
Retroactive Aspects: Programming in the Past

Robin Salkeld
University of British Columbia

rsalkeld@cs.ubc.ca

Brendan Cully
University of British Columbia

brendan@cs.ubc.ca

Geoffrey Lefebvre
University of British Columbia

geoffrey@cs.ubc.ca
Wenhao Xu

University of British Columbia
zidadi@cs.ubc.ca

Andrew Warfield
University of British Columbia

andy@cs.ubc.ca

Gregor Kiczales
University of British Columbia

gregor@cs.ubc.ca

ABSTRACT
We present a novel approach to the problem of dynamic
program analysis: writing analysis code directly into the
program source, but evaluating it against a recording of the
original program’s execution. This approach allows devel-
opers to reason about their program in the familiar context
of its actual source, and take full advantage of program se-
mantics, data structures, and library functionality for un-
derstanding execution. It also gives them the advantage of
hindsight, letting them easily analyze unexpected behavior
after it has occurred. Our position is that writing offline
analysis as retroactive aspects provides a unifying approach
that developers will find natural and powerful.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering—Testing and Debug-
ging

General Terms
Languages, Measurement, Verification

Keywords
Aspect-oriented Programming, Execution Mining, Determin-
istic Replay, Dynamic Analysis

1. BACKGROUND AND MOTIVATION
A recurring and frustrating problem faced by software

developers is bugs that only appear for real customers in
released software. Diagnosis techniques such as debuggers
and assert statements that are invaluable during develop-
ment become painful and expensive for deployed systems.
Attempts to reproduce the issue often fail because of differ-
ences between execution environments or non-determinism.

Execution capture and replay offers the potential to record
execution with perfect, instruction-level fidelity and analyze
it at some later date [7, 22, 19, 20]. The overhead involved in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA ’11, July 18, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0811-3/11/07 ...$10.00.

before(struct mutex * lock) :
call($ mutex_lock(...)) && args(lock) {

if (!check_order(current, lock)) {
printf("Lock order reversal: %p (%s)", lock, lock->name);

}
}
before(struct mutex * lock) :

call($ mutex_unlock(...)) && args(lock) {
remove_from_order(current, lock);

}

Figure 1: A simple example. The check_order and
remove_from_order functions manipulate a lock order
relationship tree; their implementation is omitted
for brevity.

recording enough data to deterministically replay execution
exactly as it originally occurred can be low enough for even
commercial virtualization tools to support it [23], making it
a real option for deployed systems.

However, while these technologies provide the primitives
for post hoc execution analysis, they do not yet address
the problem of how average developers can effectively au-
thor and evaluate such analysis. Execution traces are far
too low-level to be of any use to developers whose expertise
is in a high-level language. Omniscient debugging [15, 21]
helps to bridge the semantic gap by providing a debugger-
like trace browser that can move backwards as well as for-
wards through program execution, but its power is limited
since it cannot evaluate complex expressions nor maintain
state between breakpoints. To diagnose complex bugs or
collect application-specific statistics, often the simplest ap-
proach is just to instrument the program with more code,
but unfortunately deterministic replay processes are easily
broken by attempts to instrument them.

Ideally, offline analysis should be just as intuitive and fa-
miliar as adding printf() statements within a program’s
source code: the analysis’ interaction with the original pro-
gram should be type-safe; consistent with its value, name
binding and control flow semantics; and able to reuse its
datatypes and algorithms. In addition, it should be possi-
ble to author analysis code with consistent semantics that
do not depend on which execution capture and replay tech-
nology is used, or even on whether the analysis is evaluated
during the program execution or after it.

