization to lease small slidelaige-
scale datacenter facilities to individual paying cust@neilhese

multi-tenantenvironments, on which numerous large and popular

web-based applications run today, are founded on the libhethe

virtualization platform is sufficiently secure to prevemeaches of
isolation between different users who are co-located orsttme

host. Hypervisors are believed to be trustworthy in this fidcause
of their small size and narrow interfaces.

We observe that despite the modest footprint of the hyperiis
self, these platforms have a large aggregate trusted camgphease
(TCB) that includes a monolithic control VM with numerousen
faces exposed to VMs. We preseétdar, a modified version of Xen
that retrofits the modularity and isolation principles ugedicro-
kernels onto a mature virtualization platform. Xoar bretidescon-
trol VM into single-purpose components callsdrvice VMs We
show that this componentized abstraction brings a numbbeeof
efits: sharing of service components by guests is configeiraidl
auditable, making exposure to risk explicit, and acceskedyper-
visor is restricted to the least privilege required for eaamponent.
Microrebooting components at configurable frequenciesaeslthe
temporal attack surface of individual components. Our apgh in-
curs little performance overhead, and does not requiretifumadity
to be sacrificed or components to be rewritten from scratch.

1. INTRODUCTION

Datacenter computing has shifted the criteria for evahgasiystems
design from one that prioritizes peak capacity and offecad] to

— Individual “Service” APIs

Control VM - —- Trap/Hypercall API
aka Domaino | | Administrative Network
7,
. JjAdministrative Tools > User A's VM
Live Migration ?
+
1
1}
Device Drivers User B's VM !
i
Device Emulation % , !
) 1)
1 : L
¥ Yy

Hypervisor
Monolithic Trust Domain

Figure 1: The control VM is often a full operating system in-
stall, has privilege similar to the hypervisor, and offers nultiple
services over numerous interfaces to guest VMs.

ronments rely on functionality such as live VM migration J¥8r
planned hardware replacements as well as unexpectedefil8r
15]. Hardware diversity is also inevitable in a large hagfiacility;

the use of hardware emulation and unified virtual devicesnmea
that a single VM image can be hosted on hardware througheut th
facility without the need for device driver upgrades withirstomer
VMs. Administrative benefits aside, the largest reasonHerduc-

one that emphasizes the efficiency with which computing is de ¢ess of virtualization may be that it requires little or n@obe to

livered [2, 5, 47, 45]. This is particularly true for cloud dtimg
providers, who are motivated to reduce costs and therefomeut-
tiplex and over-subscribe their resources as much as pessitile
still meeting customer service level objectives (SLOs).

While the efficiency of virtualization platforms remains anpary

factor in their commercial success, their administrateatdres and
benefits have been equally important. For example, hardfaédre
ures are a fact of life for large hosting environments; suabi-e

Permission to make digital or hard copies of all or part o$ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SOSP '110ctober 23-26, 2011, Cascais, Portugal.

Copyright(©2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

existing applications. These three factors (resourcezation, ad-
ministrative features, and the support of existing sofeydave al-
lowed the emergence of large-scale hosting platforms, asithose
offered by Amazon and Rackspace, that customers can trgstto
curely isolate their hosted virtual machines from thosetbéoten-
ants despite physical co-location on the same physicalVeaed

Are hypervisors worthy of this degree of trust? Proponeffitgre
tualization claim that the small trusted computing baseRYénd
narrow interfaces afforded by a hypervisor provide strawdation
between the software components that share a host. InfactGB
of a mature virtualization platform isrger than that of a conven-
tional server operating system. Even Type-1 hypervisarsh s
Xen [4] and Hyper-V [22], rely on a privileged OS to providedad
tional shared services, such as drivers for physical dsyidevice
emulation, and administrative tools. While the externtdiifaces to
these services broaden the attack surface exposed to @rstdns,
the internal interfacebetweencomponents within that OS are not
as narrow or as carefully protected as those between comtsook

the hypervisor itself. This large control VM is the “elephamthe
room”, often ignored in discussing the security of theseesys.

While TCB size may not be a direct representation of riskstiered
control VM is a real liability for these systems. In Xen, for instance,
this control VM houses a smorgasbord of functionality: devem-
ulation and multiplexing, system boot, administrativelstack, etc.
Each of these services is presented to multiple customer Mis
different, service-specific interfaces (see Figure 1). esé ser-
vices are all part of a single monolithic TCB, a compromiseuny

of them places the entire platform in danger.

The history of OS development shows us how to address the prob

lem of a large TCB: break it into smaller pieces, isolate ¢hoigces
from each other, and reduce each one to the least privileggstent
with its task [43]. However, the history of OS deployment dem
strates that “secure by design” OSes often generate laogema-
nities of readers than developers or users. In this veimfsoratch
hypervisors [38, 40, 42] have shown that particular segprioper-
ties can be achieved by rearchitecting the platform, but tleenot
provide the rich set of features necessary for deploymegbin-
mercial hosting environments.

The work described in this paper avoids this compromise: ave a
dress the monolithic TCB presented by the control Mithoutre-
ducing functionality. Instead, we hold the features of auretde-
ployed hypervisor as a baseline and harden the underlying. TC
Our approach is to incorporate stronger isolation for thistiag
components in the TCB, increasing our ability to control egmson
about exposure to risk. While full functionality is necessdt is
not sufficient for commercial deployment. Our approach audg

a small amount of performance overhead compared to ouimgfart
point full-featured virtualization platform.

1.1 Contributions

The primary contribution of this paper is to perform a comgn
based disaggregation of a mature, broadly deployed viratan
platform in a manner that is practical to incorporate andradén.
Our work takes advantage of a number of well-establishecharec
nisms that have been used to build secure and reliable systam
componentization of microkernels, freshening of comporstate
using microreboots [10], and the use of recovery boxes [3]lto
low a small set of explicitly designated state to surviveob. The
insight in this work is that these techniques can be apptiehtex-
isting system along the boundaries that already exist letvpeo-
cesses and interfaces in the control VM.

We describe the challenges of decomposing Xen'’s control ki i
a set of nine classes service VMswhile maintaining functional,
performance, and administrative parity. The resultingesys which

we have namedoar, demonstrates a number of interesting new

capabilities that are not possible without disaggregation

e Disposable Bootstrap. Booting the physical computer in-

show that this log can be treated as a temporal database, en-
abling providers to issue forensic queries, such as ashing f
list of VMs that depended on a known-vulnerable component.

Hardening of Critical Components. While a core goal of

our work has been to minimize the changes to source in order
to make these techniques adoptable and maintainable, some
critical components are worthy of additional attention. We
identify XenStore Xen'’s service for managing configuration
state and inter-VM communication, as a sensitive and long-
running component that is central to the security of the sys-
tem. We show how isolation and microreboots allow Xen-
Store to be rearchitected in a manner whereby an attacker
must be capable of performing a stepping-stone attack sicros
two isolated components in order to compromise the service.

We believe that Xoar represents a real improvement to therisgc
of these important systems, in a manner that is practicat¢ori
porate today. After briefly describing our architecture,present a
detailed design and implementation. We end by discussiageh
curity of the system and evaluate the associated perforencosts.

2. TCBS, TRUST, AND THREATS

This section describes the TCB of an enterprise virtuatingplat-
form and articulates our threat model. It concludes witheessifi-
cation of relevant existing published vulnerabilities asradication
of threats that have been reported in these environments.

TCBs: Trust and Exposure. The TCB is classically defined as
“the totality of protection mechanisms within a computesteyn —
including hardware, firmware, and software — the combimatid
which is responsible for enforcing a security policy” [1iline with
existing work on TCB reduction, we define the TCB of a subsyste
S as “the set of components théittrusts not to violate the security
of S”[21, 33].

Enterprise virtualization platforms, such as Xen, VMwa&Xand
Hyper-V, are responsible for the isolation, schedulingl ememory
management of guest VMs. Since the hypervisor runs at the hig
est privilege level, it forms, along with the hardware, pafrthe
system’s TCB.

Architecturally, these platforms rely on additional compats. De-
vice drivers and device emulation components manage ant mul
plex access to 1/0 hardware. Management toolstacks aréredqu
to actuate VMs running on the system. Further componentsdao
virtual consoles, configuration state management, intdrédm-
munication, and so on. Commodity virtualization platforresch
as the ones mentioned above, provide all of these compoireats
monolithic domain of trust, either directly within the hypisor or
within a single privileged virtual machine running on it.gbre 1
illustrates an example of this organization as implemeimteten.

