
Parallax: Virtual Disks for Virtual Machines

Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre,
Michael J. Feeley, Norman C. Hutchinson, and Andrew Warfield∗

{dmeyer, gitika, brendan, geoffrey, feeley, norm, andy}@cs.ubc.ca
Department of Computer Science

University of British Columbia
Vancouver, BC, Canada

ABSTRACT
Parallax is a distributed storage system that uses virtualization to
provide storage facilities specifically for virtual environments. The
system employs a novel architecture in which storage features that
have traditionally been implemented directly on high-end storage
arrays and switches are relocated into a federation ofstorage VMs,
sharing the same physical hosts as the VMs that they serve. This
architecture retains the single administrative domain andOS ag-
nosticism achieved by array- and switch-based approaches,while
lowering the bar on hardware requirements and facilitatingthe de-
velopment of new features. Parallax offers a comprehensiveset of
storage features including frequent, low-overhead snapshot of vir-
tual disks, the “gold-mastering” of template images, and the ability
to use local disks as a persistent cache to dampen burst demand on
networked storage.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Storage Hier-
archies; D.4.7 [Operating Systems]: Organization and Design—
Distributed Systems

General Terms
Design, Experimentation, Measurement, Performance

1. INTRODUCTION
In current deployments of hardware virtualization, storage facil-

ities severely limit the flexibility and freedom of virtual machines.
Perhaps the most important aspect of the resurgence of virtu-

alization is that it allows complex modern software–the operating
system and applications that run on a computer–to be completely
encapsulated in a virtual machine. The encapsulation afforded by
the VM abstraction is without parallel: it allows whole systems to
easily be quickly provisioned, duplicated, rewound, and migrated
across physical hosts without disrupting execution. The benefits of

∗also of XenSource, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

this encapsulation have been demonstrated by numerous interest-
ing research projects that allow VMs to travel through space[24, 2,
13], time [4, 12, 32], and to be otherwise manipulated [30].

Unfortunately, while both system software and platform hard-
ware such as CPUs and chipsets have evolved rapidly in support
of virtualization, storage has not. While “storage virtualization” is
widely available, the term is something of a misnomer in thatit is
largely used to describe the aggregation and repartitioning of disks
at very coarse time scales for use by physical machines. VM de-
ployments are limited by modern storage systems because thestor-
age primitives available for use by VMs are not nearly as nimble
as the VMs that consume them. Operations such as remapping vol-
umes across hosts and checkpointing disks are frequently clumsy
and esoteric on high-end storage systems, and are simply unavail-
able on lower-end commodity storage hardware.

This paper describesParallax, a system that attempts touse vir-
tualization in order to provide advanced storage servicesfor virtual
machines. Parallax takes advantage of the structure of a virtualized
environment to move storage enhancements that are traditionally
implemented on arrays or in storage switches out onto the consum-
ing physical hosts. Each host in a Parallax-based cluster runs a
storage VM, which is a virtual appliance [23] specifically for stor-
age that serves virtual disks to the VMs that run alongside it. The
encapsulation provided by virtualization allows these storage fea-
tures to remain behind the block interface, agnostic to the OS that
uses them, while moving their implementation into a contextthat
facilitates improvement and innovation.

Parallax is effectively a cluster volume manager for virtual disks:
each physical host shares access to a single, globally visible block
device, which is collaboratively managed to present individual vir-
tual disk images (VDIs) to VMs. The system has been designed
with considerations specific to the emerging uses of virtualma-
chines, resulting in some particularly unusual directions. Most no-
tably, we desire very frequent (i.e., every 10ms) snapshots. This
capability allows the fine-grained rewinding of the disk to arbitrary
points in its history, which makes virtual machine snapshots much
more powerful. In addition, since our goal is to present virtual
disks to VMs, we intentionally do not support sharing of VDIs.
This eliminates the requirement for a distributed lock manager, and
dramatically simplifies our design.

In this paper, we describe the design and implementation of Par-
allax as a storage system for the Xen virtual machine monitor. We
demonstrate that the VM-based design allows Parallax to be imple-
mented in user-space, allowing for a very fast development cycle.
We detail a number of interesting aspects of Parallax: the optimiza-
tions required to maintain high throughput over fine grainedblock
addressing, our fast snapshot facility, and the ability to mitigate
congestion of shared storage by caching to local disks.

1.1 Related Work
Despite the many storage-related challenges present in virtual-

ized environments, we are aware of only two other storage sys-
tems that cater specifically to VM deployments: Ventana [20]and
VMware’s VMFS [29].

Ventana attempts to provide support for virtual machines atthe
file system level, effectively virtualizing the file system namespace
and allowing individual VMs to share underlying file objectswhere
possible. File system virtualization is a fundamentally different ap-
proach to the block-level virtualization provided by Parallax. Ven-
tana provides an improved degree of “transparency” into thecon-
tents of virtual disks, but sacrifices generality in order toachieve
it. Windows VMs, for instance, cannot be hosted off of the NFS
interface that the Ventana server presents. Ventana’s authors do
not evaluate its performance, but do mention that the systemsuf-
fers as the number of branches (equivalent to snapshots in Parallax)
increases.

VMFS is a commercial block-level storage virtualization sys-
tem intended for use with VMware ESX. VMFS is certainly the
most similar known system to Parallax; both approaches specifi-
cally address virtualized environments by providing distributed fa-
cilities to convert one large shared volume into a number of virtual
disks for use by VMs. As it is proprietary software, little isknown
about the internals of VMFS’s design. However, it acts largely as
a cluster file system, specifically tuned to host image files. Virtual
disks themselves are stored within VMFS as VMDK [28] images.
VMDK is a image format for virtual disks, similar to QCOW [17]
and VHD [18], which provides sparseness and allows images to
be “chained”. The performance of chained images decays linearly
as the number of snapshots increases in addition to imposingover-
heads for open file handles and in-memory caches for each open
image. In addition to chaining capabilities provided by VMDK,
VMFS employs a redo log-based checkpoint facility that has con-
siderable performance limitations [26]. Parallax directly manages
the contents of disk images, and provides fine-grained sharing and
snapshots as core aspects of its design.

Another approach that addresses issues similar to those of Paral-
lax has been undertaken in recent work by the Emulab developers
at the University of Utah [5]. In order to provide snapshots for Xen-
based VMs, the researchers modified Linux LVM (Logical Volume
Management) to provide a branching facility. No details arecur-
rently available on this implementation.

Beyond VM-specific approaches, many other systems provide
virtual volumes in block-level storage, most notably FAB [7] and
its predecessor Petal [14]. Both systems, particularly FAB, aim to
provide a SAN-like feature set at a low total system cost. Both
systems also support snapshots; the ability to snapshot in FAB is
best manifest in Olive [10, 1].

Parallax differs from these prior block-level virtual disksystems
in three ways. First, Parallax assumes the availability of asingle
shared block device, such as an iSCSI or FiberChannel LUN, NFS-
based file, or Petal-like virtual disk, while FAB and similarsys-
tems compose a shared volume from a federation of storage de-
vices. Whereas other systems must focus on coordination among
distributed storage nodes, Parallax focuses on coordinating dis-
tributed clients sharing a network attached disk. By relying on vir-
tualized storage in this manner, we address fundamentally different
challenges. Second, because we provide the abstraction of alocal
disk to virtualized guest operating systems, we can make a reason-
able assumption that disk images will be single-writer. This simpli-
fies our system and enables aggressive performance optimization.
Third, Parallax’s design and virtualized infrastructure enables us to
rethink the traditional boundaries of a network storage system. In

Physical Hosts

Storage

Appliance

VM

VM

VMM (Xen)

VM VM

Storage

Appliance

VM

VM

VMM (Xen)

VM VM

Storage

Appliance

VM

VM

VMM (Xen)

VM VM

Storage

Appliance

VM

Storage

Appliance

VM

Storage

Appliance

VM

Storage Administration Domain
Storage functionality such as snapshot

facilities that are traditionally

implemented within storage devices

are pushed out into per-host storage

appliance VMs, which interact with a

simple shared block device and may

also use local physical disks.

Shared Block Device
Any network block device

may be used: FC, iSCSI,

AoE, GNBD, NFS-based

!le, Petal, etc.

Figure 1: Parallax is designed as a set of per-host storage appli-
ances that share access to a common block device, and present
virtual disks to client VMs.

addition, among block-level virtualization systems, onlyOlive [1]
has a snapshot of comparable performance to ours. Olive’s snap-
shots have more complicated failure semantics than those ofParal-
lax and the system imposes delays on write operations issueddur-
ing a snapshot.

WAFL [9] has very similar goals to those of Parallax, and as
a consequence results in a very similar approach to block address
virtualization. WAFL is concerned with maintaining historical ver-
sions of the files in a network-attached storage system. It uses tree-
based mapping structures to represent divergences betweensnap-
shots and to allow data to be written to arbitrary locations on the
underlying disk. Parallax applies similar techniques at a finer gran-
ularity allowing snapshots of individual virtual disks, effectively
the analogue of a single file in a WAFL environment. Moreover,
Parallax has been designed to support arbitrary numbers of snap-
shots, as opposed to the hard limit of 255 snapshots available from
current WAFL-based systems.

Many other systems have provided snapshots as a storage sys-
tem feature, ranging from file system-level support in ZFS [22] to
block-level volume management systems like LVM2 [21]. In ev-
ery case these systems suffer from either a limited range of sup-
ported environments, severely limited snapshot functionality, or
both. These limitations make them ill-suited for general deploy-
ment in virtualized storage infrastructures.