Our position is that providing these kinds of restrictions
and guarantees are natural programming language design
problems, and should be solved by extending the original
programming language. In particular, we propose to de-

Retroactive Weaving
Decoupled analysis applied to execution or trace

Conventional AOP Weaving
Analysis included in compiled program binary

Retroactive
Analysis

Original
Execution

Program Code
Analysis Code
Join Point

Figure 2: Traditional advice weaving versus retroac-
tive advice weaving. We propose to restrict analysis
advice such that its semantics are indistinguishable
between the two implementations.

fine a more restrictive semantics for the aspect-oriented pro-
gramming concepts of pointcuts and advice such that their
online and offline behaviour is indistinguishable. We re-
fer to such aspects as retroactive aspects, and to evaluating
such aspects in relation to a previous execution after the
fact as retroactive weaving, in contrast to static or dynamic
weaving as illustrated in Figure 2. We show that verifying
and retroactively weaving such aspects can be accomplished
through static analysis and code transformation techniques,
and claim that this extension allows AOP to provide a uni-
fied dynamic analysis framework that applies equally well in
the present or the past.

2. RETROACTIVE DYNAMIC ANALYSIS
This section discusses the challenges that arise in trying

to provide a friendly post hoc dynamic analysis system, and
how our definition of retroactive aspects addresses them. For
the purposes of concrete discussion we will focus on apply-
ing the approach to the aspect-oriented C variant AspeCtC
(ACC) [2], since our initial prototype was developed using
this language in order to analyze the Linux kernel. Fig-
ure 1 contains a sample ACC aspect which we will use as a
running example. It is inspired by the witness kernel mod-
ule, which validates that lock acquisition and release code
is structured correctly to avoid deadlocks by verifying that

lock ordering is consistent. This is one of several units of
conditionally-enabled kernel code that provides valuable de-
bugging information but is normally too slow or intrusive to
enable for production builds.

2.1 Compatibility with Program Source
Our primary goal is to allow analysis code that is as close

as possible to the program’s source code. Post hoc analysis
code needs to specify individual points in time of interest in
the program’s execution to trigger additional code, and have
access to local values that aren’t available from the global
state. Offering the same flexibility as inserting additional
code at arbitrary locations in the source code is challeng-
ing, and ensuring the instrumentation is run exactly when
needed often involves complicated and flow-sensitive speci-
fications.

This problem is addressed in various ad-hoc ways by exist-
ing dynamic analysis tools, both online or offline. PIN [16]
and the ATOM language it is based on [24] are quite aspect-
like at the instruction level, but each instruction must be
individually inspected as a metadata object to determine
where to insert additional instructions. The Program Trace
Query Language (PTQL) [12] is a reduced dialect of SQL
customized to query program executions, which is described
as being equally applicable to post hoc evaluation. PTQL
treats individual execution events such as function calls as
relational tuples, with time as an explicit dimension that
must be manually manipulated, which makes analysis of con-
trol flow awkward to specify. VMWare’s VAssert [1] system
supports replay-only statements in source code, which re-
quires analysis foresight and is less convenient for testing
bug theories after the fact.

Pointcuts provide a rich specification language for solving
exactly this problem, and are equally applicable to matching
joinpoints that occurred in the past. They include binding
mechanisms such as args(x, y) and return(z) which allow
values to be extracted from the original program and used
in analysis code. Using a declarative sub-language to de-
scribe analysis trigger points also presents opportunities for
optimization in the context of execution tracing and replay,
since irrelevant events and even entire periods of execution
can be ignored or skipped over when reading a trace or in-
strumenting a dynamic replay process.

Providing retroactive evaluation semantics for an existing
AOP language also enables post hoc evaluation of higher-
level runtime analysis tools that are built on top of that
language. If post hoc evaluation of AspectJ is possible, for
example, then tools such as the monitor-oriented program-
ming framework JavaMOP [5] that are implemented by pro-
ducing AspectJ code can also be run post hoc. This is only
true if the aspects such tools produce are guaranteed to be
valid retroactive aspects (as described below); verifying this
is a potential avenue of future work.

In some cases an AOP language’s pointcut types may not
express all of the desired concepts for post hoc analysis,
but as proposed previously [9, 4] it is reasonable to extend
pointcut languages for greater expressiveness or precision;
we have extended ACC ourselves, in fact, in order to address
its shortcomings when applied to kernel-level code. Imple-
menting AOP concepts beyond pointcuts and advice in the
context of retroactive evaluation could also enable more so-
phisticated analysis. Inter-type declarations in particular
offer an attractive solution for attaching additional analysis

state to program structures after the fact, and are flagged
as future work in our prototype.