A compromise of any component in the TCB affords the attacker

volves a great deal of complex, privileged code. Xoar iso-tWO benefits. Firs.t, they ga!n the privileges of that compnsuch
lates this functionality in special purpose service VMs and@S access to arbitrary regions of memory or control of harewa
destroys these VMs before the system begins to serve usersecond, they can access its interfaces to other elemerite 31GB

Other Xoar components are microrebooted to known-good’VhiCh allows them t_o attempt to inject malicious requestsesr
snapshots, allowing developers to reason about a spedific so SPONSes over those interfaces.

ware state that is ready to handle a service request. Example Attack Vectors. We analyzed the CERT vulnerability
database and VMware’s list of security advisories, idgintd a to-
tal of 44 reported vulnerabilities in Type-1 hypervisbrsOf the

reported Xen vulnerabilities, 23 originated from withinegt VMs,

Auditable Configurations. As the dependencies between
customer VMs and service VMs are explicit, Xoar is able to
record a secure audit log of all configurations that the syste
has been placed in as configuration changes are made. Wé here were a very large number of reports relating to Typg-2 h

11 of which were buffer overflows allowing arbitrary code exe
tion with elevated privileges, while the other eight weraidéof-
service attacks. Classifying by attack vector showed 1ldenabili-
ties in the device emulation layer, with another two in theudlized
device layer. The remainder included five in management cemp
nents and only two hypervisor exploits. 21 of the 23 attackBred
above are against service components in the control VM.

exposes virtualized devices to frontend drivers in the gi/@ds.
Frontend and backend drivers communicate over a shared memo
ring, with the backend multiplexing requests from sevamahfends
onto the underlying hardware. Xen is only involved in eniogc
access control for the shared memory and passing synchtimmz
signals. ACLs are stored in the form gfant tables with permis-
sions set by the owner of the memory.

Threat Model. We assume a well-managed and professionally ad-Alternatively, Xen uses direct device assignment to alldvs\bther

ministered virtualization platform that restricts accasboth phys-
ical resources and privileged administrative interfacHsat is, we
are not concerned with the violation of guest VM security loy
administrator of the virtualization service. There areibhess im-
peratives that provide incentives for good behavior on tae pf
hosting administrators.

a

There is no alignment of incentives, however, for the gueéta
hosting service to trust each other, and this forms the ludsisir
threat model. In a multi-tenancy environment, since guestg be
less than well administered and exposed to the Internes, pra-
dent to assume that they may be malicious. Thus, the attacker
our model is a guest VM aiming to violate the security of aeoth
guest with whom itis sharing the underlying platform. Tinsludes
violating the data integrity or confidentiality of the tatgpiest or
exploiting the code of the guest.

While we assume that the hypervisor of the virtualizaticatfioirm

is trusted, we also assume that the code instantiating titifun-
ality of the control VMwill contain bugs that are a potential source
of compromise. Note that in the case of a privileged monialith
control VM, a successful attack on any one of its many interfa
can lead to innumerable exploits against guest VMs. Ratraer t
exploring techniques that might allow for the constructida bug-
free platform, our more pragmatic goal is to provide an dechire
that isolates functional components in space and time s@thex-
ploit of one component is not sufficient to mount a successfalck
against another guest or the underlying platform.

3. ARCHITECTURE OVERVIEW

Before explaining the design goals behind Xoar, it is wortbvjdl-
ing a very high-level overview of the components, in ordehédp
clarify the complexities of the control plane in a modern ényd-
sor and to establish some of the Xen-specific terminology iha
used throughout the remainder of the paper. While our imptem
tation is based on Xen, other commercial Type-1 hypervjsarsh
as those offered by VMware and Microsoft, have sufficienithgis
lar structures that we believe the approach presentedsmpéger is
applicable to them as well.

3.1 The Xen Platform

The Xen hypervisor relies on its control VM, DomO, to provide
virtualized 1/0 path and host a system-wide registry and agen
ment toolstack.

Device Drivers. Xen delegates the control of PCl-based periph-
erals, such as network and disk controllers, to Dom0, wisatei
sponsible for exposing a set of abstract devices to guest Tkisse
devices may either be virtualized, passed through, or detila

Virtualized devices are exposed to other VMs using a “splite”
model [17]. A backend driver, having direct control of thedaare,

pervisors, most of which assume the attacker has access st

OS and compromises known OS vulnerabilities — for instanse,
ing Windows exploits to compromise VMware Workstation. $ae
attacks are not representative of our threat model and ahedsd.

than DomO to directly interface with passed-through harevee-
vices. DomO provides a virtual PCI bus, using a split driteeproxy
PCI configuration and interrupt assignment requests frangtlest
VM to the PCI bus controller. Device-specific operations lzae-
dled directly by the guest. Direct assignment can be usedoi@m
physical device drivers out of DomO, in particular for PCidwsare
that supports hardware-based 10 virtualization (SR-IQ8)

Unmodified commodity OSes, on the other hand, expect to run on
a standard platform. This is provided by a device emulataye!,
which, in Xen, is a per-guest Qemu [6] instance, runningesids a
Dom0O process or in its own VM [44]. It has privileges to map any
page of the guest’s memory in order to emulate DMA operations

XenStore. XenStore is a hierarchical key-value store that acts as a
system-wide registry and naming service. It also providegaach”
mechanism which notifies registered listeners of any madifios

to particular keys in the store. Device drivers and the taclsmake

use of this for inter-VM synchronization and device setup.

XenStore runs as a DomO process and communicates with other
VMs via shared memory rings. Since it is required in the ¢osat
and boot-up of a VM, it relies on DomO privileges to accessestha
memory directly, rather than using grant tables.

Despite the simplicity of its interface with VMs, the comyplshared
nature of XenStore makes it vulnerable to DoS attacks if a V&4 m
nopolizes its resources [14]. Because it is the centralsiegy for
configuration state in the system and virtually all compdsémthe
system depend on it, it is a critical component from a segnetr-
spective. Exploiting XenStore allows an attacker to denyise
to the system as a whole and to perform most administratiee-op
ations, including starting and stopping VMs, and possilliysing
interfaces to gain access to guest memory or other guest VMs.

Other systems (including previous versions of Xen) havel use
completely message-oriented approach, either as a mpuiht
implementation or as a message bus. Having implemented all o
these at various points in the past (and some of them more than
once), our experience is that they are largely isomorphik weigard

to complexity and decomposability.

Toolstack. The toolstack provides administrative functions for the
management of VMs. It is responsible for creating, destgyand
managing the associated resources and privileges of VMs=atiGg

a VM requires DomO privileges to map guest memory, in order to
load a kernel or virtual BIOS and to set up initial commuriimat
channels with XenStore and the virtual console. In addjtibwe
toolstack registers newly created guests with XenStore.

System Boot.In a traditional Xen system, the boot process is sim-
ple: the hypervisor creates DomO during boot-up, which @eds to
initialize hardware and bring up devices and their assedidgck-
end drivers. XenStore is started before any guest VM is edeat

Xoar: Architecture — Active Runtime
‘Self-Destructing VMs | | Restartable VMs .. Long-lived VM : Dependencies
«Componentsof TCB | | Components where freshness is imposed ¥ XenStore-State: 1

.that are destroyed ' | using periodic restarts. T | enotore-State: !

. after initialization. B | 'n-memory contents}

' | of XenStore. i

: | e REmame i

E PCIBack: | | Toolstack: XenStore-Logic: BlkBack: 1 GulestVM'

| Virtualizes access 1 1 | Handles Processes requests Physical storage 1 Q HVMWind.ows
'/ to PCl Bus config. | |/ management for inter-VM comms driver exportedto | }| 3 ||

| ' | lrequests. and config state. |—— guest VMs. 1 =

.| Bootstrapper: % Builder: NetBack: E Guest VM:

i | Coordinate booting | ! ! Instantiate other Physical network || @ || vMm Linux U
: | of the rest of the ' | Restarted on VMs. Restarted on | driver exportedto || 3

gesem ' | each request atimer guest VMs. : £

[Xen]

Figure 2: Architecture of Xoar. The figure above shows all theclasses of service VMs along with the dependencies betwedrem.
For clarity, ephemeral dependencies (e.g., between the Bdier and the VMs that it builds) are not shown. As suggested ithe figure,
a Qemu service VM is instantiated for the lifetime of each gust.

3.2 Xoar

Figure 2 shows the architecture of Xoar, and will be refered
throughout the remainder of this paper. In Xoar, the fumatiiy

of Xen’s control VM has been disaggregated into nine clasges
service VMs, each of which contains a single-purpose piécem
trol logic that has been removed from the original monatitantrol
VM. As is the case with the monolithic TCB, some componentg ma
have multiple instances, each serving different client VMs

Once the platform is initialized, higher-level control ilges like

the Toolstacksare created. The Toolstacks request the Builder to
create guest VMs. As a control interface to the system, tacks

are generally accessed over a private enterprise netwswlgted
from customer VM traffic.

As in Xen, a VM is described using a configuration file that is-pr
vided to the toolstack. This configuration provides runtipaeam-
eters such as memory and CPU allocations, and also devifig-con
urations to be provided to the VM. When a new VM is to be cre-
ated, the toolstack parses this configuration file and wiitessso-
ciated information into XenStore. Other components, ssaffrizer
VMs, have watches registered which are triggered by thel lpui-
cess, and configure connectivity between themselves andethie
VM in response. While Xoar decomposes these components into
isolated virtual machines, it leaves the interfaces betvtbem un-

. o changed; XenStore continues to be used to coordinate VN seitll
From left to right, we begin with two start-of-day comporethtat a4y down. The major difference is that privileges, botheimts of
are closely tied to booting the hypervisor itséootstrapperand access to configuration state within XenStore and accesimna

PCIBack These components bring up the physical platform andisirative operations in the hypervisor, are restrictedhi gpecific
interrogate and configure hardware. In most cases thisifunatity service VMs that need them.

is only required when booting the system and so these comp®ne
are destroyed before any customer VMs are started. Thissefalu
property in that platform drivers and PCI discovery repnésdarge 4. DESIGN

volume of complex code that can be removed prior to the systenin developing Xoar, we set out to maintain functional pauwitigh
entering a state where it may be exposed to attacks. the original system and complete transparency with exjtian-
agement and VM interfaces, including legacy support, witho-
curring noticeable overhead. This section discusses theoaph
that Xoar takes, and the properties that were considereglénting
the granularity and boundaries of isolation.

