usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Mirador: An Active Control Plane for
Datacenter Storage
Jake Wires and Andrew Warfield, Coho Data

https://www.usenix.org/conference/fast17/technical-sessions/presentation/wires

This paper is included in the Proceedings of
the 15th USENIX Conference on

File and Storage Technologies (FAST "17).
February 27-March 2, 2017 - Santa Clara, CA, USA
ISBN 978-1-931971-36-2

Open access to the Proceedings of

the 15th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.




Mirador: An Active Control Plane for Datacenter Storage

Jake Wires and Andrew Warfield
Coho Data

Abstract

This paper describes Mirador, a dynamic placement
service implemented as part of an enterprise scale-out
storage product. Mirador is able to encode multi-
dimensional placement goals relating to the perfor-
mance, failure response, and workload adaptation of the
storage system. Using approaches from dynamic con-
straint satisfaction, Mirador migrates both data and client
network connections in order to continuously adapt and
improve the configuration of the storage system.

1 Introduction

In becoming an active resource within the datacenter,
storage is now similar to the compute and network re-
sources to which it attaches. For those resources, recent
years have seen a reorganization of software stacks to
cleanly disentangle the notions of control and data paths.
This thrust toward “software defined” systems aims for
designs in which virtualized resources may be provi-
sioned on demand and in which central control logic al-
lows the programmatic management of resource place-
ment in support of scale, efficiency, and performance.

This paper observes that modern storage systems both
warrant and demand exactly this approach to design.
The emergence of high-performance rack-scale hard-
ware [10,17,40] is amplifying the importance of connec-
tivity between application workloads and their data as a
critical aspect of efficient datacenter design. Fortunately,
the resource programmability introduced by software de-
fined networks and the low cost of data migration on non-
volatile memory means that the dynamic reconfiguration
of a storage system is achievable.

How is dynamic placement useful in the context of stor-
age? First, consider that network topology has become
a very significant factor in distributed storage designs.
Driven by the fact that intra-rack bandwidth continues to
outpace east/west links and that storage device latencies

are approaching that of Ethernet round-trip times, effi-
cient storage placement should ensure that data is placed
in the same rack as the workloads that access it, and that
network load is actively balanced across physical links.

A separate goal of distributing replicas across isolated
failure domains requires a similar understanding of phys-
ical and network topology, but may act in opposition to
the goal of performance and efficiency mentioned above.
While placement goals such as these examples can be
motivated and described in relatively simple terms, the
resulting placement problem is multi-dimensional and
continuously changing, and so very challenging to solve.

Mirador is a dynamic storage placement service that
addresses exactly this problem. Built as a component
within a scale-out enterprise storage product [12], Mi-
rador’s role is to translate configuration intention as spec-
ified by a set of objective functions into appropriate
placement decisions that continuously optimize for per-
formance, efficiency, and safety. The broader storage
system that Mirador controls is capable of dynamically
migrating both the placement of individual chunks of
data and the client network connections that are used to
access them. Mirador borrows techniques from dynamic
constraint satisfaction to allow multi-dimensional goals
to be expressed and satisfied dynamically in response to
evolutions in environment, scale, and workloads.

This paper describes our experience in designing and
building Mirador, which is the second full version of a
placement service we have built. Our contributions are
threefold: We demonstrate that robust placement policies
can be defined as simple declarative objective functions
and that general-purpose solvers can be used to find so-
lutions that apply these constraints to both network traf-
fic and data placement in a production storage system,
advancing the application of optimization techniques to
the storage configuration problem [1,6-8,49]. We show
that for performance-dense storage clusters, placement
decisions informed by the relative capabilities of net-
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work and storage tiers can yield improvements over more
static layouts originally developed for large collections
of disks. And finally, we investigate techniques for ex-
ploiting longitudinal workload profiling to craft custom
placement policies that lead to additional improvements
in performance and cost-efficiency.