2. CLUSTERED STORAGE APPLIANCES
Figure 1 presents a high-level view of the structure of a Parallax-

based cluster. Parallax provides block virtualization by interposing
between individual virtual machines and the physical storage layer.
The virtualized environment allows the storage virtualization ser-
vice to be physically co-located with its clients. From an architec-
tural perspective, this structure makes Parallax unique: the storage
system runs in an isolated VM on each host and is administratively
separate from the client VMs running alongside it; effectively, Par-
allax allows the storage system to be pushed out to include slices
of each machine that uses it.

In this section, we describe the set of specific design consider-
ations that have guided our implementation, and then present an
overview of the system’s structure.

Shared Block Device

Physical Host D

Storage Paravirtual VM Fully Virtualized VM

sical

thernet

er

allax

VDI

VMM (Xen)

Physical Host A

Storage Appliance VMParavirtual VM Fully Virtualized VM

tapdisk

emulated

block requests
paravirtual block requests

device

emulator

blktap
blkfront physical

SCSI

driver

physical

SCSI

driver

physical

Ethernet

driver

parallax

VDIVDI

Storage Paravirtual VM Fully Virtualized VM

avi t al bl ck equests

d vi

r sical

thernet

allax

Storage Paravirtual VM Fully Virtualized VM

sical

thernet

er

allax

VDI

VMM (Xen)

blkfblkfronto

devic

emulat

thernetthernet

devic

thernet

paravirr rtual block requestsparavir rtual block requests
VMM VMM VMM VMM VMM (((XXen)en)en)

Physical Host Csical Host Csical Host Csical Host Csical Host C

Storage age age age age age emulemulAemulemulpplianpplianpplianemulemulaattParaaavivivirtual VM Fullyullyullyully Virtualized VM

thernetthernet

tapdisktapdisktapdisktapdisktapdisk

eeemmmulaulaulattted ed ed

blblblooock ck ck rrrequestsequestsequests
paravirr rtual block requests

devivivivivicccee

emulemulemulemulemulaattororor

blkfronnnt physicalsicalsicalsical

SCSISCSISCSI

dridridrivvv

VMM (Xen)

Physical Host B

Storage Appliance VMParavirtual VM Fully Virtualized VM

tapdisk

emulated

block requests
paravirtual block requests

device

emulator

blktap
blkfront physical

SCSI

driver

physical

SCSI

driver

physical

Ethernet

driver

parallax

VDIVDI

Figure 2: Overview of the Parallax system architecture.

2.1 Design Considerations
Parallax’s design is based on four high-level themes:
Agnosticism and isolation. Parallax is implemented as a col-

laborative set of storageappliances; as shown in Figure 1, each
physical host in a cluster contains astorage VM which is responsi-
ble for providing storage to other virtual machines runningon that
host. This VM isolates storage management and delivery to a single
container that is administratively separate from the rest of the sys-
tem. This design has been used previously to insulate running VMs
from device driver crashes [6, 15], allowing drivers to be transpar-
ently restarted. Parallax takes this approach a step further to isolate
storage virtualization in addition to driver code.

Isolating storage virtualization to individual per-host VMs re-
sults in a system that is agnostic to both the OSes that run in other
VMs on the host, and the physical storage that backs VM data. A
single cluster-wide administrator can manage the Parallaxinstances
on each host, unifying the storage management role.

Blocks not files.In keeping with the goal of remaining agnostic
to OSes running within individual VMs, Parallax operates atthe
block, rather than file-system, level. Block-level virtualization pro-
vides a narrow interface to storage, and allows Parallax to present
simple virtual disks to individual VMs. While virtualization at the
block level yields an agnostic and simple implementation, it also
presents a set of challenges. The “semantic gap” introducedby
virtualizing the system at a low level obscures higher-level infor-
mation that could aid in identifying opportunities for sharing, and
complicates request dependency analysis for the disk scheduler, as
discussed in Section 5.1.

Minimize lock management. Distributed storage has histori-
cally implied some degree of concurrency control. Write shar-
ing of disk data, especially at the file system level, typically in-
volves the introduction of some form of distributed lock manager.
Lock management is a very complex service to provide in a dis-
tributed setting and is notorious for difficult failure cases and re-
covery mechanisms. Moreover, although write conflict resolution
is a well-investigated area of systems research, it is one for which
no general solutions exist.

Parallax’s design is premised on the idea that data sharing in a
cluster environment should be provided by application-level ser-
vices with clearly defined APIs, where concurrency and conflicts
may be managed with application semantics in mind. Therefore,
it explicitly excludes support for write-sharing of individual virtual
disk images. The system ensures that each VDI has at most one
writer, greatly reducing the need for concurrency control.Some

degree of concurrency management is still required, but only when
performing administrative operations such as creating newVDIs,
and in very coarse-grained allocations of writable areas ondisk.
Locking operations are explicitly not required as part of the normal
data path or for snapshot operations.

Snapshots as a primitive operation. In existing storage sys-
tems, the ability to snapshot storage has typically been implemented
as an afterthought, and for very limited use cases such as thesup-
port of backup services. Post-hoc implementations of snapshot fa-
cilities are typically complex, involve inefficient techniques such
as redo logs [29], or impose hard limits on the maximum num-
ber of snapshots [9]. Our belief in constructing Parallax has been
that the ability to take and preserve very frequent, low-overhead
snapshots is an enabling storage feature for a wide variety of VM-
related applications such as high-availability, debugging, and con-
tinuous data protection. As such, the system has been designed to
incorporate snapshots from the ground up, representing each vir-
tual disk as a set of radix-tree based block mappings that maybe
chained together as a potentially infinite series of copy-on-write
(CoW) instances.

2.2 System structure
Figure 2 shows an overview of Parallax’s architecture and allows

a brief discussion of components that are presented in more detail
throughout the remainder of the paper.

As discussed above, each physical host in the cluster contains a
storage appliance VM that is responsible for mediating accesses to
an underlying block storage device by presenting individual virtual
disks to other VMs running on the host. This storage VM allowsa
single, cluster-wide administrative domain, allowing functionality
that is currently implemented within enterprise storage hardware to
be pushed out and implemented on individual hosts. The result is
that advanced storage features, such as snapshot facilities, may be
implemented in software and delivered above commodity network
storage targets.

Parallax itself runs as a user-level daemon in the Storage Ap-
pliance VM, and uses Xen’sblock tap driver [31] to handle block
requests. The block tap driver provides a very efficient interface for
forwarding block requests from VMs to daemon processes thatrun
in user space of the storage appliance VM. The user space portion
of block tap defines an asynchronous disk interface and spawns
a tapdisk process when a new VM disk is connected. Parallax is
implemented as a tapdisk library, and acts as a single block virtual-
ization service for all client VMs on the physical host.

Each Parallax instance shares access to a single shared block de-

vice. We place no restrictions as to what this device need be,so
long as it is sharable and accessible as a block target in all stor-
age VM instances. In practice we most often target iSCSI devices,
but other device types work equally well. We have chosen that
approach as it requires the lowest common denominator of shared
storage, and allows Parallax to provide VM storage on the broadest
possible set of targets.

Virtual machines that interact with Parallax are presentedwith
entire virtual disks. Xen allows disks to be accessed using both
emulated and paravirtualized interfaces. In the case of emulation,
requests are handled by a device emulator that presents an IDE
controller to the client VM. Emulated devices generally have poor
performance, due to the context switching required to emulate in-
dividual accesses to device I/O memory. For performance, clients
may install paravirtual device drivers, which are written specifically
for Xen-based VMs and allow a fast, shared-memory transporton
which batches of block requests may be efficiently forwarded. By
presenting virtual disks over traditional block device interfaces as a
storage primitive to VMs, Parallax supports any OS capable of run-
ning on the virtualized platform, meeting the goal of agnosticism.

The storage VM is connected directly to physical device hard-
ware for block and network access. Including physical blockde-
vice drivers in the storage VM allows a storage administrator the
ability to do live upgrades of block device drivers in an active clus-
ter. This is an area of future exploration for us, but a very similar
approach has been described previously [6].

3. VIRTUAL DISK IMAGES
Virtual Disk Images (VDIs) are the core abstraction provided by

Parallax to virtual machines. A VDI is a single-writer virtual disk
which may be accessed in a location-transparent manner fromany
of the physical hosts in the Parallax cluster. Table 1 presents a
summary of the administrative operations that may be performed
on VDIs; these operations are available through the commandline
of the storage VM. There are three core operations, allowingVDIs
to be created, deleted, and snapshotted. These are the only oper-
ations required to actively manage VDIs; once created, theymay
be attached to VMs as would any other block device. In addition
to the three core operations, Parallax provides some convenience
operations that allow an administrator to view catalogues of VDIs,
snapshots associated with a particular VDI, and to “tag” particular
snapshots with a human-readable alias, facilitating creation of new
VDIs based on that snapshot in the future. An additional conve-
nience function produces a simple visualization of the VDIsin the
system as well as tagged snapshots.