That these individual components may be instantiated muae t
once is important, as it allows them to be used as flexibledingl
blocks in the deployment of a Xoar-based system. Figure @isho
a single instance of each component other than the QemuVidr La
in the paper we will describe how multiple instances of thes®a-
ponents, with differing resource and privilege assignmeran par-
tition and otherwise harden the system as a whole.

While PCIBack is logically a start-of-day component, it tually
created afteiXenStoreand Builder. XenStore is required to virtu-
alize the PCI bus and the Builder is the only component capaibl
creating new VMs on the running system. PCIBack uses these co
ponents to create device driver VMs during PCI device enatitar
by usingudev [27] rules.

Our design is motivated by these three goals:

Three components are responsible for presenting platfanchware
that is not directly virtualized by XerBlkBackandNetBackexpose
virtualized disk and network interfaces and control thec#jePCI
devices that have been assigned to them. For every guest WM ru
ning an unmodified OS, there is an associd@ednuVMesponsible
for device emulation.

1. Reduce privilege Each component of the system should only
have the privileges essential to its purpose; interfacpesed
by a component, both to dependent VMs and to the rest of the
system, should be the minimal set necessary. This confines
any successful attack to the limited capabilities and faters
of the exploited component.

assign_pci_devicéPCIl_domainbus slof) resource=
permit_hypercall (hypercall_ig

allow_delegation(guest_id

[provider, parameters
constraint_group=tag]

Figure 4: Constraint Tagging API
Figure 3: Privilege Assignment API

SELECT el, e2 FROM | og el, |og e2 WHERE
el. nanme = e2. name AND
el.action = 'create’ AND

2. Reduce sharing Sharing of components should be avoided
wherever it is reasonable; whenever a component is shared be
tween multiple dependent VMs, this sharing should be made
explicit. This enables reasoning and policy enforcement re
garding the exposure to risk introduced by depending on a
shared component. It alsp alloyvs administrators to segurel SELECT el. name FROM | og el WHERE
log and audit system _conflguratlons and to understand expo- e1. dependency = ' Net Back’ AND
sure after a compromise has been detected. el. dependency_version = vul nerabl e_versi on;

e2.action = 'destroy’ AND

el. dependency = ' NaneOf Conpr om sedNet Back’ AND

overl aps(period_intersect(el.time, e2.tine),
conprom se_peri od);

3. Reduce stalenessA component should only run for as long
as it needs to perform its task; it should be restored to a know
good state as frequently as practicable. This confines any su Figure 5: Temporal queries which search for guest VMs that
cessful attack to the limited execution time of the exphbite depended on a service VM that was compromised (top) or vul-

component and reduces the execution state space that must Rgrable (bottom).

tested and evaluated for correctness.

To achieve these goals, we introduce an augmented versithe of
virtual machine abstraction: treervice VM Service VMs are the
units of isolation which host the service components of tharol
VM. They differ from conventional virtual machines in thatlp
service VMs can receive any extra privilege from the hymawor
provide services to other VMs. They are also the only comptmne
which can be shared in the system, aside from the hypentisalf.i

Service VMs are entire virtual machines, capable of hostirg
OSes and application stacks. Individual components of ¢inéral
VM, which are generally either driver or application codande
moved in their entirety out of the monolithic TCB and into avsee
VM. The hypervisor naturally assigns privilege at the gtarity of
the tasks these components perform. As such, there ishitlefit,
and considerable complexity, involved in finer-graineditianing.

Components receiving heightened privilege and providingred
services are targets identified by the threat model disdussgec-
tion 2. By explicitly binding their capabilities to a VM, Xods able
to directly harden the riskiest portions of the system aravige
service-specific enhancements for security. The remaiofithis
section discusses the design of Xoar with regard to eachesieth
three goals.

4.1 Privilege: Fracture the Monolithic TCB

A service VM is designated as such usingea vi cevMblock in a

VM config file. This block indicates that the VM should be tezht
as an isolated component and contains parameters thaiteeisr
capabilities. Figure 3 shows the API for the assignment eflinee
privilege-related properties that can be configured: dinacdware
assignment, privileged hypercalls, and the ability to gate privi-

leges to other VMs on creation.

Direct hardware assignment is already supported by manyhy86
pervisors, including Xen. Given a PCl domain, bus, and slobn
ber, the hypervisor validates that the device is availablbe as-
signed and is not already committed to another VM, then althe

VM to control the device directly.

Hypercall permissions allow a service VM access to some ef th

privileged functionality provided by the hypervisor. Thepécit
white-listing of hypercalls beyond the default set avd#ato guest

VMs allows for least-privilege configuration of individuakrvice
VMs. These permissions are translated directly into a FJatk
policy, which is installed into the hypervisor.

Access to resources is restricted by delegating service {\gly
those Toolstacks allowed to utilize those resources tocatpewly
created VMs. Attempts to use undelegated service VMs arkbtb
by the hypervisor, enabling coarse-grained partitioniftgsources.
In the private cloud example presented at the end of thisosect
each user is assigned a private Toolstack, with delegatetitse
VMs, and has exclusive access to the underlying hardware.

4.2 Sharing: Manage Exposure

Isolating the collection of shared services in service Vidsfmes
and restricts attacks and allows an explicit descriptiothefrela-
tionships between components in the system. This providésaa
statement of configuration constraints to avoid exposureskoand
enables mechanisms to reason about the severity and cemsegu
of compromises after they occur.

Configuration Constraints. A guest can provide constraints on the
service VMs that it is willing to use. At present, a single saint is
allowed, as shown in Figure 4. Tle®nst r ai nt _gr oup param-
eter provides an optional user-specified tag and may be dppen
any line specifying a shared service in the VM’s configuratidoar
ensures that no two VMs specifying different constrainugoever
share the same service VM.

Effectively, this constraint is a user-specified colorihgttprevents
sharing. By specifying a tag on all of the devices of theirteds
VMs, users can insist that they be placed in configurationsrevh
they only share service VMs with guest VMs that they control.

Secure Audit. Xoar borrows techniques from past forensics sys-
tems such as Taser [18]. The coarse-grained isolation gpittiex
dependencies provided by service VMs makes these audifing a
proaches easier to apply. Whenever the platform performseatg
related configuration change (e.g., the creation, delepansing,
or unpausing of a VM), Xoar logs the resulting dependen@eant
off-host, append-only database over a secure channeleftlyrrwe
use the temporal extension for Postgres.

Two simple examples show the benefit of this approach. Rhet,

Calls from within the service VM:
vm_snapshot()
recoverybox_balloc(sizg

VM configuration for restart policy:
restart_policy ([(timer| event) parameter}

Figure 6: Microreboot API

rollback (triggered by restart policy)

Newly [i»Snapshot Copy-on-
Created VM |bootand “Tlmage request write
initialization } processing
i | |recovery box recovery box
I S
: requests and
: responses :
: rollback :
vm_snapshot() i YTV Ty activated:

Figure 7: Rolling back to a known-good snapshot allows effi-
cient microreboots of components.

top query in Figure 5 determines which customers could extt
by the compromise of a service VM by enumerating VMs thaeckli
on that particular service VM at any point during the compisen
Second, providers frequently roll out new versions of OSh&kr
and in the event that a vulnerability is discovered in a djpe@lease
of a service VM after the fact, the audit log can be used totiflen
all guest VMs that were serviced by it.

4.3 Staleness: Protect VMs in Time

The final feature of service VMs is a facility to defend teenporal
attack surface, preserving the freshness of executioa gtedugh
the use of periodic restarts. This approach takes advanfalge ob-
servation from work on microreboots and “crash-only sofeat§10]
that it is generally easier to reason about a program’s ctiress at
the start of execution rather than over long periods of time.

tual CPU state need be restored, resulting in very fastrtastees
— in our implementation, between 4 and 25 ms, depending on the
workload.

Restart Policy. While it is obvious when to take the snapshot of
a component, it is less clear when that component shouldllgelro
back. Intuitively, it should be as frequently as possiblewdver,
even though rollbacks are quick, the more frequently a corapbis
restarted, the less time it has available to offer a usefule® Xoar
specifies rollback policy in the service VM's configuratiole fand
we currently offer two policies: notification-based andeirbased.
Restart policy is associated with the VM when it is instaetiband

is tracked and enforced by the hypervisor.

In our notification-based policy, the hypervisor interposa mes-
sage notificationgeaving the service VM as an indication that a
request transaction has completed, triggering a restaot. Idw-
frequency, synchronous communication channels (e.gsetlioat
access XenStore), this method isolates individual traisecand
resets the service to a fresh state at the end of every pextess
quest. In other words, every single request is processedfiesih
version of the service VM.

The overhead of imposing a restart on every request wouldde t
high for higher-throughput, concurrent channels, such eBakck
and BlkBack. For these service VMs, the hypervisor provaes-
riodic restart timer that triggers restarts at a configuditdquency.

Maintaining State. Frequent restarts suffer from the exact symp-
tom that they seek to avoid: the establishment of long-latatk. In
rolling back a service VM, any state that it introduces id.Idhis
makes it particularly hard to build services that depend eeping
in-memory state, such as configuration registries, andcgrthat
need to track open connections.