2 A Control Plane for Datacenter Storage

Mirador implements the control plane of a scale-out en-
terprise storage system which presents network-attached
block devices for use by virtual machines (VMs),
much like Amazon’s Elastic Block Store [11]. A
typical deployment consists of one or more indepen-
dent storage nodes populated with performance-dense
NVMe devices, each capable of sustaining random-
access throughputs of hundreds of thousands of IOPS.
In order to capitalize on the low latency of these de-
vices, storage nodes are commonly embedded horizon-
tally throughout the datacenter alongside the compute
nodes they serve. In this environment, Mirador’s role
is to provide a centralized placement service that contin-
uously monitors the storage system and coordinates the
migration of both data and network connections in re-
sponse to workload and environmental changes.

A guiding design principle of Mirador is that placement
decisions should be dynamic and flexible.

Dynamic placement decisions allow the system to adapt
to environmental change. We regularly observe deploy-
ments of hundreds to thousands of VMs where only a
small number of workloads dominate resource consump-
tion across the cluster at any given time. Moreover, the
membership of this set often changes as VMs are created
and deleted or they transition through different workload
phases. For these reasons, the initial choices made when
placing data in the cluster may not always be the best
ones; significant improvements can often be had by pe-
riodically re-evaluating placement decisions over time in
response to changes in workload behavior.

Flexible placement decisions allow the system to articu-
late complex and multidimensional policy. Rather than
trying to combine diverse and often conflicting goals
in a single monolithic description, Mirador approaches
system configuration as a search problem. Policies are
composed of one or more objective functions, simple
rules that express how resources should be allocated by
computing numerical costs for specific configurations.
A planning engine employs established constraint satis-
faction techniques to efficiently search the configuration
space for a minimal-cost solution.

In our experience, policies expressed as simple indepen-
dent rules are substantially more perspicuous and robust
than their monolithic alternatives. For example, after up-

grading the customized planning engine that shipped in
an early version of the product to a generic constraint
solver, we were able to replace a load balancing policy
originally defined in 2,000 lines of imperative Python
with a similar policy composed of seven simple rules
each expressed in less than thirty lines of code (see
§ 3.2.1 for examples). Much of the complexity of the
original policy came from describing how it should be
realized rather than what it intended to achieve. By dis-
entangling these two questions and answering the former
with a generic search algorithm, we arrived at a policy
description that is equally efficient as the first version,
yet much easier to reason about and maintain.

Mirador implements the configuration changes recom-
mended by the planning engine by coordinating a cluster-
wide schedule of data and network migration tasks, tak-
ing care to minimize the performance impact on client
workloads. It communicates directly with switches and
storage nodes to effect these migrations, continually
monitoring system performance as it does so. In this
way it actively responds to environmental and workload
changes and results in a more responsive, robust system.

3 Mirador

Mirador is a highly-available data placement service that
is part of a commercial scale-out storage product. Fig-
ure 1 presents a typical cluster composed of multiple
storage nodes. Each node is a regular server populated
with one or more directly-attached, non-volatile storage
devices. Nodes implement an object interface on top
of these devices and manage virtual to physical address
translations internally. Objects present sparse 63-bit ad-
dress spaces and are the primary unit of placement. A
virtual block device interface is presented to clients. Vir-
tual devices may be composed of one or more objects
distributed across multiple nodes; by default, they are
striped across 16 objects, resulting in typical object sizes
on the order of tens to hundreds of GiB.

The storage cluster is fronted by a set of Software De-
fined Network (SDN) switches that export the cluster
over a single virtual IP address. Clients connect to the
virtual IP and are directed to storage nodes by a cus-
tom SDN controller. Nodes are connected in a mesh
topology, and any node is capable of servicing requests
from any client, allowing the mapping between clients
and nodes to be modified arbitrarily.

One or more nodes in the cluster participate as a Mi-
rador service provider. Service providers work together
to monitor the state of the cluster and initiate rebalance
Jjobs in response to topology and load changes. Rebal-
ance jobs are structured as a control pipeline that gen-
erates and executes plans for dynamically reconfiguring
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Figure 1: The storage system architecture (below) and the Mirador rebalance pipeline (above). The figure shows two examples of
the system performing actuations in response to observed state. First, the fourth storage node has become disproportionately full
relative to the other nodes. To balance capacity in the system, the rightmost object on that node is undergoing background migration
to the third node. Second, the physical network link into the left side port of the second storage node has come under pressure from
two high-volume flows from the first two clients. The system will observe this overload, and then chose one of the flows to migrate

to a different physical link.

the placement of data and client connections in order to
optimize for performance, efficiency, and safety. Job
state is periodically checkpointed in a replicated state
machine [28], providing strong resliency against failures.