3.1 VDIs as Block Address Spaces
In order to achieve the design goals that have been outlined re-

garding VDI functionality, in particular the ability to take fast and
frequent snapshots, Parallax borrows heavily from techniques used
to manage virtual memory. A Parallax VDI is effectively a sin-
gle block address space, represented by a radix tree that maps vir-
tual block addresses to physical block addresses. Virtual addresses
are a continuous range from zero to the size of the virtual disk,
while physical addresses reflect the actual location of a block on
the shared blockstore. The current Parallax implementation maps
virtual addresses using 4K blocks, which are chosen to intention-
ally match block sizes used on x86 OS implementations. Mappings
are stored in 3-level radix trees, also based on 4K blocks. Each of
the radix metadata pages stores 512 64-bit global block address
pointers, and the high-order bit is used to indicate that a link is
read-only. This layout results in a maximum VDI size of 512GB
(9 address bits per tree-level, 3 levels, and 4K data blocks yields

 w 00
...

w 11

 w 00
...

w 11

 w 00
...

w 11

 w 00
...

w 11

 r 00
...

w 11

 w 00
...

w 11

 r 00
...

w 11

 w 00
...

w 11

 w 00
...

w 11

 w 00
...

w 11

 w 00
...

w 11

 r 00
...

w 11

Previous
Radix Root

Current
Radix Root

VDI Record

Snapshot Log VDI Address Mapping Metadata Data Blocks

last_snapshot
radix_root

capacity
...

parent_log

2007.3.2
23:10:12.59

2007.3.2
23:40:12.23

Read-only Link

Writable Link

Radix mappings:

Figure 3: Parallax radix tree (simplified with short addresses)
and COW behaviour.

2
9∗3

∗ 2
12

= 2
39

= 512GB). Adding a level to the radix tree ex-
tends this by a factor of29 to 256TB and has a negligible effect
on performance for small volumes (less than 512GB) as only one
additional metadata node per active VDI need be cached. Paral-
lax’s address spaces are sparse; zeroed addresses indicatethat the
range of the tree beyond the specified link is non-existent and must
be allocated. In this manner, the creation of new VDIs involves
the allocation of only a single, zeroed, root block. Parallax will
then populate both data and metadata blocks as they are written to
the disk. In addition to sparseness, references can be shared across
descendant radix trees in order to implement snapshots.

3.2 Snapshots
A snapshot in Parallax is a read-only image of an entire disk at

a particular point in time. Like many other systems, Parallax al-
ways ensures that snapshots arecrash consistent, which means that
snapshots will capture a file system state that could have resulted
from a crash [1] [14] [19] [27] [20]. While this may necessitate
running an application or file system level disk check such asfsck,
it is unlikely that any block-level system can offer stronger guaran-
tees about consistency without coordination with applications and
file systems.

Snapshots can be taken of a disk not currently in use, or they
can be taken on a disk during its normal operation. In this latter
case, the snapshot semantics are strictlyasynchronous; snapshots
are issued directly into the stream of I/O requests in a manner sim-
ilar to write barriers. The snapshot is said to be “complete”when
the structures associated with the snapshot are correctly placed on
disk. These snapshot semantics enable Parallax to completea snap-
shot without pausing or delaying the I/O requests, by allowing both
pre-snapshot and post-snapshot I/O to complete on their respective
views of the disk after the completion of the snapshot. Such an
approach is ideal when issuing snapshots in rapid succession since
the resulting snapshots have very little overhead, as we will show.

To implement snapshots, we use the high-order bit of block ad-
dresses in the radix tree to indicate that the block pointed to is
read-only. All VDI mappings are traversed from a given radixroot
down the tree, and a read-only link indicates that the entiresubtree
is read-only. In taking a snapshot, Parallax simply copies the root
block of the radix tree and marks all of its references as read-only.
The original root need not be modified as it is only referencedby
a snapshot log that is implicitly read-only. The entire process usu-
ally requires just three block-write operations, two of which can be
performed concurrently.

The result of a snapshot is illustrated in Figure 3. The figure

create(name, [snapshot]) → VDI_id Create a new VDI, optionally based on an existing snapshot. The provided name is for administrative
convenience, whereas the returned VDI identifier is globally unique.

delete(VDI_id) Mark the specified VDI as deleted. When the garbage collectoris run, the VDI and all snapshots are freed.
snapshot(VDI_id) → snap_id Request a snapshot of the specified VDI.
list() → VDI_list Return a list of VDIs in the system.
snap_list(VDI_id) → snap_list Return the log of snapshots associated with the specified VDI.
snap_label(snap_id, name) Label the specified snapshot with a human-readable name.
tree() → (tree view of VDIs) Produce a diagram of the current system-wide VDI tree (see Figure 4 for an example.)

Table 1: VDI Administrative Interfaces.

[root]

NetB SD Pristine
Sept 6 01:20:39 2007
snapid: (1050704,10)

10 snapshots

Fedora Core 6 Pristine
Sept 6 10:19:03 2007
snapid: (1871224,2)

2 snapshots

Windows 2003 Pristine
Sept 7 08:38:55 2007
snapid: (3746722,1)

1 snapshots

NetB SD testbox
Sept 6 02:34:23 2007

V DI id: 2

2 snapshots

Fedora Core 6 install
Sept 6 12:23:51 2007

V DI id:1

1 snapshots

W2K 3 image 1
Sept 7 11:13:51 2007

V DI id: 311 snapshots

W2K 3 image 2
Sept 7 11:14:26 2007

V DI id: 4

1 snapshots

W2K 3 image 3
Sept 7 11:14:32 2007

V DI id: 5

1 snapshots

Figure 4: VDI Tree View—Visualizing the Snapshot Log.

shows a simplified radix tree mapping six-bit block addresses with
two address bits per radix page. In the figure, a VDI has had a
snapshot taken, and subsequently had a block of data writtenat
virtual block address111111 (binary). The snapshot operation
copies the radix tree root block and redirects the VDI recordto
point to the new root. All of the links from the new root are made
read-only, as indicated by the “r” flags and the dashed grey arrows
in the diagram.

Copying a radix tree block always involves marking all links
from that block as read-only. A snapshot is completed using one
such block copy operation, following which the VM continuesto
run using the new radix tree root. At this point, data writes may
not be applied in-place as there is no direct path of writablelinks
from the root to any data block. The write operation shown in the
figure copies every radix tree block along the path from the root to
the data (two blocks in this example) and the newly-copied branch
of the radix tree is linked to a freshly allocated data block.All links
to newly allocated (or copied) blocks are writable links, allowing
successive writes to the same or nearby data blocks to proceed with
in-place modification of the radix tree. The active VDI that results
is a copy-on-write version of the previous snapshot.

The address of the old radix root is appended, along with the
current time-stamp, to asnapshot log. The snapshot log represents
a history of all of a given VDI’s snapshots.

Parallax enforces the invariant that radix roots in snaplogs are
immutable. However, they may be used as a reference to createa
new VDI. The common approach to interacting with a snapshot is
to create a writable VDI clone from it and to interact with that. A
VM’s snapshot log represents a chain of dependent images from
the current writable state of the VDI, back to an initial disk. When
a new VDI is created from an existing snapshot, its snapshot log is
made to link back to the snapshot on which it is based. Therefore,

the set of all snapshot logs in the system form a forest, linking all
of the radix roots for all VDIs, which is what Parallax’s VDI tree
operation generates, as shown in Figure 4. This aggregate snaplog
tree is not explicitly represented, but may be composed by walking
individual logs backwards from all writable VDI roots.

From a single-host perspective, the VDI and its associated radix
mapping tree and snapshot logs are largely sufficient for Parallax
to operate. However, these structures present several interesting
challenges that are addressed in the following sections. Section 4
explains how the shared block device is managed to allow multi-
ple per-host Parallax instances to concurrently access data without
conflicts or excessive locking complexity. Parallax’s radix trees,
described above, are very fine grained, and risk the introduction
of a great deal of per-request latency. The system takes consider-
able effort, described in Section 5, to manage the request stream to
eliminate these overheads.

4. THE SHARED BLOCKSTORE
Traditionally, distributed storage systems rely on distributed lock

management to handle concurrent access to shared data structures
within the cluster. In designing Parallax, we have attempted to
avoid distributed locking wherever possible, with the intention that
even in the face of disconnection1 or failure, individual Parallax
nodes should be able to continue to function for a reasonableperiod
of time while an administrator resolves the problem. This approach
has guided our management of the shared blockstore in determin-
ing how data is laid out on disk, and where locking is required.

4.1 Extent-based Access
The physical blockstore is divided, at start of day, into fixed-size

extents. These extents are large (2GB in our current implementa-
tion) and represent a lockable single-allocator region. “Allocators”
at the this level are physical hosts—Parallax instances—rather than
the consumers of individual VDIs. These extents are typed; with
the exception of a special system extent at the start of the block-
store, extents either contain data or metadata. Data extents hold the
actual data written by VMs to VDIs, while metadata extents hold
radix tree blocks and snapshot logs. This division of extentcontent
is made to clearly identify metadata, which facilitates garbage col-
lection. In addition, it helps preserve linearity in the placement of
data blocks, by preventing metadata from becoming intermingled
with data. Both data and metadata extents start with an allocation
bitmap that indicates which blocks are in use.

When a Parallax-based host attaches to the blockstore, it will
exclusively lock a data and a metadata extent for its use. At this
point, it is free to modify unallocated regions of the extentwith
no additional locking.2 In order to survive disconnection from the

1This refers to disconnection from other hosts. A connectionto the
actual shared blockstore is still required to make forward progress.
2This is a white lie – there is a very coarse-grained lock on the
allocation bitmaps used with the garbage collector, see Section 4.3.