2.2 Access to Program State
Retroactive advice will read values from the original pro-

gram execution wherever such values are referenced through
pointcut arguments or global variables. Retroactive weav-
ing therefore needs to extract those values from the original
execution.

Simply applying traditional dynamic advice weaving to a
deterministic replay process would appear to be an ideal im-
plementation, but unfortunately this will inevitably interfere
with the fragile replay process. In our case of kernel-level
process replay, for example, it is necessary to record all sys-
tem calls made to the kernel so they they can be reproduced
in replay. Any system calls made by the analysis code will
be incorrectly trapped by the replay process and produce
the wrong results, and in addition throw off future results,
so even an apparently harmless call to printf() can be dis-
astrous. Similar issues exist for any replay mechanism - in
general efficient replay relies on being able to assume all
deterministic behaviour remains exactly the same between
record and replay.

Post hoc analysis must therefore be evaluated in a sepa-
rate process. Moreover, because the analysis is compatible
with the program source and can maintain its own state, ref-
erences to both the original program’s state and the analysis
state must be disambiguated. In C, this means that pointer
values may actually refer to either the original program’s
memory or the new analysis runtime’s memory. We refer to
this as the dual address space problem.

In other decoupled analysis frameworks such as Speck [19],
data must be manually marshalled between processes in or-
der to synchronize them, which does not scale well to ar-
bitrary source-level analysis. Choi and Alpern use remote
reflection [18] to debug a Jalapeño JVM [6] from another
JVM. Remote reflection solves the dual address space prob-
lem in Java dynamically by customizing the debugging JVM
to track whether each object is remote or local; references to
remote object members are handled by communicating with
the JVM being debugged, and the flag is propagated through
such references. This approach requires a custom analysis
runtime or virtual machine, and in the case of C the over-
head of maintaining fat pointers to attach these flags would
have been prohibitive.

Our approach is to solve the problem statically instead.
At compile time, variables declared by the program source
or bound by pointcuts are marked by our aspect compiler as
program state. Other variables and fields are inferred based
on dataflow as either program or analysis state within the
source code, and references to program state are rewritten
to instead call a runtime API to recreate that state. In
Figure 1, for example, the lock pointer is bound though
the args pointcut, and is hence marked as referring to base
state, as is lock->name. So is the result of current, a Linux
kernel macro used to get a pointer to the currently running
task from a CPU local variable. Our implementation of this
inference process is described in Section 3.1.

2.3 Avoidance of Side-Effects
For source-level post hoc analysis to have consistent se-

mantics whether it is evaluated online or offline, the analy-
sis code must not have side-effects that would have changed

// Program code
void fetchFoo(char * foo) {

increaseFooRefCount();
computeFoo(foo);

}

// Analysis advice
after() : call(bar()) {

char foo[100];
fetchFoo(foo);
printf("Foo is: %s", foo);

}
around() : cflow(adviceexecution())

&& call(increaseFooRefCount()) {}

Figure 3: An example of supressing unwanted side-
effects using around advice.

the program behaviour; the analysis framework should reject
any such analysis.

In other systems where analysis is performed outside the
original program, such as Speck or remote debugging, any
side-effects occur externally as well and are not in danger
of perturbing the replay. However, allowing them can cause
later analysis code to observe these changes and behave in-
consistently, and these deviations can be buried deep within
application code called from the analysis and hence very sub-
tle. Other approaches based on virtualization such as Intro-
virt [13] and VAssert [1] allow mutations to occur within the
replay process, but then revert to a prior checkpoint to undo
their effects before continuing. This also prevents the anal-
ysis from maintaining any state between triggers, however,
and hence restricts its power.

The same static analysis that addresses the dual address
space issue can also be used to detect and reject attempts
to write to the program’s memory space, which is the most
common way analysis code could affect the program’s execu-
tion. A large percentage of useful application code, however,
will include side-effects such as caching even if their primary
use is to read state, which would seem to imply they cannot
be used in retroactive aspects.