The rebalance pipeline is composed of three stages:

Observation A system monitor collects resource met-
rics like device and network load along with detailed
workload profiles to construct a model of the cluster.

Optimization A planning engine computes a numer-
ical cost for the current configuration and searches for
alternative configurations that would reduce or eliminate
this cost. If a lower-cost arrangement is identified, a plan
is constructed that yields the desired results.

Actuation A scheduler implements the plan by coor-
dinating the migration of data and client connections.

3.1 Observation

The system monitor maintains a storage system model
that captures all relevant properties of the physical sys-

tem, including static features like cluster topology (e.g.,
the number of devices and nodes, the capacity of their
network links, and user-defined failure domains) and dy-
namic features like the current free space and 10 load of
devices and the utilization of network ports.

The monitor also collects highly-compressed sketches of
individual workload behavior [55]. These summaries are
collected by a dedicated workload analysis service, and
they include features such as miss ratio curves and win-
dowed footprints. Unlike hardware utilization levels, this
data cannot be computed from instantaneous measure-
ments, but instead requires detailed profiling of work-
loads over extended periods of time.

The monitor synchronizes the model by polling the clus-
ter; sampling frequencies vary from every few seconds
for metrics like link load to tens of minutes for workload
footprint measurements, while exceptional events such
as device failures are signalled via special alerts.

3.2 Optimization

The planning engine implements the logic responsible
for generating rebalance plans. Placement logic is en-
capsulated in one or more objective functions that specify
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rules for how data and flows should be distributed across
the cluster. The engine invokes a solver to search for new
configurations that reduce placement costs, as defined by
the objective functions.

The planning engine manipulates a copy of the storage
model when considering alternative configurations. For
example, if a decision is made to move an object from
one device to another, the modelled free space and load
of each device is adjusted to reflect the change.

Modelling data migration within the cluster is a challeng-
ing problem. While an object’s size serves as a rough ap-
proximation of the cost of migrating it, the actual time re-
quired to move the data depends on many things, includ-
ing the type and load of the source and destination de-
vices, network contention along the migration path, and
fragmentation of the data being migrated. This is impor-
tant, however, because system resources like free space
and bandwidth may be consumed at both the source and
destination devices during migration, and the solver may
make poor decisions if this usage is modelled incor-
rectly. For this reason, migrations initiated during the op-
timization stage are modelled conservatively by reserv-
ing space on the destination device at the beginning of
operation and only releasing it from the source device
once the migration has completed.

3.2.1 Objective Functions

Data placement is expressed as an optimization problem
by representing objects and flows as variables and de-
vices and links as the values these variables can take, re-
spectively. Within this framework, objective functions
model the cost (or benefit) of assigning a value to a given
variable (e.g., placing a replica on a specific device). !

Mirador objective functions can assign arbitrary numeri-
cal costs to a given configuration. Hard constraints, im-
plemented by rules imposing an infinite cost, can never
be violated — any configuration with an infinite cost is
rejected outright. Negative costs can also be used to ex-
press affinities for preferred assignments. An optimal
configuration is one that minimizes the cumulative cost
of all assignments; solvers employ various search strate-
gies to find minimal-cost solutions. In the case that no
finite-cost configuration can be found (e.g., due to catas-
trophic hardware failure), Mirador raises an alert that
manual intervention is required.

Objective functions are expressed as simple Python func-
tions operating on the storage system model described
above. Listing 1 shows a rule designed to minimize load
imbalances by stipulating that the spread between the
most- and least-loaded devices falls within a given range.

IFor clarity of exposition, we use the terms objective function and
rule interchangably throughout the paper.

(Note that this formulation codifies a system-level no-
tion of balance by assigning costs to all objects located
on overloaded devices; moving just one such object to
a different device may be enough to eliminate the cost
for all the remaining objects.) During the optimization
stage, the planning engine converts the storage model
into an abstract representation of variables, values, and
objectives, and computes the cost of each assignment by
invoking its associated rules (see § 3.2.2).