We address this issue by providing service VMs with the Bbib
allocate a “recovery box” [3]. Originally proposed as a tacjue
for high availability, this is a block of memory that persistcross
restarts. Service VM code is modified to store any long-listte
in one of these allocations and to check and restore fronmitéi-
ately after a snapshot call. Memory allocated using thisripie is

Microreboots. Virtual machines naturally support a notion of re- exempted from copy-on-write.
booting that can be used to reset them to a known-good stete. F \jaintaining state across restarts presents an obviouskatétor

ther, many of the existing interfaces to control VM-baseises
already contain logic to reestablish connections, usedwatigrat-
ing a running VM from one physical host to another. There ane t
major challenges associated with microreboots. First,siygtem
restarts are slow and significantly reduce performancescéaipy of

components on a data path such as device drivers. Secondl not

state associated with a service can be discarded sincel st
effects that have occurred during that execution will alsddst.

Snapshot and Rollback. Instead of fully restarting a component

it is snapshotted just after it has booted and been inigdlibut

before it has communicated with any other service or guest VM

The service VM is modified to explicitly snapshot itself a¢ time
that it is ready to service requests (typically at the sthetroevent
loop) using the API shown in Figure 6. Figure 7 illustrates shap-
shot/rollback cycle. By snapshotting before any requestserved
over offered interfaces, we ensure that the image is frestondple-

— a malicious user can attempt to corrupt the state that iadeld
after every rollback to repeatedly trigger the exploit aochpromise
the system. To address this, the service treats the recbesras
an untrusted input and audits its contents after the rdtlbaten
also tracks the memory pages in the allocation and forcitdyks
all virtual addresses associated with them as non-exdeutab

Driver VMs, like NetBack and BlkBack, automatically rent¢igte
both device state and frontend connections in cases ofréailar

' restarts, allowing them to discard all state at every restarthese

performance-critical components, however, any downtifgaifs-
cantly affects the throughput of guests. This downtime cameh
duced by caching a very small amount of device and frontemie st
in arecovery box. The desired balance between security exrfidrp
mance can be chosen, as discussed in Section 7.2.

Components like XenStore, on the other hand, maintain alarg

mentary extension would be to measure and attest snapakettb amount of long-lived state for other components in the systin

images, possibly even preparing them as part of a distabutihd
avoiding the boot process entirely.

We enable lightweight snapshots by using a hypervisoreébespy-

2This mechanism leaves open the possibility that an explaite-
vice VM might not send the event that triggers the rollbaclo T
cover this attack vector, the hypervisor maintains a waighémer

on-write mechanism to trap and preserve any pages that até ab for each notification-based service VM. If a timer goes dfg ¥M
to be modified. When rolling back, only these pages and the viris rolled back; if the restart is triggered normally, the¢inis reset.

User A's VM User B's VM
(HVM) (PV)
Qemu I
[[
BlkBack NetBack BlkBack NetBack
(sda) (eth 0) (sdb) (eth 1)
; I It [E
v v v §
User A’s User B’s
Toolstack Toolstack
i XenStore- || XenStore-
Builder — Logic |[| State
XenStore
Xen
— Interfaces e Delegated-to

Figure 8: Partitioned configuration: In the configuration above,
users A and B use isolated hardware and toolstacks and share
interfaces only with XenStore and Xen itself.

such cases, this state can be removed from the service VM alt

gether and placed in a separate “state” VM that is accedsitiagh
a special-purpose interface. In Xoar, only XenStore, beead its
central role in the correctness and security of the systemgefac-
tored in this way (see Section 5.2). Only the processing agit |
remain in the original service VM, making it amenable tolvattks.

Per-request rollbacks force the attacker to inject exmloite into
the state and have it triggered by another VM's interactiath w
XenStore. However, in the absence of further exploits, sgcen-
trol and guest ID authentication prevent the injection atsexploit
code into sections of the state not owned by the attackingtdsee
Section 5.2). Thus, an attack originating from a guest VN\btigh
XenStore requires an exploit of more than one service VM.

4.4 Deployment Scenarios

Public clouds, like Amazon Web Services, tightly pack mars/
on a single physical machine, controlled by a single toolst&®ar-
titioning the platform into service VMs, which can be judiasly
restarted, limits the risks of sharing resources amongnpiatly
vulnerable and exposed VMs. Furthermore, dynamicallyarésg
service VMs allows for in-place upgrades, reducing the winaf
exposure in the face of a newly discovered vulnerabilitpaly, in
the case of compromise, secure audit facilities allow adtiators
to reason, after the fact, about exposures that may have pdé&ee.

Our design supports greater degrees of resource pantigichian
this. Figure 8 shows a more conservative configuration, irchvh
each user is assigned separate, dedicated hardware essuuitttin
the physical host and a personal collection of service VM%iam-

5.1 Xoar Components

The division of service VMs in Xoar conforms to the designligoa
of Section 4; we reduce components into minimal, looselyptz
units of functionality, while obeying the principle of ldgwivilege.
As self-contained units, they have a low degree of sharingrater-
VM communication (IVC), and can be restarted independetky
isting software and interfaces are reused to aid developiuath
ease future maintenance. Table 1 augments Figure 2 by liescri
the classes of service VMs in our decomposition of Dom0. @/il
is not the only possible decomposition, it satisfies ourgiegoals
without requiring an extensive re-engineering of Xen.

Virtualized devices mimic physical resources in an attetopof-
fer a familiar abstraction to guest VMs, making them ideaViee
VMs. Despite the lack of toolstack support, Xen has architet
support for driver VMs, reducing the development effortnsiig
cantly. PCIBack virtualizes the physical PCI bus, while Btk
and BlkBack are driver VMs, exposing the required device&kbads
for guest VMs. Further division, like separating deviceupefrom
the data path, yields no isolation benefits, since both coemis
need to be shared simultaneously. This would also add afisigni
cant amount of IVC, conflicting with our design goals, and lgou
require extensive modifications. Similarly, the serial tcolter is
epresented by a service VM that virtualizes the consolefoer

Ms. Further details about virtualizing these hardwareicky are
discussed in Section 5.3 and Section 5.4.

Different aspects of the VM creation process require diffgsets of
privileges; placing them in the same service VM violatesgnal of
reducing privilege. These operations can largely be di/id&o two
groups — those that need access to the guest’s memory to et up
kernel, etc., and those that require access to XenStoreit® en-
tries necessary for the guest. Breaking this functionalisrt along
the lines of least privilege yields the Builder, a privilelggervice
VM responsible for the hypervisor and guest memory opematio
and the Toolstack, a service VM containing the managemeat to
stack. While the Builder could be further divided into compaots
for sub-operations, like loading the kernel image, settipthe page
tables, etc., these would all need to run at the same privilegel
and would incur high synchronization costs. The Buildepoesls
to build requests issued by the Toolstack via XenStore. ®nid-
ing is complete, the Toolstack communicates with XenStoget-
form the rest of the configuration and setup process.

5.2 XenStore

Our refactoring of XenStore is the most significant impletagan
change that was applied to any of the existing componentseim X
(and took the largest amount of effort). We began by breaKiewy-
Store into two independent service VMs: XenStore-Logicjcivh
contains the transactional logic and connection manageousle,
and XenStore-State, which contains the actual contentseddtbre.
This division allows restarts to be applied to request-hiagcode
on a per-request basis, ensuring that exploits are constran du-

age them. Users manage their own service VMs and the devicgtion to a single request. XenStore-State is a simple klye\store

drivers using a private Toolstack with resource service \tdke-
gated solely to it.

5. IMPLEMENTATION

This section explains how the design described in Sectioastim-

plemented on the Xen platform. It begins with a brief disaus®f

how component boundaries were selected in fracturing theao
VM and then describes implementation details and chalkefayped
during the development of Xoar.

and is the only long-lived VM in Xoar.

Unfortunately, partitioning and per-request restartsiasefficient
to ensure the security of XenStore. As XenStore-Logic ipaas
sible for enforcing access control based on permissiorisdirstore
itself, a compromise of that VM may allow for arbitrary acses to
the contents of the store. We addressed this problem witheolo
niques. First, access control checks are moved into a snoaliton
module in XenStore-State; a compromise of XenStore-Lagimiv
limited to valid changes according to existing permissianshe

Component | P | Lifetime 0os Parent Depends On| Functionality
Bootstrapper| Y Boot Up nanOS Xen - Instantiate boot service VMs
XenStore | N | Forever (R)| miniOS | Bootstrapper| - System configuration registry
Console N Forever Linux | Bootstrapper| XenStore Expose physical console as virtual consoles to VMs
Builder Y | Forever (R)| nanOS | Bootstrapper| XenStore Instantiate non-boot VMs
XenStore s .
. . Initialize hardware and PCI bus, pass through PCI devices,
PCIBack | Y Boot Up Linux | Bootstrapper| Builder and expose virtual PCI config spF;ce 9
Console
. XenStore
NetBack N | Forever (R)| Linux PCIBack Console Expose physical network device as virtual devices to VMs
: XenStore .) . - X
BlkBack N | Forever (R)| Linux PCIBack Console Expose physical block device as virtual devices to VMs
XenStore
Toolstack | N | Forever (R)| Linux | Bootstrapper| Builder Admin toolstack to manage VMs
Console
XenStore
QemuVM | N | GuestVM | miniOS | Toolstack | NetBack Device emulation for a single guest VM
BlkBack

Table 1: Components of Xoar. The “P” column indicates if the @mponent is privileged. An “(R)” in the lifetime column indi cates
that the component can be restarted. Console is only mentiad for the sake of completeness. Since enterprise deploynistypically

disable console access, it is not part of the overall architture.

store. Second, we establish the authenticity of accessds ima
XenStore-Logic by having it declare the identity of the VMattit

5.4 Driver VMs: NetBack and BlkBack

Driver VMs, like NetBack and BlkBack, use direct device gssi

is about to serviceeforereading the actual request. This approach ment to directly access PCI peripherals like NICs and disk- co

effectively drops privilege to that of a single VM before esjng
XenStore-Logic to any potentially malicious request, arakes the
identity of the request made to XenStore-State unforgeablee
monitor refuses any request to change the current VM urgiréd
quest has been completed, and an attempt to do so resultsstastr
of XenStore-Logic.