Extent Catalogue
1 M Unlocked

...

n-2 M plx2.cs.ubc

n-1 D plx2.cs.ubc

Blocksore Global Lock

VDI Lock:

All witable data referenced by a

VDI is protected by the VDI lock,

irrespective of the extent that it is in.

Extent Locks:

Extents are locked by a single host, as indicated in

the extent catalogue. That host is free to allocate

new blocks in grey above within these.

Type: Super

Extent 0

VDI 19 locked by

host plx2.

Extents n-2 and n-1 locked by host plx2.

Extent 1 Extent n-2 Extent n-1

Type: Metadata

Allocation bitmap

Type: Metadata Type: Data

VDI Registry
...

VDI 19

 Dutch’s W2K3tst

 plx2.cs.ubc

 radix_rt:

 snaplog:

...

VDI 373

 DSG Wiki VM

 plx4.cs.ubc

 radix_rt:

 snaplog:

...

VDI 885

 Testbed VM

 [unlocked]

 radix_rt:

 snaplog:

...

...

Allocation bitmap Allocation bitmap

VDI 373 locked by

host plx4 (not shown)

Locking in parallax ensures

that writes cannot con!ict

and keeps node allocation

from becoming a bottleneck

on the data path.

Inactive VDIs

remain

unlocked

Full extents remain locked,

and may not be claimed by

any host

Extent 2

Type: Data

Allocation bitmap

All blocks in use

Extent Locks:

Extents are locked by a single host, as indicated in

the extent catalogue. That host is free to allocate

new blocks in grey above within these.

Extent n-2 Extent n-1

Type: Metadata Type: Data

Allocation bitmap Allocation bitmap

...

VDI 19

 Dutch’s W2K3tst

 plx2.cs.ubc

 radix_rt:

 snaplog:

...

VDI 373

 DSG Wiki VM

 plx4.cs.ubc

 radix_rt:

 snaplog:

...

...

Figure 5: Blockstore Layout.

lock manager, Parallax nodes may lock additional unused extents
to allow room for additional allocation beyond the capacityof ac-
tive extents. We will likely optimize this further in the future by
arranging for connected Parallax instances to each lock a share of
the unallocated extents, further reducing the already verylimited
need for allocation-related locking.

The system extent at the front of the blockstore contains a small
number of blockstore-wide data structures. In addition to system-
wide parameters, like the size of the blockstore and the sizeof ex-
tents, it has a catalogue of all fixed-size extents in the system, their
type (system, data, metadata, and unused), and their current lock-
holder. It also contains the VDI registry, a tree of VDI structs, each
stored in an individual block, describing all active VDIs inthe sys-
tem. VDIs also contain persistent lock fields and may be locked by
individual Parallax instances. Locking a VDI struct provides two
capabilities. First, the locker is free to write data withinthe VDI
struct, as is required when taking a snapshot where the radixroot
address must be updated. Second, with the VDI struct locked,a
Parallax instance is allowed to issue in-place writes toany blocks,
data or metadata, referenced as writable through the VDI’s radix
root. The second of these properties is a consequence of the fact
that a given (data or metadata) block is only ever marked writable
within a single radix tree.

Figure 5 illustrates the structure of Parallax’s blockstore, and
demonstrates how extent locks allow a host to act as a single writer
for new allocations within a given extent, while VDI locks allow
access to allocated VDI blocks across all extents on the blockstore.

4.2 Lock Management
The protocols and data structures in Parallax have been care-

fully designed to minimize the need for coordination. Locking is
required only for infrequent operations: to claim an extentfrom
which to allocate new data blocks, to gain write access to an in-
active VDI, or to create or delete VDIs. Unless an extent has ex-
hausted its free space, no VDI read, write, or snapshot operation
requires any coordination at all.

The VDI and extent locks work in tandem to ensure that the VDI
owner can safely write to the VDI irrespective of its physical loca-
tion in the cluster, even if the VDI owner migrates from one host

to another while running. The Parallax instance that holds the VDI
lock is free to write to existing writable blocks in that VDI on any
extent on the shared blockstore. Writes that require allocations,
such as writes to read-only or sparse regions of a VDI’s address
space, are allocated within the extents that the Parallax instance
has locked. As a VM moves across hosts in the cluster, its VDI
is managed by different Parallax instances. The only effectof this
movement is that new blocks will be allocated from a different ex-
tent.

The independence that this policy affords to each Parallax in-
stance improves the scalability and reliability of the entire cluster.
The scalability benefits are clear: with no lock manager acting as
a bottleneck, the only limiting factor for throughput is theshared
storage medium. Reliability is improved because Parallax instances
can continue running in the absence of a lock manager as long
as they have free space in the extents they have already claimed.
Nodes that anticipate heavy block allocation can simply lock extra
extents in advance.

In the case that a Parallax instance has exhausted its free space
or cannot access the shared block device, the local disk cache de-
scribed in Section 6.2.5 could be used for temporary storageuntil
connectivity is restored.

Because it is unnecessary for data access, the lock manager can
be very simple. In our implementation we designate a single node
to be the lock manager. When the manager process instantiates, it
writes its address into the special extent at the start of theblock-
store, and other nodes use this address to contact the lock man-
ager with lock requests for extents or VDIs. Failure recovery is not
currently automated, but the system’s tolerance for lock manager
failure makes manual recovery feasible.

4.3 Garbage Collection
Parallax nodes are free to allocate new data to any free blocks

within their locked extents. Combined with the copy-on-write na-
ture of Parallax, this makes deletion a challenge. Our approach
to reclaiming deleted data is to have users simply mark radixroot
nodes as deleted, and to then run a garbage collector that tracks
metadata references across the entire shared blockstore and frees
any unallocated blocks.

Algorithm 1 The Parallax Garbage Collector

1. Checkpoint Block Allocation Maps (BMaps) of extents.
2. Initialize the Reachability Map (RMap) to zero.
3. For each VDI in the VDI registry:

If VDI is not marked as deleted:
Mark its radix root in the RMap.
For each snapshot in its snaplog

If snapshot is not marked as deleted:
Mark its radix root in the RMap.

4. For each Metadata extent:
Scan its RMap. If a page is marked:

Mark all pages (in the RMap) that it points to.
5. Repeat step 4 for each level in the radix tree.
6. For each VDI in the VDI registry:

If VDI is marked as not deleted:
Mark each page of its snaplog in the RMap.

7. For each extent:
Lock the BMap.
For each unmarked bit in the RMap:

If it is marked in the BMap as well as in the
checkpointed copy of the BMap :

Unmark the BMap entry and reclaim the block.
Unlock the BMap.

Parallax’s garbage collector is described as Algorithm 1. It is
similar to a mark-and-sweep collector, except that it has a fixed,
static set of passes. This is possible because we know that the max-
imum length of any chain of references is the height of the radix
trees. As a result we are able to scan the metadata blocks in (disk)
order rather than follow them in the arbitrary order that they appear
in the radix trees. The key data structure managed by the garbage
collector is theReachability Map (RMap), an in-memory bitmap
with one bit per block in the blockstore; each bit indicates whether
the corresponding block is reachable.

A significant goal in the design of the garbage collector is that
it interfere as little as possible with the ongoing work of Parallax.
While the garbage collector is running, Parallax instancesare free
to allocate blocks, create snapshots and VDIs, and delete snapshots
and VDIs. Therefore the garbage collector works on a “check-
point” of the state of the system at the point in time that it starts.
Step 1 takes an on-disk read-only copy of all block allocation maps
(BMaps) in the system. Initially, only the radix roots of VDIs and
their snapshots are marked as reachable. Subsequent passesmark
blocks that are reachable from these radix roots and so on. InStep
5, the entire RMap is scanned every time. This results in re-reading
nodes that are high in the tree, a process that could be made more
efficient at the cost of additional memory. The only blocks that
the collector considers as candidates for deallocation arethose that
were marked as allocated in the checkpoint taken in Step 1 (see Step
7). The only time that the collector interferes with ongoingParal-
lax operations is when it updates the (live) allocation bitmap for an
extent to indicate newly deallocated blocks. For this operation it
must coordinate with the Parallax instance that owns the extent to
avoid simultaneous updates, thus the BMap must be locked in Step
7. Parallax instances claim many free blocks at once when looking
at the allocation bitmap (currently 10,000), so this lock suffers little
contention.

We discuss the performance of our garbage collector during our
system evaluation in Section 6.2.3.

4.4 Radix Node Cache
Parallax relies on caching of radix node blocks to mitigate the

overheads associated with radix tree traversal. There are two as-
pects of Parallax’s design that makes this possible. First,single-
writer semantics of virtual disk images remove the need for any
cache coherency mechanisms. Second, the ratio of data to metadata
is approximately 512:1, which makes caching a large proportion of
the radix node blocks for any virtual disk feasible. With ourcurrent
default cache size of just 64MB we can fully accommodate a work-
ing set of nearly 32GB of data. We expect that a production-grade
Parallax system will be able to dedicate a larger portion of its RAM
to caching radix nodes. To maintain good performance, our cache
must be scaled linearly with the working set of data.

The cache replacement algorithm is a simple numerical hashing
based on block address. Since this has the possibility of thrashing
or evicting a valuable root node in favour of a low-level radix node,
we have plan to implement and evaluate a more sophisticated page
replacement algorithm in the future.