One solution is to use a generic pointcut introduced in
AspectJ called adviceexecution(), which matches all join-
points inside advice code. Combining it with the cflow

pointcut operator creates a pointcut that covers all advice
execution. This is often used to exclude aspects from apply-
ing to other aspects when the interaction is undesirable. In
the case of retroactive aspects, it therefore covers all code
in the decoupled analysis, and so can be used to only sup-
press or redirect side effects in application code when called
retroactively. This achieves the goal of advice code that
behaves identically whether woven directly or retroactively.
See Figure 3 for an example. Here around advice is used
to replacing undesired side effects by replacing certain calls
with no-ops.

We are continuing to investigate the best approach for
managing side-effects. It is unclear how to rigorously per-
mit intentional, safe side-effects in retroactive advice: out-
putting results to the console or the file system should be
permitted, for example, even though such behaviour tech-
nically could have been observed by the program. In ad-
dition, it may be too onerous to omit all side-effects in
reused program code in some cases, and we may explore
structured fork-and-revert semantics similar to VAssert for
advice. Defining clean semantics that allow values to escape

the rollback process in C is quite challenging, however, since
it is unclear how to deal with pointers.

3. IMPLEMENTATION
This section defines our retroactive weaving prototype for

ACC. The system consists of a compiler that compiles ACC
aspect files into a C library, and two different runtimes for
evaluating the compiled aspects against a particular pro-
gram execution. In combination with the existing ACC
weaver, this allows the same ACC code to be evaluated ei-
ther inline or post hoc.

3.1 Compiler
Our compilation process consists of a chain of several dis-

tinct source transformation phases taking ACC code as in-
put and producing C code as output, followed by a call to an
underlying C compiler (gcc in our case) to produce object
files. The source transformation phases are implemented by
extending the C Intermediate Language OCaml library [17],
which is designed to support the analysis and transformation
of C source.

We have modified the CIL distribution to support pars-
ing ACC code and representing pointcuts and advice in its
abstract syntax tree. The compiler also annotates variables
and types to track which memory space they refer to by
leveraging CIL’s support for gcc attributes, which are decla-
rations with the syntax ”$attribute” that can be attached
to nearly all elements of C syntax. In our case these anno-
tations are either resolved $base or $aspect annotations, or
annotation variables such as $$a that represent unknowns.
Since the C type system includes value types with multiple
layers of indirection (i.e. pointers to pointers), the anno-
tations are attached to all levels of types; As an example,
the type char $base * $base * $aspect is interpreted to
mean ”pointer in the aspect space to a location storing a
pointer in the base program space containing an immutable
character derived from program values.” This would be ex-
actly the correct type to ascribe to a variable holding the
beginning of a sequence of strings extracted from the origi-
nal execution: the array itself would be a consecutive region
of space in the aspect execution, but the pointer values in-
side would refer to the memory of the original execution.

The source transformation phases are outlined below.

3.1.1 Annotation Inference
This phase walks the ACC source tree in a bottom-up

pattern, inserting annotations and variables as needed. The
$base and $aspect annotations are first introduced as base
cases into the AST according to the semantics of weaving:
values that are bound from the original execution through
pointcut parameters (e.g. args(a, b, c) and this->args)
are assigned to the $base space at all levels of indirection,
whereas values that are allocated by the weaving runtime
(i.e. targetName(x) and this->targetName are similarly
assigned to the $aspect space.

This phase also builds up a list of type constraints of the
form T1 = T2 based on nodes in the AST that require two
address spaces to be the same: assignments, function argu-
ments and return values, arithmetic, etc. In general values
from different address spaces cannot be used together, al-
though an important exception is pointer arithmetic wherein
offset values can be from any address space, and the base
pointer determines the address space of the result. Anno-

tation variables are then resolved by solving the constraints
using the W unification algorithm [10].

3.1.2 Annotation Propagation
As an additional aid to determining the address spaces

of values in the source, this phase takes advantage of the
observation that addresses in the original program address
space cannot point to values derived from the aspect space
by construction; to arrive in such a state requires an as-
signment to a target lvalue, which is prohibited as an illegal
side-effect. Therefore, the occurrence of any type variable
as an address space annotation in a type at a deeper level
of indirection than a $base annotation can be replaced by
$base as well. For example, char $$a * $base * $aspect
will become char $base * $base * $aspect.