A special annotation specifies the scope of the rule, indi-
cating which components it affects (e.g., objects, con-
nections, devices, links). Solvers refer to these anno-
tations when determining which rules need to be re-
evaluated during configuration changes. For example,
the Lload_balanced rule affects devices, and must be
invoked whenever the contents of a device changes.

Mutual objectives can be defined over multiple related
objects. For instance, Listing 2 gives the implementation
of a rule stipulating that no two objects in a replica set
reside on the same device; it could easily be extended to
include broader knowledge of rack and warehouse topol-
ogy as well. Whenever a solver assigns a new value to
a variable affected by a mutual objective, it must also
re-evaluate all related variables (e.g., all other replicas
in the replica set), as their costs may have changed as a
consequence of the reassignment.

Rules can provide hints to the solver to help prune the
search space. Rule implementations accept a domain ar-
gument, which gives a dictionary of the values that can
be assigned to the variable under consideration, and is
initially empty. Rules are free to update this dictionary
with the expected cost that would be incurred by assign-
ing a particular value. For example, the rule in List-
ing 2 populates a given replica’s domain with the pre-
computed cost of moving it onto any device already host-
ing one of its copies, thereby deprioritizing these devices
during the search. The intuition behind this optimization
is that most rules in the system only affect a small sub-
set of the possible values a variable can take, and con-
sequently, a handful of carefully chosen hints can effi-
ciently prune a large portion of the solution space.

A policy consists of one or more rules, which can be
restricted to specific hardware components or object
groups in support of multi-tenant deployments.

3.2.2 Solvers

The planning engine is written in a modular way, mak-
ing it easy to implement multiple solvers with different
search strategies. Solvers accept three arguments: a dic-
tionary of assignments mapping variables to their cur-
rent values, a dictionary of domains mapping variables
to all possible values they can take, and a dictionary of
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@rule(model.Device)
def load_balanced(fs, device, domain):
cost, penalty = 0, DEVICE_BALANCED_COST
# compute load of current device
# for the current sample interval
load = device.load()
# compute load of least-loaded device
minload = fs.mindevice().load()
if load — minload > LOAD_SPREAD:
# if the difference is too large,
# the current device is overloaded
cost = penalty
return cost

Listing 1: Load Balancing Rule

@rule(model.ReplicaSet)
def rplset_devices_unique(fs, replica, domain):
cost, penalty = 0, INFINITY
for rpl in replica.rplset:
if rpl is replica:
# skip current replica
continue
if rpl.device is replica.device:
# two replicas on the same device
# violate redundancy constraint
cost = penalty
# provide a hint to the solver that the
# devices already hosting this replica set
# are poor candidates for this replica.
domain[rpl.device] + = penalty
return cost

Listing 2: Hardware Redundancy Rule

objectives mapping variables to the rules they must sat-
isfy. Newly-added variables may have no assignment to
start with, indicating that they have not yet been placed
in the system. Solvers generate a sequence of solutions,
dictionaries mapping variables to their new values. The
planning engine iterates through this sequence of solu-
tions until it finds one with an acceptable cost, or no more
solutions can be found.

Mirador provides a pluggable solver interface that ab-
stracts all knowledge of the storage model described
abover. Solvers implement generic search algorithms
and are free to employ standard optimization tech-
niques like forward checking [24] and constraint propa-
gation [36] to improve performance and solution quality.

We initially experimented with a branch and bound
solver [44] because at first glance it fits well with our
typical use case of soft constraints in a dense solution
space [19]. A key challenge to using backtracking algo-
rithms for data placement, however, is that these algo-
rithms frequently yield solutions that are very different
from their initial assignments. Because reassigning vari-
ables in this context may imply migrating a large amount
of data from one device to another, this property can be
quite onerous in practice. One way to address this is to
add a rule whose cost is proportional to the difference
between the solution and its initial assignment (as mea-

sured, for example, by its Hamming distance) [25]. How-
ever, this technique precludes zero-cost reconfigurations
(since every reassignment incurs a cost) and thus requires
careful tuning when determining whether a solution with
an acceptable cost has been found.