The monitor code could potentially be further disaggregdtem
XenStore-State and also restarted on a per-request basisuent
implementation requires an attacker to compromise botlSxae-
Logic and the monitor code in XenStore-State in successithin
the context of a single request, in order to make an unawimbri
access to the store. Decoupling the monitor from XenStoageS
would add limited extra benefit, for instance possibly egsitatic
analysis of the two components, and still allow a succesgfatker
to make arbitrary changes in the event of the two successive ¢
promises; therefore we have left the system is it stands.

5.3 PCI: A Shared Bus

PCIBack controls the PCI bus and manages interrupt routinge-
ripheral devices. Although driver VMs have direct accesshm
peripherals themselves, the shared nature of the PCI coafiign
space requires a single component to multiplex all accessis
This space is used during device initialization, after whibere

trollers, and rely on existing driver support in Linux toenface
with the hardware. Each NetBack or BlkBack virtualizes ¢yac
one network or block controller, hosting the relevant dewdciver
and virtualized backend driver. The Toolstack links a drivé/
delegated to it to a guest VM by writing the appropriate feorat
and backend XenStore entries during the creation of thetgaks
ter which the guest and backend communicate directly usiagesl
memory rings, without any further participation by Xen%tor

Separating BlkBack from the Toolstack caused some probksms
the existing management tools mount disk-based VM images as
loopback devices withl kt ap, for use by the backend driver. Af-
ter splitting BIkBack from the Toolstack, the disk imagesdé¢o be
created and mounted in BlkBack. Therefore, in Xoar, BlkBanks
a lightweight daemon that proxies requests from the Tocitsta

5.5 Efficient Microreboots

As described in Section 4.3, our snapshot mechanism comes m
ory pages which are dirtied as a service VM executes andressto
the original contents of these pages during rollback, régya page
allocation and deallocation and two copy operations foryedat-

ied page. Since many of the pages being modified are the same

across several iterations, rather than deallocating thretenaopies

is no further communication with PCIBack. We remove PCIBackof these pages after rollback, we retain them across run&toiy

from the TCB entirely after boot by destroying it, reducihg num-
ber of shared components in the system.

Hardware virtualization techniques like SR-IOV [28] alldle cre-
ation of virtualized devices, where the multiplexing is foemed
in hardware, obviating the need for driver VMs. However, o
sioning new virtual devices on the fly requires a persistentise
VM to assign interrupts and multiplex accesses to the PCligion
ration space. Ironically, although appearing to reducetheunt of
sharing in the system, such techniques may increase theemwhb
shared, trusted components.

the need for allocation, deallocation, and one copy oparatinen
the same page is dirtied. However, this introduces a newigrab
if a page is dirtied just once, its copy will reside in memaoydver.
This could result in memory being wasted storing copies gfepa
which are not actively required.

To address this concern, we introduced a “decay” value tpdges
stored in the snapshot image. When a page is first dirtied afte
rollback, its decay value is incremented by two, towards gimam
value. On rollback, each page’s decay value is decremelitben
this count reaches zero, the page is released.

5.6 Deprivileging Administrative Tools

XenStore and the Console require DomO-like privileges toibdy
map shared memory, since they are required before the giést V
can set up its grant table mappings. To avoid this, Xoar'dd@ui
creates grant table entries for this shared memory in eaghVing,
allowing these tools to use grant tables and function wittaoy
special privileges.

The Builder assigns VM management privileges to each Tackst
for the VMs that it requests to be built. A Toolstack can onlgm

age these VMs, and an attempt to manage any others is blogked le:

the hypervisor. Similarly, it can only use service VMs thavé
been delegated to it. An attempt to use an undelegated séeriic

for example a NetBack, for a new guest VM will fail. Restniggi
privileges this way allows for the creation of several Ttatk in-

stances that run simultaneously. Different users, eadhavtrivate
Toolstack, are able to partition their physical resourcesrmanage
their own VMs, while still guaranteeing strong isolationtt VMs

belonging to other users.

5.7 Developing with Minimal OSes

Bootstrapper and Builder are built on top of nanOS, a smialljle-
threaded, lightweight kernel explicitly designed to hakie min-
imum functionality needed for VM creation. The small sizedan
simplicity of these components leave them well within thalme
of static analysis techniques, which could be used to vehir
correctness. XenStore, on the other hand, demands moreitSom
operating environment, and so is built on top of miniOS, &eic
OS distributed with Xen.

Determining the correct size of OS to use is hard, with a fometa
tal tension between functionality and ease of use. Keepampi$
so rigidly simple introduces a set of development challengs-
pecially in cases involving IVC. However, since these congis
have such high privilege, we felt that the improved secuwgained
from reduced complexity is a worthwhile trade-off.

5.8 Implicit Assumptions about DomO

Permission PCIBack | Builder | Toolstack | BlkBack | NetBack
Arbitrarily
access
memory
Access and
virtualize
PCI devices
Create VMs
Manage VMs
Manage
assigned

devices

Bootstrapper

X X

Table 2: Functionality available to the service VMs in Xoar.
omponents with access to no privileged hypercalls are not
shown. In Xen, DomO possesses all of these functionalities.

Shared Interfaces
XenStore-State, Console,

Builder, PCIBack,
NetBack, BlkBack, Guest

XenStore-Logic

Component

XenStore-Logic

XenStore-State

Console XenStore-Logic

Builder XenStore-Logic
PCIBack XenStore-Logic, NetBack, BlkBac
NetBack XenStore-Logic, PCIBack, Guest|
BlkBack XenStore-Logic, PCIBack, Guest|
Toolstack XenStore-Logic
Guest VM XenStore-Logic, NetBack, BlkBac

Table 3: Interfaces shared between service VMs

Second, we consider how the attack surface presented byttt
VM changes in terms of isolation, sharing, and per-compbpew
ilege in an effort to evaluate the exposure to risk in Xoar pared
to other systems. Finally, we consider how well Xoar hanties
existing published vulnerabilities first described in $&TL.

Much of this evaluation is necessarily qualitative: while Wwave
taken efforts to evaluate against published vulneragdijtivirtual-
ization on modern servers is still a sufficiently new teclogglwith
few disclosed vulnerabilities. Our sense is that theseeraluilities
may not be representative of the full range of potentiacitia

The design of Xen does not mandate that all service compsnenin evaluating Xoar’s security, we attempt to characterieoim an

live in DomO, however several components, including theehyip
sor, implicitly hard-code the assumption that they do. Aqyy of
access control checks compare the values of domain IDs tmthe
teger literal '0’, the ID for Dom0Q. Many tools assume thatytlzee
running co-located with the driver backends and varioutigat
XenStore are hard-coded to be under DomO's tree The toklstac
pects to be able to manipulate the files that contain VM diskges,
which is solved by proxying requests, as discussed in Seétib.
The hypervisor assumes Dom0 has control of the hardwareamd c
figures signal delivery and MMIO and I/O-port privileges &arcess
to the console and peripherals to DomO. In Xoar, these nebd to
mapped to the correct VMs, with Console requiring the sigjiaald
1/0-port access for the console and PCIBack requiring thel®IM
and remaining 1/0O-port privileges, along with access toRf# bus.

6. SECURITY EVALUATION

Systems security is notoriously challenging to evaluate, oar’s
proves no different. In an attempt to demonstrate the ingrmant
to the state of security for commodity hypervisors, thigisecwill

consider a number of factors. First, we will evaluate theiotidn
in the size of the trusted computing base; this is an appriveattwe
do not feel is particularly indicative of the security of astgm, but

attacker’s perspective. One notable feature of Xoar isithatder
for an adversary to violate our security claim, more thansergice
VM must have a vulnerability, and a successful exploit mesable
to perform a stepping-stone attack. We will discuss whyithisue,
and characterize the nature of attacks that are still plessib

6.1 Reduced TCB

The Bootstrapper, PCIBack, and Builder service VMs are thetm
privileged components, with the ability to arbitrarily nifydguest
memory and control and assign the underlying hardware. eThes
privileges necessarily make them part of the TCB, as a comige

of any one of these components would render the entire systeém
nerable. Both Bootstrapper and PCIBack are destroyedssfééem
initialization is complete, effectively leaving Buildes ¢he only ser-
vice VM in the TCB. As a result, the TCB is reduced from Linux's
7.6 million lines of code to Builder’'s 13,500 lines of codetib on

top of the hypervisor's 280,000 lines of cotle.