This is an important rule for C code, and kernel code
in particular, in which it is common to calculate addresses
through raw numeric calculations followed by a cast to a
pointer. Ideally this rule could be incorporated into the
general inferencing phase, but this rule cannot be encoded
as a simple equality of types and hence cannot be included in
a sound way. As future work we plan to use a less simplistic
inferencing algorithm in order to address this lack of power.

3.1.3 Program State Access
If the previous phases have not rejected the input pro-

gram, the AST now contains only language constructs whose
interactions with the program state are fully tractable. The
next phase then replaces all instructions that read the pro-
gram’s memory with calls to reconstruct the values from the
retroactive weaving runtime. This includes the reads of any
lvalue derived from the program execution, or taking the
address of any such lvalue. Addresses of symbols and data
structure offsets are calculated from information extracted
from a debug build of the program. The functions used to
produce addresses of global variables and resolve register
and memory accesses are declared in a header file added to
the source at this stage, to be implemented by the particular
backend weaving runtime.

Some special cases are implemented directly in the com-
piler backend since C is not expressive enough to redefine
code using around advice as described earlier. For exam-
ple, printf takes a variable number of arguments, and the
operations it performs on those arguments depend on the
format string; a pointer value matched with a %s pattern
will be dereferenced, but one matched with a %p will not.
Our solution is to match the formats to the arguments and
to copy values like strings into aspect space if printf will
dereference them, and then pass the modified arguments to
the original implementation. This supports calls that pass a
mix of program and analysis pointers, which is useful given
that some joinpoint data consists of analysis pointers (e.g.
function names as char * values).

3.1.4 Transformation from ACC to C
The final component is responsible for splitting the aspect

bodies from their associated pointcuts. For a single given
retroactive aspect, this component produces a C source file
with three separate artifacts:

1. A set of advice bodies transformed into regular func-
tions by discarding their pointcuts and advice kind,
along with stub methods for invoking the advice body
functions with a unified interface;

2. A function table for these stub methods; and

3. A string constant containing the set of aspects from
the input in ACC syntax, with their bodies discarded,
in the same order as in the function table.

This enables parsing the aspect stubs and dynamically
invoking their body functions without recompilation of the
target weaving runtime.

3.2 Runtime
This section describes the interface between the aspect

runtime and the target execution environment and a brief
description of the two target environments we currently sup-
port: one instantiates state on demand from an instruction
level trace produced by the Tralfamadore [14] dynamic anal-
ysis framework, and one provides hooks into the virtual ma-
chine monitor QEMU [3], which we have modified to perform
deterministic recording and extract virtual machine state
during replay. For these backends, the retroactive aspect
compiler produces a shared library containing the aspects in
the original ACC source as regular C functions, with meta-
data consisting of the advice kind and pointcuts attached.
This shared object runtime exports a common retroactive
weaving interface, which serves two purposes: first, to pro-
vide the target environment with event notification callbacks
on events such as function calls and returns and context
switches to produce join points, and second, to let it register
functions for inspecting target register and memory state.

3.2.1 Understanding Kernel Execution
Running aspects against kernel execution is made some-

what more complicated by context-sensitive pointcuts such
as cflow(pc), which matches any join point that occurs in-
side, or beneath, the pointcut pc. User-level aspects can
refer to the threading abstraction provided by the operat-
ing system to uniquely identify individual flows of execution
(i.e. pthread_self()) and track joinpoint stacks correctly.

Kernel code is more challenging because although the no-
tion of thread exists, it is not a good abstraction for tracking
individual flows of execution due to interrupts and excep-
tions. Interrupt handlers execute in the context of the cur-
rently running thread but are conceptually different flows of
execution. Identifiers such as current, which maps to the
currently executing task, cannot be used to distinguish be-
tween threaded (system call, kernel threads) and interrupt
handler execution. Interrupts can also be nested making
this problem worse.

Because our trace-based framework is designed to analyze
kernel execution, it provides an abstraction to demultiplex
individual flows of kernel execution. It uses platform-specific
rules to isolate system calls, interrupts, exceptions and ker-
nel threads and label them with a unique opaque identifier.
These rules are both hardware and operating system specific
and require tracking stack switching, interrupts, exceptions
and instruction such as iret and sysexit.