4.5 Local Disk Cache
Our local disk cache allows persistent data to be written by a

Parallax host without contacting the primary shared storage. The
current implementation is in a prototype phase. We envisionseveral
eventual applications for this approach. The first is to mitigate the
effects of degraded network operation by temporarily usingthe disk
as a cache. We evaluate this technique in Section 6.2.5. In the
future we plan to use this mechanism to support fully disconnected
operation of a physical host.

The local disk cache is designed as a log-based ring of write re-
quests that would have otherwise been sent to the primary storage
system. The write records are stored in a file or raw partitionon the
local disk. In addition to its normal processing, Parallax consumes
write records from the front of the log and sends them to the pri-
mary storage system. By maintaining the same write orderingwe
ensure that the consistency of the remote storage system is main-
tained. When the log is full, records must be flushed to primary
storage before request processing can continue. In the event of a
physical host crash, all virtual disks (which remain locked) must be
quiesced before the virtual disk can be remounted.

A drawback to this approach is that it incorporates the physical
host’s local disk into the failure model of the storage system. Users
must be willing to accept the minimum of the reliability of the local
disk and that of the storage system. For many users, this willmean
that a single disk is unacceptable as a persistent cache, andthat the
cache must be stored redundantly to multiple local disks.

5. THE BLOCK REQUEST STREAM
While Parallax’s fine-grained address mapping trees provide effi-

cient snapshots and sharing of block data, they risk imposing a high
performance cost on block requests. At worst, accessing a block on
disk can incur three dependent metadata reads that precede the ac-
tual data access. Given the high cost of access to block devices,
it is critical to reduce this overhead. However, Parallax ispresent-
ing virtual block devices to the VMs that use it; it must be careful
to provide the semantics that OSes expect from their disks. This
section discusses how Parallax aggressively optimizes theblock re-
quest stream while ensuring the correct handling of block data.

5.1 Consistency and Durability
Parallax is designed to allow guest operating systems to issue and

receive I/O requests with the same semantics that they wouldto a
local disk. VMs see a virtual SCSI-like block device; our current
implementation allows a guest to have up to 64 requests in-flight,

and in-flight requests may complete in any order. Parallax does not
currently support any form of tag or barrier operation, although this
is an area of interest for future work; at the moment guest OSes
must allow the request queue to drain in order to ensure that all
issued writes have hit the disk. We expect that the addition of bar-
riers will further improve our performance by better saturating the
request pipeline.

While in-flight requests may complete out of order, Parallaxmust
manage considerable internal ordering complexity. Consider that
eachlogical block request, issued by a guest, will result in a num-
ber of component block requests to read, and potentially update
metadata and finally data on disk. Parallax must ensure that these
component requests are carefully ordered to provide both the con-
sistency and durability expected by the VM. These expectations
may be satisfied through the following two invariants:

1. Durability is the guest expectation that acknowledged write
requests indicate that data has been written to disk.3 To pro-
vide durability, Parallax cannot notify the guest operating
system that a logical I/O request has completed until all com-
ponent I/O requests have committed to physical storage.

2. Consistency is the guest expectation that its individualblock
requests are atomic—that while system crashes may lose in-
flight logical requests, Parallax will not leave its own meta-
data in an invalid state.

In satisfying both of these properties, Parallax uses what are ef-
fectively soft updates [16]. All dependent data and metadata are
written to disk before updates are made that reference this data
from the radix tree. This ordering falls out of the copy-on-write
structure of the mapping trees, described in the previous section.
For any VDI, all address lookups must start at the radix root.When
a write is being made, either all references from the top of the tree
down to the data block being written are writable, in which case the
write may be made in-place, or there is an intermediate reference
that is read-only or sparse. In cases where such a reference exists,
Parallax is careful to write all tree data below that reference to disk
before updating the reference on disk. Thus, to satisfy consistency
for each logical request, Parallax must not modify nodes in the on-
disk tree until all component requests affecting lower levels of the
tree have been committed to disk.

We refer to the block that contains this sparse or read-only ref-
erence as acommit node, as updates to it will atomically add all of
the new blocks written below it to the lookup tree. In the caseof a
crash, some nodes may have been written to disk without theircom-
mit nodes. This is acceptable, because without being linkedinto a
tree, they will never be accessed, and the corresponding write will
have failed. The orphaned nodes can be returned to the blockstore
through garbage collection.

5.2 Intra-request Dependencies
Logical requests that are otherwise independent can share com-

mit nodes in the tree. During writes, this can lead to nodes upon
which multiple logical requests are dependent. In the case of a
shared commit node, we must respect the second invariant forboth
nodes independently. In practice this is a very common occurrence.

This presents a problem in scheduling the write of the shared
commit node. In Figure 6, we provide an example of this behaviour.
The illustration shows a commit node and its associated dataat
four monotonically increasing times. At each time, nodes and data

3Or has at least been acknowledged as being written by the physical
block device.

t0 t1

t2 t3

Figure 6: Example of a shared write dependency.

blocks that are flushed to disk and synchronized in memory appear
darker in color, and are bordered with solid lines. Those blocks
that appear lighter and are bordered with dashed lines have been
modified in memory but those modifications have not yet reached
disk.

The illustration depicts the progress ofn logical write requests,
a0 throughan, all of which are sequential and share a commit node.
For simplicity, this example will consider what is effectively a radix
tree with a single radix node; the Parallax pipeline behavesanalo-
gously when a full tree is present. At timet0, assume for the pur-
pose of illustration that we have a node, in memory and synchro-
nized to disk, that contains no references to data blocks. Atthis
time we receive then requests in a single batch, we begin process-
ing the requests issuing the data blocks to the disk, and updating
the root structure in memory. At timet1 we have made all updates
to the root block in memory, and a write of one of the data blocks
has been acknowledged by the storage system. We would like to
complete the logical requesta0 as quickly as possible but we can-
not flush the commit node in its given form, because it still contains
references to data blocks that have not been committed to disk. In
this example, we wait. At timet2, all data blocks have success-
fully been committed to disk; this is the soonest time that wecan
finally proceed to flush the commit node. Once that request com-
pletes at timet3, we can notify the guest operating system that the
associated I/O operations have completed successfully.

The latency for completing requesta0 is thus the sum of the time
required to write the data for the subsequentn−1 requests, plus the
time required to flush the commit node. The performance impact
can be further compounded by the dependency requirements im-
posed by a guest file system. These dependencies are only visible
to Parallax in that the guest file system may stop issuing requests
to Parallax due to the increased latency on some previously issued
operation.

For this reason, commit nodes are the fundamental “dial” for
trading off batching versus latency in the request pipeline. In the
case of sequential writes, where all outstanding writes (ofwhich
there are a finite number) share a common commit node, it is pos-
sible in our current implementation that all in-flight requests must
complete before any notifications may be passed back to the guest,
resulting in bubbles while we wait for the guest to refill the request

pipeline in response to completion notifications. We intendto ad-
dress this by limiting the number of outstanding logical requests
that are dependent on a given commit node, and forcing the node to
be written once this number exceeds a threshold, likely halfof the
maximum in-flight requests. Issuing intermediate versionsof the
commit node will trade off a small number of additional writes for
better interleaving of notifications to the guest. This technique was
employed in [8]. As a point of comparison, we have disabled the
dependency tracking between nodes, allowing them to be flushed
immediately. Such an approach yields a 5% increase in sequential
write performance, thought it is obviously unsafe for normal oper-
ation. With correct flushing of intermediate results we may be able
to close this performance gap.

5.3 Snapshots in the Pipeline
Our snapshot semantics enable Parallax to complete a snapshot

without pausing or delaying I/O requests, by allowing both pre-
snapshot and post-snapshot operations to complete on theirrespec-
tive views of the disk after the completion of the snapshot. This
capability is facilitated by both our single-writer assumptions and
our client-oriented design. In systems where distributed writes
to shared data must be managed, a linearizability of I/O requests
around snapshots must be established, otherwise there can be no
consensus about the correct state of a snapshot. In other systems,
this requires pausing the I/O stream to some degree. A simpleap-
proach is to drain the I/O queue entirely [14], while a more com-
plicated approach is to optimistically assume success and retry I/O
that conflicts with the snapshot [1]. Linearization in Parallax comes
naturally because each VDI is being written to by at most one phys-
ical host.

6. EVALUATION
We now consider Parallax’s performance. As discussed in previ-

ous sections, the design of our system includes a number of factors
that we expect to impose considerable overheads on performance.
Block address virtualization is provided by the Parallax daemon,
which runs in user space in an isolated VM and therefore incurs
context-switching on every batch of block requests. Additionally,
our address mapping metadata involves 3-level radix trees,which
risks a dramatic increase in the latency of disk accesses dueto seeks
on uncached metadata blocks.

There are two questions that this performance analysis attempts
to answer. First, what are the overheads that Parallax imposes on
the processing of I/O requests? Second, what are the performance
implications of the virtual machine specific features that Parallax
provides? We address these questions in turn, using sequential read
and write [3] (in Section 6.1.1) and PostMark [11] (in Section 6.1.2)
to answer the first and using a combination of micro and macro-
benchmarks to address the second.