6.2 Attack Surface

Monolithic virtualization platforms like Xen execute s&w® com-
ponents in a single trust domain, with every component mnmai

has been used by a considerable amount of previous work & do3All lines of code were measured using David Wheeler's SLOC-

provide some insight into the complexity of the system as aleh

Count fromht t p: / / www. dwheel er. com sl occount/

Component Arbitrary Code Execution | DoS | File System Access Component | Memory Component | Memory
Hypervisor 0/1 0/1 0/0 XenStore-Logic| 32 MB | XenStore-Statg 32 MB
Device Emulation 8/8 3/3 3/3 Console 128 MB PCIBack 256 MB
Virtualized Drivers 1/1 1/1 0/0 NetBack 128 MB BlkBack 128 MB
XenStore 0/0 171 0/0 Builder 64 MB Toolstack 128 MB
Toolstack 1/1 2/2 1/1

Table 5: Memory requirements of individual components
Table 4: Vulnerabilities mitigated in Xoar. The numbers repre-

sent total mitigated over total identified.
visor, the two hypervisor vulnerabilities remain equatkpeitable.

One of the vulnerabilities in the virtualized drivers is bt the
block device interface and causes an infinite loop whichltesu
a denial of service. Periodically restarting BlkBack fardae at-
tacker to continuously recompromise the system. Sinceestgu
Disaggregating service components into their own VMs ndy on from different guests are serviced on every restart, thiedevould

provides strong isolation boundaries, it also allows pyes to be continue functioning with low bandwidth, until a patch cotle ap-
assigned on a per-component basis, reducing the effect proem plied to prevent further compromises.
mised service VM has on the entire system. Table 2 shows e pr

ileges granted to each service VM, which corresponds tortiwiat 7 PERFORMANCE EVALUATION

of access that an attacker would have on successfully éxmdi. ’]
The performance of Xoar is evaluated against a stock Xen Dom0

in terms of memory overhead, 1/0 throughput, and overaltesys
performance. Each service VM in Xoar runs with a single wttu
CPU; in stock Xen DomO runs with 2 virtual CPUs, the configura-

the highest privilege level. As a result, the security oféhére sys-
tem is defined by that of the weakest component, and a compeomi
of any component gives an attacker full control of the system

Attacks originating from guest VMs can exploit vulneratigs in
the interfaces to NetBack, BlkBack, or XenStore (see Tahlé\8
attacker breaking into a driver VM gains access only to trgreke

that other VMs trust that device. Exploiting NetBack mighoa tion used in the commercial XenServer [12] platform. Al figs

for intercepting another VM's network traffic, but not acees ar- e the average of three runs, with 95% confidence intertialsrs
bitrary regions of its memory. On hosts with enough hardwege ynere appropriate.

sources can be partitioned so that no two guests share a\dMe o)
Our test system was a Dell Precision T3500 server, with a-goeel

Where components reuse the same code, a single vulnerabilild > 57 GHZ Intel Xeon W3520 processor, 4 GB of RAM, a Tigon 3
be sufficient to compromise them all. Service VMs like NetBac - gjgapit Ethernet card, and an Intel 82801JIR SATA contraliith a
BlkBack, Console, and Toolstack run the same core Linuxedern \yestern Digital WD3200AAKS-75L9A0 320 GB 7200 RPM disk.
with specific driver modules loaded only in the relevant commt. \/\ix EPT, and IOMMU virtualization are enabled. We use Xen
As a result, vulnerabilities in the exposed interfaces acallto the 4 1 0 and Linux 2.6.31pvops kernels for the tests. Identical guests
associated service VM, but vulnerabilities in the undedyirame- ,nning an Ubuntu 10.04 system, configured with two VCPUSBL G
work and libraries may be present in multiple components.bé6- ot RAM and a 15 GB virtual disk are used on both systems. For
ter code diversity, service VMs could use a combination ofubd network tests, the system is connected directly to anotysems
FreeBSD, OpenSolaris, and other suitable OSes. with an Intel 82567LF-2 Gigabit network controller.

Highly privileged components like the Builder have very noar
interfaces and cannot be compromised without exploitingers 7.1 Memory Overhead
abilities in multiple components, at least one of which is%eore.
Along with the central role it plays in state maintenance aya-
chronization, this access to Builder makes XenStore aadiitte
target. Compromising XenStore-Logic may allow an attagkjnest

to store exploit code in XenStore-State, which, when régjostate
after a restart, re-compromises XenStore-Logic. The roani
code described in Section 5.2, however, prevents this matictate
from being restored when serving requests from any othestgue
VM, ensuring that they interact with a clean copy of XenStore

Table 5 shows the memory requirements of each of the compo-
nents in Xoar. Systems with multiple network or disk corexd

can have several instances of NetBack and BlkBack. Als@esin
users can select the service VMs to run, there is no singleefigu
for total memory consumption. In commercial hosting soius,
console access is largely absent rendering the Consoladadu
Similarly, PCIBack can be destroyed after boot. As a reshé,
memory requirements range from 512 MB to 896 MB, assuming a
single network and block controller, representing a saahg0%

. . . to an overhead of 20% on the default 750 MB DomO configuration
6.3 Wulnerability Mitigation used by XenServer. All performance tests compare a compbete
With a majority of the disclosed vulnerabilities againstXevolv- figuration of Xoar with a standard DomO Xen configuration.

ing privilege escalation against components in Dom0, Xoaves

to be successful in containing all but two of them. Table biten¢ 7.2 /O performance

mizes the vulnerabilities discussed in Section 2 basedewatmer-
able component and the type of vulnerability, along withrihenber
that are successfully mitigated in Xoar.

Disk performance is tested using Postmark, with VMs’ virtliaks
backed by files on a local disk. Figure 9 shows the resultsadeh
tests with different configuration parameters.

The 14 device emulation attacks are completely mitigatedha
device emulation service VM has no rights over any VM except
the one the attacker came from. The two attacks on the \vizedl
device layer and the three attacks against the toolstackdvaoly
affect those VMs that shared the same BlkBack, NetBack, aoti T

stack components. The vulnerability present in XenStoderdit “Hardware issues forced us to use a 2.6.32 kernel for someeof th
exist in our custom version. Since Xoar does not modify theelty ~ components.

Network performance is tested by fetching a 512 MB and a 2 GB
file across a gigabit LAN usingget , and writing it either to disk,

or to/ dev/ nul | (to eliminate performance artifacts due to disk
performance). Figure 10 shows these results.

15000 -

1Kx50K 20Kx50K 20Kx100K 20Kx100Kx100

Operations / Second

Figure 9: Disk performance using Postmark (higher is bette}.
The x-axis denotes (files x transactions x subdirectories).

B Domo Xoar

[N

3] ~ o

o & =]
1 1 1

Throughput (MB/s)

N
3]
1

/devinull (512MB) Disk (512MB) /devinull (2GB) Disk (2GB)

Figure 10: Network performance with wget (higher is better)

Overall, disk throughput is more or less unchanged, and or&tw

500 —
450 — —]
400 —

350 B Domo (local)
8 300 Xoar (local)
c
8 250 < Domo (nfs)
o B Xoar (nfs)
(%]

200 7 Restarts (10s)

150 7 Restarts (5s)

100
50 —

Figure 12: Linux kernel build run on Dom0 and Xoar, locally,
over NFS and over NFS with NetBack restarts.

Store is persisted. In “slow” restarts the device downtisyaround
260 ms, measuring from when the device is suspended to wresn it
sponds to network traffic again. The optimizations usedertast”
restart reduce this downtime to around 140 ms.

Resetting every 10 seconds causes an 8% drop in throughput, a
wget 's TCP connections respond to the breaks in connectivity. Re
ducing the interval to one second gives a 58% drop. Incrgdsin
beyond 10 seconds makes very little difference to throughphe
faster recovery gives a noticeable benefit for very frequebbots

but is worth less than 1% for 10-second reboots.

7.3 Real-world Benchmarks

Figure 12 compares the time taken to build a Linux kernelhbot
in stock Xen and Xoar, off a local ext3 volume as well as an NFS
mount. The overhead added by Xoar is much less than 1%.

The Apache Benchmaris used to gauge the performance of an
Apache web server serving a 10 KB static webpage 100,00Gtime

throughput is down by 1-2.5%. The combined throughput od dat t0 five simultaneous clients. Figure 13 shows the resulthisftest

coming from the network onto the diskcreaseshy 6.5%; we be-
lieve this is caused by the performance isolation of runmiregdisk
and network drivers in separate VMs.

100
90 —
80
70

60 -

50 —

baseline
40 ¢ slow (260ms)
¢ fast (140ms)

Throughput (MB/s)

30

20 T T T T T T T T 1

Restart Interval (s)

Figure 11: wget throughput while restarting NetBack at differ-
ent time intervals

To measure the effect of microrebooting driver VMs, we raa th
2 GBwget to/ dev/ nul | while restarting NetBack at intervals
between 1 and 10 seconds. Two different optimizations fetrifa-
croreboots are shown.