We have extended the implicit structure encoding the cur-
rent join point to support the expression this->cflowID.
This evaluates to the flow identifier provided by the backend
runtime that can be used to index per-control-flow informa-
tion for later retrieval, while still encapsulating the details
of how independent control flows are tracked. We believe
this to be a logical, generic extension to AOP and suggest

that it could be used in any pointcut and advice language
to avoid dependencies on specific threading libraries.

3.2.2 Trace-based Runtime
The Tralfamadore backend is completely offline in that

running aspects involves no re-execution of guest code at
all. All updates to register and memory that occurred dur-
ing execution recording are present in the trace. Because
Tralfamadore uses a modified version of QEMU to capture
traces, it can be used to record the execution of an unmod-
ified operating system kernel.

To add support for retroactive advice execution, we im-
plemented a new top level operator stacked on top of the
existing kernel flow and function call operators. This new
operator implements a driver loop that pulls on these events
and calls into the weaving runtime whenever an event of
interest is recognized. Tralfamadore also supports tracking
the state of registers and provides a memory index which
supports efficiently finding the last update to a given mem-
ory address range. We use both of these features to support
callbacks from the weaving runtime to inspect guest state.

3.2.3 Deterministic Replay Runtime
We have also implemented a retroactive weaving runtime

directly into a virtual machine monitor (QEMU) which we
have enhanced to perform deterministic execution record-
ing and replay [11]. It records all non-deterministic events
(such as external interrupts or reads of the CPU timestamp
counter) occurring during execution so that they may be
injected at the same point in execution during replay.

We have also added hooks into QEMU to register call-
backs that can be invoked before and after the execution of
any basic block. We use these hooks to track individual flows
of kernel execution similarly to Tralfamadore and to track
function calls and return. Whenever such an event occurs,
these hooks call into the retroactive weaving library, poten-
tially calling aspect code. Accessing guest state is much
more efficient than in the trace-based approach: it is sim-
ply a matter of mapping pointers into QEMU’s data struc-
ture representing the memory of the target virtual machine.
Compiled aspects and the retroactive weaving runtime are
loaded and unloaded into QEMU during replay using the
standard dynamic loaded library mechanism.

Deterministic recording and replay can be made very ef-
ficient through the use of CPU performance counters [11],
costing as little as 5% overhead in VMWare [23]. Our pro-
totype is much more expensive (approximately 20x) due to
its pure software implementation, which makes it easier to
hook instrumentation into replayed execution. As After-
Sight [8] demonstrated, it is possible to use low-overhead
hardware deterministic recording as the source for software
replay, and we hope to do this ourselves in future work.

4. FUTURE WORK
Because our tracing framework is limited to kernel mem-

ory space, our weaving tool is also limited to advising kernel
source code. The same techniques apply equally well to user-
level code, however, and we intend to extend our stack to
cover application source code as well as OS code. This will
open up many avenues for complex analysis, especially in
the areas of gathering statistics and searching for invariant
violations related to processes and threads.

We are in the process of porting several dynamic analy-
sis tools for Linux into aspects so that they can be applied
retroactively to deployed systems. We also plan to apply
the same approach to AspectJ using a suitable replay mech-
anism for Java, in order to demonstrate the generality of
retroactive AOP and to gain experience with applying it to
a more high-level language.

We intend to explore the possibility of also using point-
cuts and advice to explore hypothetical execution possibili-
ties by explicitly switching from deterministic replay to live
execution at a well-defined point. This would enable test-
ing potential bug fixes and patches while still holding the
execution up to the fork point fixed.

5. CONCLUSIONS
We have presented the concept of retroactive advice as a

unified, source-level approach to post hoc dynamic analy-
sis. We have also described our prototype implementation
of a retroactive advice weaver for ACC and identified areas
for future growth. We assert that running advice on prior
executions of a program opens up a wide range of analysis
applications that might otherwise be infeasible.

6. ACKNOWLEDGEMENTS
This paper is based upon work supported in part by an

NSERC CGS M fellowship.