In all tests, we use IBM eServer x306 machines, each node with
a 3.2 GHz Pentium-4 processor, 1 GByte of RAM, and an Intel
e1000 GbE network interface. Storage is provided by a NetApp
FAS30704 exporting an iSCSI LUN over gigabit links. We access
the filer in all cases using the Linux open-iSCSI software initia-
tor (v2.0.730, and kernel module v1.1-646) running in domain 0.
We have been developing against Xen 3.1.0 as a base. One no-
table modification that we have made to Xen has been to double

4We chose to benchmark against the FAS 3070 because it is sim-
ply the fastest iSCSI target available to us. This is the UBC CS
department filer, and so has required very late-night benchmark-
ing efforts. The FAS provides a considerable amount of NVRAM
on the write path, which explains the asymmetric performance be-
tween read and write in many of our benchmark results.

the maximum number of block requests, from 32 to 64, that a guest
may issue at any given time, by allocating an additional shared ring
page in the split block (blkback) driver. The standard 32-slot rings
were shown to be a bottleneck when connecting to iSCSI over a
high capacity network.

6.1 Overall performance
It is worth providing a small amount of additional detail on each

of the test configurations that we compare. Our analysis com-
pares access to the block device from Xen’s domain 0 (dom0 in
the graphs), to the block device directly connected to a guest VM
using the block back driver (blkback), and to Parallax. Parallax
virtualizes block access through blktap [31], which facilitates the
development of user-mode storage drivers.

Accessing block devices from dom0 has the least overhead, in
that there is no extra processing required on block requestsand
dom0 has direct access to the network interface. This configuration
is effectively the same as unvirtualized Linux with respectto block
performance. In addition, in dom0 tests, the full system RAMand
both hyperthreads are available to dom0. In the following cases,
the memory and hyperthreads are equally divided between dom0
(which acts as the Storage VM5) and a guest VM.

In the “Direct” case, we access the block device from a guest
VM over Xen’s blkback driver. In this case, the guest runs a block
driver that forwards requests over a shared memory ring to a driver
(blkback) in dom0, where they are issued to the iSCSI stack. Dom0
receives direct access to the relevant guest pages, so thereis no copy
overhead, but this case does incur a world switch between theclient
VM and dom0 for each batch of requests.

Finally, in the case of Parallax, the configuration is similar to
the direct case, but when requests arrive at the dom0 kernel mod-
ule (blktap instead of blkback), they are passed on to the Parallax
daemon running in user space. Parallax issues reads and writes to
the Linux kernel using Linux’s asynchronous I/O interface (libaio),
which are then issued to the iSCSI stack.

Reported performance measures a best of 3 runs for each cate-
gory. The alternate convention of averaging several runs results in
slightly lower performance for dom0 and direct configurations rel-
ative to Parallax. Memory and CPU overheads were shown to be
too small to warrant their inclusion here.

6.1.1 Sequential I/O
For each of the three possible configurations, we ran Bonnie++

twice in succession. The first run provided cold-cache data points,
while the second allows Parallax to populate its radix node cache6.
The strong write performance in the warm cache case demonstrates
that Parallax is able to maintain write performance near theeffec-
tive line speed of a 1Gbps connection. Our system performance
is within 5% of dom0. At the same time, the 12% performance
degradation in the cold cache case underscores the importance of
caching in Parallax, as doing so limits the overheads involved in
radix tree traversal. As we have focused our efforts to date on tun-
ing the write path, we have not yet sought aggressive optimizations
for read operations. This is apparent in the Bonnie++ test, as we
can see read performance slipping to more than 14% lower than
that of our non-virtualized dom0 configuration.

5We intend to explore a completely isolated Storage VM configu-
ration as part of future work on live storage system upgrades.
6In the read path, this may also have some effect on our filer’s
caching; however, considering the small increase in read through-
put and the fact that a sequential read is easily predictable, we con-
clude that these effects are minimal.

Bonnie Benchmark − Parallax vs. Direct Attached Disk vs. Dom 0

Write Throughput
(Cold Cache)

Read Throughput
(Cold Cache)

Write Throughput
(Warm Cache)

Read Throughput
(Warm Cache)

B
on

ni
e

T
hr

ou
gh

pu
t s

co
re

 (
K

/S
ec

)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

97090

56347

110656

58162

110718

58019

111910

64928

115043

68008

116201

67429

Parallax Direct Dom0

Figure 7: System throughput as reported by Bonnie++ during
a first (cold) and second (warm) run.

Postmark Benchmark − Parallax vs. Direct Attached Disk

Overall File
Creation

Read Append Delete Data
Read

Data
Write

P
os

tm
ar

k
sc

or
e

(n
or

m
al

iz
ed

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0.909 0.911
0.987 0.987

0.911 0.909 0.909

Direct

% Time Spent on Operations
Mixed with Transactions

Parallax

% Time Spent on Operations
Mixed with Transactions

Figure 8: PostMark results running against network available
filer (normalized).

6.1.2 PostMark
Figure 8 shows the results of running PostMark on the Paral-

lax and directly attached configurations. PostMark is designed to
model a heavy load placed on many small files [11]. The perfor-
mance of Parallax is comparable to and slightly lower than that of
the directly connected configuration. In all cases we fall within
10% of a directly attached block device. File creation and dele-
tion are performed during and after the transaction phase ofthe
PostMark test, respectively. We have merged both phases, and il-
lustrated the relative time spent in each.

6.1.3 Local Disk Performance
To demonstrate that a high-end storage array with NVRAM is

not required to maintain Parallax’s general performance profile,
we ran the same tests using a commodity local disk as a target.
Our disk was a Hitachi Deskstar 7K80, which is an 80GB, 7,200
RPM SATA drive with an 8MB cache. The results of Bonnie++ are
shown in Figure 9. Again, the importance of maintaining a cache
of intermediate radix nodes is clear. Once the system has been in
use for a short time, the write overheads drop to 13%, while read
overheads are shown to be less than 6%. In this case, Parallax’s
somewhat higher I/O requirements increase the degree to which the
local disk acts as a bottleneck. The lack of tuning of read operations
is not apparent at this lower throughput.

In Figure 10 we show the results of running the PostMark test

Bonnie Benchmark − Parallax vs. Direct Attached Disk vs. Dom 0

Write Throughput
(Cold Cache)

Read Throughput
(Cold Cache)

Write Throughput
(Warm Cache)

Read Throughput
(Warm Cache)

B
on

ni
e

T
hr

ou
gh

pu
t s

co
re

 (
K

/S
ec

)

0

10000

20000

30000

40000

50000

60000

36780

45037
42447

45090
42914

47888
45527

4778548515 47515
48749 47907

Parallax Direct Dom0

Figure 9: System throughput against a local disk as reported
by Bonnie++ during a first (cold) and second (warm) run.

Postmark Benchmark − Parallax vs. Direct Attached Disk

Overall File
Creation

Read Append Delete Data
Read

Data
Write

P
os

tm
ar

k
sc

or
e

(n
or

m
al

iz
ed

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0.92 0.926
0.875 0.875

0.926 0.921 0.919

Direct

% Time Spent on Operations
Mixed with Transactions

Parallax

% Time Spent on Operations
Mixed with Transactions

Figure 10: PostMark results running against a local disk (nor-
malized).

with a local disk, as above. Similarly, the results show a only small
performance penalty when Parallax is used without the advantages
of striping disks or a large write cache.

6.2 Measuring Parallax’s Features

6.2.1 Disk Fragmentation
While our approach to storage provides many beneficial proper-

ties, it raises concerns over how performance will evolve asa block-
store ages. The natural argument against any copy-on-writebased
system is that the resulting fragmentation of blocks will prove detri-
mental to performance. In Parallax, fragmentation occurs when the
block addresses visible to the guest VM are sequentially placed,
but the corresponding physical addresses are not. This can come
as a result of several usage scenarios. First, when a snapshot is
deleted, it can fragment the allocation bitmaps forcing future se-
quential writes to be placed non-linearly. Second, if a virtual disk
is sparse, future writes may be placed far from other blocks that are
adjacent in the block address space. Similarly, when snapshots are
used, the CoW behaviour can force written blocks to diverging lo-
cations on the physical medium. Third, the interleaving of writes to
multiple VDIs will result in data for each virtual disk beingplaced
together on the physical medium. Finally, VM migration willcause
the associated Parallax virtual disks to be moved to new physical
hosts, which will in turn allocate from different extents. Thus data

The Effects of Random Block Placement on Read Performance

PostMark
Local Disk

PostMark
Filer

PostMark
Filer, 2nd run

Bonnie++
Local Disk

Bonnie++
Filer

Bonnie++
Filer, 2nd run

N
or

m
al

iz
ed

 R
ea

d
P

er
fo

rm
an

ce
 S

co
re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.063

0.269

1.167

0.013

0.111

0.982

Parallax Direct

Figure 11: The effects of a worst case block allocation scheme
on Parallax performance.

allocations after migration will not be located near those that oc-
curred before migration. Note however that fragmentation will not
result from writing data to blocks that are not marked read-only, as
this operation will be done in place. In addition, sequential writes
that target a read-only or sparse region of a virtual disk will remain
sequential when they are written to newly allocated regions. This
is true even if the original write-protected blocks were notlinear on
disk, due to fragmentation.

Thus, as VDIs are created, deleted, and snapshotted, we intu-
itively expect that some fragmentation of the physical media will
occur, potentially incurring seeks even when performing sequential
accesses to the virtual disk. To explore this possibility further, we
modified our allocator to place new blocks randomly in the extent,
simulating a worst-case allocation of data. We then benchmarked
local disk and filer read performance against the resulting VDI, as
shown in Figure 11.