In the first (marked as “slow” in Figure 11), the device harthva
state is left untouched during reboots; in the second (fasbme
configuration data that would normally be renegotiated ven-X

against Dom0, Xoar, and Xoar with network driver restartsGats,
and 1 second intervals. Performance decreases non-ulyfaith
the frequency of the restarts: an increase in restart iatérom 5
to 10 seconds yields barely any performance improvemerttde w
changing the interval from 5 seconds to 1 second introducsig-a
nificant performance loss.

Dropped packets and network timeouts cause a small number of
guests to experience very long completion times — for exampl
for DomO and Xoar, the longest packet took only 8-9 ms, but wit
restarts, the values range from 3000 ms (at 5 and 10 secamds) t
7000 ms (at 1 second). As a result, the longest request attisrv
not shown in the figure.

Overall, the overhead of disaggregation is quite low. Thisigely
because driver VMs do not lengthen the data path betweensgues
and the hardware: the guest VM communicates with NetBack or
BlkBack, which drives the hardware. While the overhead ofedr
restarts is noticeable, as intermittent outages lead to G&eRoff, it

can be tuned by the administrator to best match the desimabico
nation of security and performance.

8. RELATED WORK

With the widespread use of VMs, the security of hypervisas h
been studied extensively and several attempts have beea toad
address the problem of securing the TCB. This section looksrae
of these techniques in the context of our functional reqo@ets.

Build a Smaller Hypervisor. SecVisor [38] and BitVisor [40] are
examples of tiny hypervisors, built with TCB size as a priyneon-

o
€ 45 B Domo Xoar Restarts (10s) B Restarts (5s) Restarts (1s)
8 41
o 35
e
o 37 8 @ @ o
82.54 mmOOO%_ 82353 S 2 & 3
» 2 - S 5 9 w3 g 3§ 8 8 B 5] 8|8 S 5 w5 5 8
=
8 1 H
¥ 0%] . l .l:l_. . .
o |
T T T T
Total Time (s) Throughput (req/s) Latency (s) Transfer Rate (MB/s)

Figure 13: Apache Benchmark run on Dom0, Xoar, and Xoar with retwork driver restarts at 10s, 5s, and 1s.

cern, that use the interposition capabilities of hypemggo retrofit
security features for commodity OSes. While significangigiucing
the TCB of the system, they do not share the multi-tenancisgifa
commodity hypervisors and are unsuitable for such envigrts

Microkernel-based architectures like KeyKOS [20] and ER8H,
its x86-based successor, are motivated similarly to Xodradlow
mutually untrusting users to securely share a system. Oilddu
closely resembles tHactoryin KeyKOS. While multiple, isolated,
independently administered UNIX instances, rather likesyMan
be hosted on EROS, this requires madifications to the envieor

9. DISCUSSION AND FUTURE WORK

This idea of partitioning a TCB is hardly new, with softwarary-
tioning having been explored in a variety of contexts beftero-
kernels remain largely in the domain of embedded devicds nelt
atively small and focused development teams (e.g., [26]) vehile
attempts at application-level partitioning have demartstt bene-
fits in terms of securing sensitive data, they have also detreted
challenges in implementation and concerns about maintengmh
9, 24, 34], primarily due to the mutability of applicatiorténfaces.

While fracturing the largely independent, shared servibes run

and arbitrary OSes cannot be hosted. More recently, NOVA [42n the control VM above the hypervisor, we observe that tiuese

uses a similar architecture and explicitly partitions theBTinto
several user-level processes within the hypervisor. Aigfiiocapa-
ble of running multiple unmodified OSes concurrently, thmogal
of the control VM and requirement for NOVA-specific driveiacs
rifice hardware support for TCB size. Also, it is far from cdetp:
it cannot run Windows guests and has limited toolstack sdppo

NoHype [23] advocates removing the hypervisor altogethsing
static partitioning of CPUs, memory, and peripherals amahts.
This would allow a host to be shared by multiple operatingesys,
but with none of the other benefits of virtualization. In partar, the
virtualization layer could no longer be used for interpiosit which
is necessary for live migration [13], memory sharing and prese-
sion [19, 32], and security enhancements [11, 30, 46, 16].

Harden the Components of the TCB.The security of individ-

cerns do not apply to nearly the same degree; typically time-co
ponents are drivers or application code exposing their dantiin-
terfaces either to hardware or to dependent guests. Isglatich
services into their own VMs was a surprisingly natural fit.

While it is tempting to attribute this to a general properfywo-
tualization, we also think that it was particularly appbtato the
architecture of Xen. Although implemented as a monolith@BT
several of the components were designed to support furthrer c
partmentalization, with clear, narrow communication iifaees.

We believe the same is applicable to Hyper-V, which has a-simi
lar architecture to Xen. In contrast, KVM [25] converts thimlix
kernel itself into a hypervisor, with the entire toolstaaksted in a
Qemu process. Due to the tight coupling, we believe thapdisa
gating KVM this aggressively would be extremely hard, mdtma

ual components of the TCB can be improved using a combinatiof converting Linux into a microkernel.

of improved code quality and access control checks to oegtré
privileges of these components. Xen's XAPI toolstack istteri
in OCaml and benefits from the robustness that a staticaligdy
functional language provides [37]. Xen and Linux both haxezm
anisms to enforce fine-grained security policies [31, 36hilduse-
ful, these technigues do not address the underlying coratsont
the size of the TCB.

Split Up the TCB, Reduce the Privilege of Each Part. Murray

et al. [33] removed DomO userspace from the TCB by moving the

VM builder into a separate privileged VM. While a step in tight
direction, it does not provide functional parity with Xenr@move
the DomO kernel from the TCB, leaving the system vulnerable t
attacks on exposed interfaces, such as network drivers.

Driver domains [17] allow device drivers to be hosted in datkd
VMs rather than DomO, resulting in better driver isolati@ubes-
OS [35] uses driver domains in a single-user environmertdbes
not otherwise break up Dom0. Stub domains [44] isolate tha@e
device model for improved performance and isolation. Xaalds
on these ideas and extends them to cover the entire control VM

9.1 Lessons

In the early design of the system our overall rule was to tahee-
tical approach to hardening the hypervisor. As usual, viighhind-
sight of having built the system, some more specific guidsliare
clear. We present them here as “lessons” and hope that thepena
applied earlier in the design process of future systems.

Don't break functionality. From the outset, the work described
in this paper has been intended to be applied upstream tqtre o
source Xen project. We believe that for VM security improegits
to be deployed broadly, they must not sacrifice the set oftfonal-
ity that has made these systems successful, and would nettexp
warm reception for our work from the maintainers of the syste
we were to propose that facilities such as CPU overcommiplgim
didn’t make sense in our design.

This constraint places enormous limitations on what we bte @
do in terms of hardening the system, but it also reduces therma
argument against accepting new security enhancements.

Don’t break maintainability. Just as the users of a virtualization
platform will balk if enhancing security costs functiortglidevel-
opers will push back on approaches to hardening a systemethat
quire additional effort from them. For this reason, our aggh to
hardening the hypervisor has been largelgtaictural one: indi-
vidual service VMs already existed as independent apmicatin
the monolithic control VM and so the large, initial portioh @ur
work was simply to break each of these applications out istown
virtual machine. Source changes in this effort largely ioved the
existing source’s readability and maintainability by resimg hard-
coded values and otherwise generalizing interfaces.

By initially breaking the existing components of the cohi¥¥ out
into their own virtual machines, we also made it much easier f
new, alternate versions of these components to be writte mein-
tained as drop-in replacements: our current implememtatiges
largely unchanged source for most of the service VM codethart
chooses to completely reimplement XenStore. The origiagdion
of XenStore still works in Xoar, but the new one can be dropped
to strengthen a critical, trusted component of the system.

There isn’t always a single best interface.The isolation of com-
ponents into service VMs was achieved through multiple énpl
mentations: some service VMs use a complete Linux instathes
a stripped-down “miniOS” UNIX-like environment, and sonet
even smaller “nanOS”, effectively a library for building alisingle-
purpose VMs designed to be amenable to static analysis.

Preserving application state across microreboots hasiksitiver-
sity of implementation: driver VMs take advantage of a rexgy
box-like API, while for the reimplementation of XenStorehie-
came more sensible to split the component into two VMs, &ffely
building our own long-lived recovery box component.

Our experience in building the system is that while we mighteh
built simpler and more elegant versions of each of the inldisi
components, we probably couldn’t have used fewer of thernowit
making the system more difficult to maintain.

9.2 Future Work

The mechanism of rebooting components that automaticatie-r
gotiate existing connections allow many parts of the viinagion

platform to be upgraded in place. An old component can be shut

down gracefully, and a new, upgraded one brought up in itsepla
with a minor modification of XenStore keys. Unfortunatelyese
are not applicable to long-lived components with stateXkaStore
and the hypervisor itself. XenStore could potentially tsaged by
persisting its state to disk. Restarting Xen under exegwiNis,
however, is more challenging. We would like to explore teéghas
like those in ReHype [29], but usingontrolled reboots to safely
replace Xen, allowing the complete virtualization plathaio be up-
graded and restarted without disturbing the hosted VMs.