7. REFERENCES
[1] VAssert programming guide, 2008.

[2] ACC: the AspeCt-oriented c compiler.
http://research.msrg.utoronto.ca/ACC, 2009.

[3] F. Bellard. QEMU, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
2005.

[4] E. Bodden and K. Havelund. Racer: effective race
detection using aspectj. In Proceedings of the 2008
international symposium on Software testing and
analysis, ISSTA ’08, pages 155–166, New York, NY,
USA, 2008. ACM. ACM ID: 1390650.

[5] F. Chen and G. Roşu. Mop: an efficient and generic
runtime verification framework. In ACM SIGPLAN
Notices, OOPSLA ’07, pages 569–588, New York, NY,
USA, 2007. ACM. ACM ID: 1297069.

[6] J. Choi and B. Alpern. DejaVu: Deterministic Java
Replay Debugger for Jalapeno Java Virtual Machine.
OOPSLA 2000 Companion, 2000.

[7] J. D. Choi, B. Alpern, T. Ngo, M. Sridharan, and
J. Vlissides. A perturbation-free replay platform for
cross-optimized multithreaded applications. In Parallel
and Distributed Processing Symposium., Proceedings
15th International, 2001.

[8] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling
dynamic program analysis from execution in virtual
environments. In USENIX Annual Technical
Conference, 2008.

[9] J. Cook and A. Nusayr. Using AOP for Detailed
Runtime Monitoring Instrumentation. In WODA
2008: the sixth international workshop on dynamic
analysis.

[10] L. Damas and R. Milner. Principal type-schemes for
functional programs. In Principles of Programming
Languages, Albuquerque, New Mexico, 1982.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. ReVirt: enabling intrusion analysis
through virtual-machine logging and replay. Operating
Systems Design and Implementation, 2002.

[12] S. F. Goldsmith, R. O’Callahan, and A. Aiken.
Relational queries over program traces. In
Object-Oriented Programming, Systems, Languages,
and Applications, page 402, 2005.

[13] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen.
Detecting past and present intrusions through
vulnerability-specific predicates. In Proceedings of the
twentieth ACM symposium on Operating systems
principles, SOSP ’05, pages 91–104, New York, NY,
USA, 2005. ACM.

[14] G. Lefebvre, B. Cully, M. J. Feeley, N. C. Hutchinson,
and A. Warfield. Tralfamadore: unifying source code
and execution experience. In EuroSys, 2009.

[15] B. Lewis. Debugging backwards in time. In Automated
and Analysis-Driven Debugging, 2003.

[16] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In
Programming Language Design and Implementation,
2005.

[17] G. Necula, S. McPeak, S. Rahul, and W. Weimer.
CIL: intermediate language and tools for analysis and
transformation of c programs. In Compiler
Construction. 2002.

[18] T. Ngo and J. Barton. Debugging by remote
reflection. In Euro-Par 2000 Parallel Processing, pages
1031–1038, 2000.

[19] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn.
Parallelizing security checks on commodity hardware.
In Architectural Support for Programming Languages
and Operating Systems, 2008.

[20] A. Orso and B. Kennedy. Selective capture and replay
of program executions. In ACM SIGSOFT Software
Engineering Notes, volume 30, pages 1–7, New York,
NY, USA, May 2005. ACM. ACM ID: 1083251.

[21] G. Pothier, É. Tanter, and J. Piquer. Scalable
omniscient debugging. ACM SIGPLAN Notices,
42(10), 2007.

[22] V. Schuppan, M. Baur, and A. Biere. JVM
independent replay in java. Electronic Notes in
Theoretical Computer Science, 113:85–104, Jan. 2005.

[23] M. X. Sheldon, G. V. Weissman, and V. M. Inc.
Retrace: Collecting execution trace with virtual
machine deterministic replay. In Modeling,
Benchmarking and Simulation, 2007.

[24] A. Srivastava and A. Eustace. ATOM: a system for
building customized program analysis tools. In
Proceedings of the ACM SIGPLAN 1994 conference
on Programming language design and implementation,
pages 196–205, Orlando, Florida, United States, 1994.
ACM.