Even though this test is contrived to place extreme stress ondisk
performance, the figure presents three interesting results. First, al-
though it would be difficult to generate such a degenerate disk in
the normal use of Parallax, in this worst case scenario, random
block placement does incur a considerable performance penalty,
especially on a commodity disk. In addition, the test confirms that
the overheads for Bonnie++, which emphasizes sequential disk ac-
cess, are higher than those for PostMark, which emphasizes smaller
reads from a wider range of the disk. Interestingly, the third result
is that when the workload is repeated, the filer is capable of regain-
ing most of the lost performance, and even outperforms PostMark
with sequential allocation. Although a conclusive analysis is com-
plicated by the encapsulated nature of the filer, this resultdemon-
strates that the increased reliance on disk striping, virtualized block
addressing, and intelligent caching makes the fragmentation prob-
lem both difficult to characterize and compelling. It punctuates
the observation made by Stein et al [25], that storage stackshave
become incredibly complex and that naive block placement does
not necessarily translate to worse case performance - indeed it can
prove beneficial.

As a block management system, Parallax is well positioned to
tackle the fragmentation problem directly. We are currently en-
hancing the garbage collector to allow arbitrary block remapping.
This facility will be used to defragment VDIs and data extents, and
to allow the remapping of performance-sensitive regions ofdisk
into large contiguous regions that may be directly referenced at

Dom0
Write

Direct
Write

Writable
Parallax

Block

Sparse
Parallax

Block

Faulted
Parallax

Block

W
rit

e
co

m
pl

et
io

n
la

te
nc

y
(m

s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 12: Single write request latency for dom0, direct at-
tached disks, and three potential Parallax states. A 95% confi-
dence interval is shown.

higher levels in the metadata tree, much like the concept of su-
perpages in virtual memory. These remapping operations arein-
dependent of the data path, just like the rest of the garbage collec-
tor. Ultimately, detailed analysis of these features, combined with
a better characterization of realistic workloads, will be necessary to
evaluate this aspect of Parallax’s performance.

6.2.2 Radix tree overheads
In order to provide insight into the servicing of individualblock

requests, we use a simple microbenchmark to measure the various
overheads. There are three distinct kinds of nodes in a radixtree.
A node may be writable, which allows in-place modification. It
may be sparse, in that it is marked as non-existent by its parent. Fi-
nally, it may be read-only, requiring that the contents be copied to
a newly block in order to process write requests. We instrumented
Parallax to generate each of these types of nodes at the top level of
the tree, to highlight their differences. When non-writable nodes
are reached at lower levels in the tree, the performance impact will
be less notable. Figure 12 shows the results. Unsurprisingly, when
a single block is written, Parallax performs very similarlyto the
other configurations, because writing is done in place. Whena
sparse node is reached at the top of the radix tree, Parallax must
perform writes on intermediate radix nodes, the radix root,and the
actual data. Of these writes, the radix root can only complete after
all other requests have finished, as was discussed in Section5. The
faulted case is similar in that it too requires a serialized write, but it
also carries additional overheads in reading and copying interme-
diate tree nodes.

6.2.3 Garbage collection
As described in Section 4.3, the Parallax garbage collectorworks

via sequential scans of all metadata extents. As a result, the per-
formance of the garbage collector is determined by the speedof
reading metadata and the amount of metadata, and is independent
of both the complexity of the forest of VDIs and their snapshots
and the number of deleted VDIs. We’ve run the garbage collector
on full blockstores ranging in size from 10GB to 50GB, and we
characterize its performance by the amount of data it can process
(measured as the size of the blockstore) per unit time. Its perfor-
mance is linear at a rate of 0.96GB/sec. This exceeds the linespeed
of the storage array, because leaf nodes do not need to be readto
determine if they can be collected.

Baseline Snapshot Latency

Latency (ms)
0.5 1 1.5 2 2.5 3 3.5

S
am

pl
es

 (
to

ta
lin

g
50

0)

0

50

100

150

200

250

300

350

400

450

Figure 13: Snapshot latency of running VM during constant
checkpointing.

The key to the good performance of the garbage collector is that
the Reachability Map is stored in memory. In contrast to the Block
Allocation Maps of each extent which are always scanned sequen-
tially, the RMap is accessed in random order. This puts a constraint
on the algorithm’s scalability. Since the RMap contains onebit per
blockstore block, each 1GB of memory in the garbage collector
allows it to manage 32TB of storage. To move beyond those con-
straints, RMap pages can be flushed to disk. We look forward to
having to address this challenge in the future, should we be con-
fronted with a sufficiently large Parallax installation.

6.2.4 Snapshots
To establish baseline performance, we first measured the gen-

eral performance of checkpointing the storage of a running but idle
VM. We completed 500 checkpoints in a tight loop with no delay.
A histogram of the time required by each checkpoint is given in
Figure 13. The maximum observed snapshot latency in this test
was 3.25ms. This is because the 3 writes required for most snap-
shots can be issued with a high degree of concurrency and are often
serviced by the physical disk’s write cache. In this test, more than
90% of snapshots completed within a single millisecond; however,
it is difficult to establish a strong bound on snapshot latency. The
rate at which snapshots may be taken depends on the performance
of the underlying storage and the load on Parallax’s I/O request
pipeline. If the I/O pipeline is full, the snapshot request may be
delayed as Parallax services other requests. Average snapshot la-
tency is generally under 10ms, but under very heavy load we have
observed average snapshot latency to be as high as 30ms.

Next we measured the effects of varying snapshot rates during
the decompression and build of a Linux 2.6 kernel. In Figure 14 we
provide results for various sub-second snapshot intervals. While
this frequency may seem extreme, it explores a reasonable space
for applications that require near continuous state capture. Larger
snapshot intervals were tested as well, but had little effect on per-
formance. The snapshot interval is measured as the average time
between successive snapshots and includes the actual time required
to complete the snapshot. By increasing the snapshot rate from
1 per second to 100 per second we incur only a 4% performance
overhead. Furthermore, the majority of this increase occurs as we
move from a 20ms to 10ms interval.

Figure 15 depicts the results of the same test in terms of data
and metadata creation. The data consumption is largely fixedover
all tests because kernel compilation does not involve overwriting
previously written data, thus the snapshots have little effect on the
number of data blocks created. In the extreme, taking snapshots

Snapshot Overhead

K
er

ne
l B

ui
ld

 T
im

e
(S

ec
on

ds
)

0

45

90

135

180

225

270

315

360

405

450

495

540

585

630

675

720

765

Snapshot Interval (ms)

9 11 13 16 19 22 26 31 36 42 49 57 66 77 89 10
3

11
9

13
8

16
0

18
5

21
4

24
8

28
7

33
2

38
4

44
4

51
3

59
3

68
5

79
2

91
5

10
57

Figure 14: Measuring performance effects of various snapshot
intervals on a Linux Kernel decompression and compilation.

Storage Consumption versus Snapshot Frequency

Snapshot Interval (ms)

9 11 13 16 19 22 26 31 36 42 49 57 66 77 89 10
3

11
9

13
8

16
0

18
5

21
4

24
8

28
7

33
2

38
4

44
4

51
3

59
3

68
5

79
2

91
5

10
57

S
to

ra
ge

 c
on

su
pt

io
n

(M
B

)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

metadata

data

Figure 15: Measuring data consumption at various snapshot
intervals on a Linux Kernel decompression and compilation.

every 10ms, 65,852 snapshots were created, each consuming just
5.84KB of storage on average. This accounted for 375 MB of meta-
data, roughly equal in size to the 396 MB of data that was written.

Snapshot per Write 877.921 seconds 1188.59 MB
Snapshot per Batch 764.117 seconds 790.46 MB

Table 2: Alternate snapshot configurations.

To further explore the potential of snapshots, we created two al-
ternate modes to investigate even more fine-grained state capture in
Parallax. In the first case we snapshot after each batch of requests;
this enables data retention without capturing the unchanging disk
states between writes. In our second snapshot mode, we perform a
snapshot after every write request. Owing to the experimental na-
ture of this code, our implementation is unoptimized. Even though
the results are good, we expect there is significant room for im-
provement7. The impact on the performance of the kernel compile
is shown in Table 2. When taking a snapshot after every data write,
for every data block we consume 3 metadata blocks for the radix
tree nodes and a few bytes for the entry in the snapshot log.

7Our current implementation does not support concurrent snap-
shots; we will remove this restriction in the future.

Local Cache Performance

Seconds
0 5 10 15 20 25 30 35

M
eg

ab
yt

es
/S

ec

0

10

20

30

40

50

60

70

80

Filer
Throughtput

Figure 16: Performance of bursted write traffic.

Local Cache Performance

Seconds
0 5 10 15 20 25 30 35

M
eg

ab
yt

es
/S

ec

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

Filer
Throughtput

Percieved
System
Throughtput

Figure 17: Performance of bursted write traffic with local disk
caching.

6.2.5 Local Disk Cache
We evaluated our local disk cache to illustrate the advantage of

shaping the traffic of storage clients accessing a centralized net-
work storage device. We have not yet fully explored the perfor-
mance of caching to local disk in all scenarios, as its implemen-
tation is still in an early phase. The following experiment is not
meant to exhaustively explore the implications of this technique,
merely to illustrate its use and current implementation. Inaddition,
the local disk cache demonstrates the ease with which new features
may be added to Parallax, owing to its clean isolation from both the
physical storage system and the guest operating system. Thelocal
disk cache is currently implemented in less than 500 lines ofcode.