Although the overall design allows for it, our current impienta-
tion does not include cross-host migration of VMs. We arehia t
process of implementing a new service VM that contains e li
VM migration toolset to transmit VMs over the network. Whiles
component is not currently complete, it has begun to dermatesan
additional benefit of disaggregation: the new implemeatesirikes

a balance between the implementation of a feature thatnesjcon-
siderable privilege to map and monitor changes to a VM'’s nigmo
in the control VM, and the proposal to completely internalini-
gration within the guest itself [13]. Xoar's live migratidool al-
lows the guest to delegate access to map and monitor chamgss t
memory to a trusted VM, and allows that VM to run, much like the

QemuVM, for as long as is necessary. We believe that thisitquk
will further apply to other proposals for interpositiondeal services,
such as memory sharing, compression, and virus scanning.

10. CONCLUSION

Advances in virtualization have spurred demand for hightilized,

low-cost centralized hosting of systems in the cloud. Thtugliza-

tion layer, while designed to be small and secure, has grawfo
a need to support features desired by enterprises.

Xoar is an architectural change to the virtualization platf that
looks at retrofitting microkernel-like isolation propesito the Xen
hypervisor without sacrificing any existing functionality divides
the control VM into a set of least-privilege service VMs, wininot
only makes any sharing dependencies between componetitstexp
but also allows microreboots to reduce the temporal attadiase
of components in the system. We have achieved a significdatre
tion in the size of the TCB, and address a substantial peagertf
the known classes of attacks against Xen, while maintaiféatyre
parity and incurring very little performance overhead.

11. ACKNOWLEDGMENTS

We would like to thank our shepherd, Bryan Ford, the anonysmou
reviewers, Steve Hand, Derek Murray, Steve Gribble, Ke#rsEr,
David Lie, and the members of the systems research groupe at t
University of British Columbia and at the University of Caritge

for their suggestions and feedback. This work was partisdig-
ported through funding from the NSERC Internetworked Syste
Security Network (ISSNet) and from the Communications &gcu
Establishment Canada (CSEC).

12. REFERENCES

[1] Department of Defense Trusted Computer System Evaluation
Criteria. DoD 5200.28-STD. U.S. Department of Defense,
Dec. 1985.

D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee

L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy

nodes. InProc. 22nd ACM SOSPages 1-14, Oct. 2009.

M. Baker and M. Sullivan. The recovery box: Using fast

recovery to provide high availability in the UNIX

environment. IrProc. USENIX Summer Conferenpages

31-43, June 1992.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A, H

R. Neugebauer, |. Pratt, and A. Warfield. Xen and the art of

virtualization. InProc. 19th ACM SOSPages 164-177, Oct.

2003.

[5] L. A. Barroso and U. Holzle. The case for energy-propmorél
computing.lEEE Computer40:33-37, December 2007.

[6] F. Bellard. QEMU, a fast and portable dynamic translator
Proc. USENIX ATCpages 41-46, Apr. 2005.

[7] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge:
splitting applications into reduced-privilege compartitse In
Proc. 5th USENIX NSDpages 309-322, Apr. 2008.

[8] T. C. Bressoud and F. B. Schneider. Hypervisor-baseld fau

tolerance. IrProc. 15th ACM SOSRages 1-11, Dec. 1995.

D. Brumley and D. Song. Privtrans: automatically

partitioning programs for privilege separation.Rroc. 13th

USENIX Security Symposiupages 57-72, Aug. 2004.

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and Ax.Fo

Microreboot — a technique for cheap recoveryPioc. 6th

USENIX OSD| pages 31-44, Dec. 2004.

(2]

(3]

(4]

9]

(10]

[11] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports.
Overshadow: a virtualization-based approach to retnodjtti
protection in commodity operating systemsRAroc. 13th
ASPLOSpages 2-13, Mar. 2008.

[12] Citrix Systems, IncCitrix XenServer 5.6 Admininistrator's
Guide June 2010.

[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migration of

virtual machines. IfProc. 2nd USENIX NSDpages

273-286, May 2005.

P. Colp. [xen-devel] [announce] xen ocaml tools.

http://1ists. xensource. coniarchives/htm/

xen- devel / 2009- 02/ msg00229. ht i .

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchimso

and A. Warfield. Remus: high availability via asynchronous

virtual machine replication. IRroc. 5th USENIX NSDI

pages 161-174, Apr. 2008.

A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: mafe/

analysis via hardware virtualization extensionsPhoc. 15th

ACM CCS pages 51-62, Oct. 2008.

K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfigi]

M. Williamson. Safe hardware access with the Xen virtual

machine monitor. IfProc. 1st OASISOct. 2004.

A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The Taser

intrusion recovery system. Rroc. 20th ACM SOSPages

163-176, Oct. 2005.

D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,

G. Varghese, G. M. Voelker, and A. Vahdat. Difference

[14]

[15]

[16]

[17]

(18]

[19]

engine: harnessing memory redundancy in virtual machines.

In Proc. 8th Usenix OSDpages 85-93, Oct. 2008.

N. Hardy. The KeyKOS architectur®perating Systems

Review 19(4):8-25, October 1985.

M. Hohmuth, M. Peter, H. Hartig, and J. S. Shapiro.

Reducing TCB size by using untrusted components: small

kernels versus virtual-machine monitors Aroc. 11th ACM

SIGOPS EWSept. 2004.

K. Kappel, A. Velte, and T. VelteMicrosoft Virtualization

with Hyper-\. McGraw-Hill, 1st edition, 2010.

[23] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype:
virtualized cloud infrastructure without the virtualizat. In
Proc. 37th ACM ISCApages 350-361, June 2010.

[24] D. Kilpatrick. Privman: A library for partitioning
applications. IrProc. USENIX ATCpages 273-284, June
2003.

[25] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm the Linux virtual machine monitor. IRroc. Linux
Symposiumpages 225-230, July 2007.

[26] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. €
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,

M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
formal verification of an OS kernel. IRroc. 22nd ACM
SOSPR pages 207-220, Oct. 2009.

[27] G. Kroah-Hartmanudev: A userspace implementation of
devfs. InProc. Linux Symposiunpages 263-271, July 2003.

[28] P. Kutch. PCI-SIG SR-IQV primer: An introduction to
SR-I0V technology. Application note 321211-002, Intel
Corporation, Jan. 2011.

[29] M. Le and Y. Tamir. ReHype: Enabling VM survival across
hypervisor failures. IfProc. 7th ACM VEEpages 63—-74,
Mar. 2011.

[20]

[21]

[22]

[30] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor gpport
for identifying covertly executing binaries. Proc. 17th
USENIX Security Symposiupages 243-258, July 2008.

[31] P. Loscocco and S. Smalley. Integrating flexible supfmr
security policies into the Linux operating system Froc.
USENIX ATCpages 29-42, June 2001.

[32] G. Milos, D. G. Murray, S. Hand, and M. A. Fetterman.
Satori: Enlightened page sharing.Pnoc. USENIX ATC
pages 1-14, June 2009.

[33] D. G. Murray, G. Milos, and S. Hand. Improving Xen setyri
through disaggregation. Froc. 4th ACM VEEpages
151-160, Mar. 2008.

[34] N. Provos, M. Friedl|, and P. Honeyman. Preventing [@geé
escalation. IrProc. 12th USENIX Security Symposiymages
231-242, Aug. 2003.

[35] J. Rutkowska and R. WojtczuRQubes OS Architecture

Version 0.3. Jan. 201Gt t p: / / qubes- os. org/ .

R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez,

S. Berger, J. L. Griffin, and L. van Doorn. Building a

MAC-based security architecture for the Xen open-source

hypervisor. InProc. 21st ACSA(phages 276-285, Dec. 2005.

D. Scott, R. Sharp, T. Gazagnaire, and A. Madhavapeddy.

Using functional frogramming within an industrial product

group: perspectives and perceptionsPhoc. 15th ICFR

pages 87-92, Sept. 2010.

A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: gtin

hypervisor to provide lifetime kernel code integrity for

commodity OSes. IRroc. 21st ACM SOShages 335-350,

Oct. 2007.

J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast

capability system. IfProc. 17th ACM SOSPpages 170-185,

Dec. 1999.

T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,

S. Hasegawa, T. Horie, M. Hirano, K. Kourai, Y. Oyama,

E. Kawali, K. Kono, S. Chiba, Y. Shinjo, and K. Kato.

BitVisor: a thin hypervisor for enforcing 1/0 device sedyri

In Proc. 5th ACM VEEpages 121-130, Mar. 2009.

R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Asdar

and J. Lepreau. The Flask security architecture: System

support for diverse security policies. Rroc. 8th USENIX

Security Symposiunpages 123—-139, Aug. 1999.

U. Steinberg and B. Kauer. NOVA: a microhypervisor-és

secure virtualization architecture. Rroc. 5th EuroSygages

209-222, Apr. 2010.

[43] A.S. Tanenbaum, J. N. Herder, and H. Bos. Can we make
operating systems reliable and secue2E Computer
39(5):44-51, May 2006.

[44] S. Thibault and T. Deegan. Improving performance by
embedding HPC applications in lightweight Xen domains. In
Proc. 2nd HPCVIRTMar. 2008.

[45] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Aty
the energy efficiency of a database servePioc. ACM
SIGMOD pages 231-242, June 2010.

[46] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel
rootkits with lightweight hook protection. IRroc. 16th ACM
CCS pages 545-554, Nov. 2009.

[47] J. Wilkes, J. Mogul, and J. Suermondt. Utilification.Rroc.
11th ACM SIGOPS EWSept. 2004.

(36]

(37]

(38]

(39]

[40]

[41]

[42]