In Figure 16, we show the time required to process 500MB of
write traffic by 4 clients simultaneously. This temporary saturation
of the shared storage resource may come as a result of an unusual
and temporary increase in load, such as occurs when a system is
initially brought online. This scenario results in a degradation of
per-client performance, even as the overall throughput is high.

In Figure 17 we performed the same test with the help of our
local disk cache. The Storage VMs each quickly recognized in-
creased latency in their I/O requests to the filer and enabledtheir
local caches. As a result, clients perceived an aggregate increase
in throughput, because each local disk can be accessed without in-
terference from competing clients. In the background, writes that
had been made to the local cache were flushed to network storage
without putting too much strain on the shared resource. Clients
processed the workload in significantly less time (18-20 seconds).
A short time after the job completed, the cache was fully drained,
though this background process was transparent to users.

6.2.6 Metadata consumption
While there are some large metadata overheads, particularly in

the initial extent, we expect that metadata consumption in Parallax
will be dominated by the storage of radix nodes. Measuring this
consumption is difficult, because it is parameterized by notonly
the image size, but also the sparseness of the images, the system-
wide frequency and quality of snapshots, and the degree of sharing
involved. To simplify this problem, we consider only the rate of
radix nodes per data block on an idealized system.

In a full tree of height three with no sparseness we must create
a radix node for every 512 blocks of data, an additional node for
every 262,144 blocks of data, and finally a root block for the whole
disk. With a standard 4KB blocks size, for 512GB of data, we must
store just over 1GB of data in the form of radix nodes. Naturally for
a non-full radix tree, this ratio could be larger. However, we believe
that in a large system, the predominant concern is the waste created
by duplication of highly redundant system images — a problemwe
explicitly address.

7. CONCLUSIONS AND FUTURE WORK
Parallax is a system that attempts to provide storage virtualiza-

tion specifically for virtual machines. The system moves function-
ality, such as volume snapshots, that is commonly implemented
on expensive storage hardware out into a software implementation
running within a VM on the physical host that consumes the stor-
age. This approach is a novel organization for a storage system,
and allows a storage administrator access to a cluster-wideadmin-
istration domain for storage. Despite its use of several potentially
high-overhead techniques, such as a user-level implementation and
fine-grained block mappings through 3-level radix trees, Parallax
achieves good performance against both a very fast shared storage
target and a commodity local disk.

We are actively exploring a number of improvements to the sys-
tem including the establishing of a dedicated storage VM, the use
of block remapping to recreate the sharing of common data as VDIs
diverge, the creation of superpage-style mappings to avoidthe over-
head of tree traversals for large contiguous extents, and exposing
Parallax’s snapshot and dependency tracking features as primitives
to the guest file system. As an alternative to using a single network
available disk, we are designing a mode of operation in whichPar-
allax itself will manage multiple physical volumes. This may prove
a lower cost alternative to large sophisticated arrays.

We are continually making performance improvements to Paral-
lax. As part of these efforts we are also testing Parallax on awider
array of hardware. We plan to deploy Parallax as part of an exper-
imental VM-based hosting environment later this year. Thiswill
enable us to refine our designs and collect more realistic data on
Parallax’s performance. An open-source release of Parallax, with
current performance data, is available at:
http://dsg.cs.ubc.ca/parallax/.

Acknowledgments
The authors would like to thank the anonymous reviewers for their
thorough and encouraging feedback. They would also like to thank
Michael Sanderson and the UBC CS technical staff for their enthu-
siastic support, which was frequently beyond the call of duty. This
work is supported by generous grants from Intel Research andthe
National Science and Engineering Research Council of Canada.

8. REFERENCES
[1] M. K. Aguilera, S. Spence, and A. Veitch. Olive: distributed

point-in-time branching storage for real systems. In
Proceedings of the 3rd USENIX Symposium on Networked
Systems Design & Implementation (NSDI 2006), pages
367–380, Berkeley, CA, USA, May 2006.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. InProceedings of the 2nd USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 2005), May 2005.

[3] R. Coker. Bonnie++. http://www.coker.com.au/bonnie++.
[4] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.

Chen. Revirt: Enabling intrusion analysis through
virtual-machine logging and replay. InProceedings of the 5th
Symposium on Operating Systems Design & Implementation
(OSDI 2002), December 2002.

[5] E. Eide, L. Stoller, and J. Lepreau. An experimentation
workbench for replayable networking research. In
Proceedings of the Fourth USENIX Symposium on
Networked Systems Design & Implementation, April 2007.

[6] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the xen virtual
machine monitor. InProceedings of the 1st Workshop on
Operating System and Architectural Support for the
On-Demand IT Infrastructure (OASIS-1), October 2004.

[7] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. C.
Veitch. Fab: Enterprise storage systems on a shoestring. In
Proceedings of HotOS’03: 9th Workshop on Hot Topics in
Operating Systems, Lihue (Kauai), Hawaii, USA, pages
169–174, May 2003.

[8] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,
S. Hovsepian, A. Matsuoka, and L. Zhang. Generalized file
system dependencies. InProceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP’07),
pages 307–320, October 2007.

[9] D. Hitz, J. Lau, and M. Malcolm. File system design for an
NFS file server appliance. InProceedings of the USENIX
Winter 1994 Technical Conference, pages 235–246, San
Fransisco, CA, USA, January 1994.

[10] M. Ji. Instant snapshots in a federated array of bricks.,
January 2005.

[11] J. Katcher. Postmark: a new file system benchmark, 1997.
[12] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging

operating systems with time-traveling virtual machines. In
ATEC’05: Proceedings of the USENIX Annual Technical
Conference 2005, pages 1–15, Berkeley, CA, April 2005.

[13] M. Kozuch and M. Satyanarayanan. Internet
Suspend/Resume. InProceedings of the 4th IEEE Workshop
on Mobile Computing Systems and Applications, Calicoon,
NY, pages 40–46, June 2002.

[14] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. InProceedings of the Seventh International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 84–92,
Cambridge, MA, October 1996.

[15] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified
device driver reuse and improved system dependability via
virtual machines. InProceedings of the 6th Symposium on
Operating Systems Design & Implementation (OSDI 2004),
pages 17–30, December 2004.

[16] M. K. McKusick and G. R. Ganger. Soft updates: A

technique for eliminating most synchronous writes in the fast
filesystem. InFREENIX Track: 1999 USENIX Annual TC,
pages 1–18, Monterey, CA, June 1999.

[17] M. McLoughlin. The QCOW image format.
http://www.gnome.org/~markmc/qcow-image-format.html.

[18] Microsoft TechNet. Virtual hard disk image format
specification. http://microsoft.com/technet/virtualserver/
downloads/vhdspec.mspx.

[19] Z. Peterson and R. Burns. Ext3cow: a time-shifting file
system for regulatory compliance.ACM Transactions on
Storage, 1(2):190–212, 2005.

[20] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtualization
aware file systems: Getting beyond the limitations of virtual
disks. InProceedings of the 3rd USENIX Symposium on
Networked Systems Design & Implementation (NSDI 2006),
pages 353–366, Berkeley, CA, USA, May 2006.

[21] Red Hat, Inc. LVM architectural overview.
http://www.redhat.com/docs/manuals/enterprise/RHEL-5-
manual
/Cluster_Logical_Volume_Manager/LVM_definition.html.

[22] O. Rodeh and A. Teperman. zFS – A scalable distributed file
system using object disks. InMSS ’03: Proceedings of the
20th IEEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies, pages 207–218, Washington, DC,
USA, April 2003.

[23] C. Sapuntzakis and M. Lam. Virtual appliances in the
collective: A road to hassle-free computing. InProceedings
of HotOS’03: 9th Workshop on Hot Topics in Operating
Systems, pages 55–60, May 2003.

[24] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,
and M. Rosenblum. Optimizing the migration of virtual
computers. InProceedings of the 5th Symposium on
Operating Systems Design & Implementation (OSDI 2002),
December 2002.

[25] L. Stein. Stupid file systems are better. InHOTOS’05:
Proceedings of the 10th conference on Hot Topics in
Operating Systems, pages 5–5, Berkeley, CA, USA, 2005.

[26] VMware, Inc. Performance Tuning Best Practices for ESX
Server 3.
http://www.vmware.com/pdf/vi_performance_tuning.pdf.

[27] VMWare, Inc. Using vmware esx server system and vmware
virtual infrastructure for backup, restoration, and disaster
recovery. www.vmware.com/pdf/esx_backup_wp.pdf.

[28] VMWare, Inc. Virtual machine disk format.
http://www.vmware.com/interfaces/vmdk.html.

[29] VMware, Inc. VMware VMFS product datasheet.
http://www.vmware.com/pdf/vmfs_datasheet.pdf.

[30] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. Snoeren, G. Voelker, and S. Savage. Scalability, fidelity
and containment in the Potemkin virtual honeyfarm. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP’05), pages 148–162, Brighton,
UK, October 2005.

[31] A. Warfield.Virtual Devices for Virtual Machines. PhD
thesis, University of Cambridge, 2006.

[32] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration
debugging as search: Finding the needle in the haystack. In
Proceedings of the 6th Symposium on Operating Systems
Design & Implementation (OSDI 2004), pages 77–90,
December 2004.