We eventually adopted a simpler greedy algorithm.
While it is not guaranteed to identify optimal solutions
in every case, we find in practice that it yields quality
solutions with fewer reassignments and a much more
predictable run time. In fact, the greedy algorithm has
been shown to be a 2-approximate solution for the re-
lated makespan problem [22], and it is a natural fit for
load rebalancing as well [3].

Listing 3 presents a simplified implementation of the
greedy solver. It maintains a priority queue of variables
that are currently violating rules, ordered by the cost of
the violations, and a priority-ordered domain for each
variable specifying the possible values it can take. A
pluggable module updates domain priorities in response
to variable reassignments, making it possible to model
capacity and load changes as the solver permutes the
system searching for a solution. The current implemen-
tation prioritizes values according to various utilization
metrics, including free space and load.

As described in § 3.2.1, objective functions can pro-
vide hints to the solver about potential assignments. The
greedy algorithm uses these hints to augment the prior-
ity order defined by the storage system model, so that
values that would violate rules are deprioritized. The
search is performed in a single pass over all variables,
starting with the highest-cost variables. First the rules for
the variable are invoked to determine whether any values
in its domain violate the prescribed placement objectives
(or alternatively, satisfy placement affinities). If the rules
identify a zero or negative-cost assignment, this is cho-
sen. Otherwise, the highest-priority unconstrained value
is selected from the variable’s domain. The search yields
its solution once all violations have been resolved or all
variables have been evaluated.

Besides its predictable run time, the greedy algorithm
generally yields low migration overheads, since only
variables that are violating rules are considered for re-
assignment. However, if the initial assignments are poor,
the algorithm can get trapped in local minima and fail
to find a zero-cost solution. In this case, a second pass
clears the assignment of a group of the costliest variables
collectively, providing more freedom for the solver, but
potentially incurring higher migration costs. We find that
this second pass is rarely necessary given the typically
under-constrained policies we use in production and is
limited almost exclusively to unit tests that intentionally
stress the planning engine (see § 5 for more details).
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def greedy(assignments, domains, objectives):
# rank variables according to cost
queue = PriorityQueue(domains)

3.3 Actuation

Mirador can migrate both data and client connections.

. The scheduler models the cost of data migration conser-
while queue.cost() > 0:

# select the highest-cost variable
val = None

var = queue.pop()

cur = assignments.get(var)

domain = domains[var]

# retrieve the variable’s current cost
# and any domain hints provided by the
# rules
cost, hints = score(var, cur, objectives)
if cost <=0:
# current assignment is good
continue

if hints:
# find the lowest-cost hint. NB: we
# assume that typically, most values
# are unconstrained, so this linear
# scan adds a small constant overhead.
try:
val = min(
v for v in hints
if v in domain and v != cur
)
except ValueError:
pass

if val is None or hints[val] > 0:
# if we have no hints, or the best
# hints are costly, choose the lowest-
# cost unconstrained value in the domain
val = next(
(
v for v in domain
if v not in hints and v != cur
)
val

)

if val is None:
# couldn’t find a value
c = infinity

else:
# compute cost of new value
c, _ = score(var, val, objectives)

if ¢ >= cost:
# no benefit to re-assigning
continue

# found a better assignment
assignments[var] = val

# recompute the cost of any mutually-
# constrained variables that haven’t
# already been evaluated
for v in rulemap(var, objectives):
if v in queue:
queue. reschedule(v)

# we’ve arrived at a solution
return assignments

Listing 3: Greedy Solver

vatively, and attempts to minimize the impact of such mi-
grations on client performance whenever possible. Con-
nection migrations are generally cheaper to perform and
as such occur much more frequently — on the order of
minutes rather than hours.

Optimally scheduling data migration tasks is NP-
hard [31-33]; Mirador implements a simple global
scheduler that parallelizes migrations as much as possi-
ble without overloading individual devices or links.

Data migrations are performed in two steps: first, a back-
ground task copies an object to the destination device,
and then, only after the object is fully replicated at the
destination, it is removed from the source. This ensures
that the durability of the object is never compromised
during migration. Client connections are migrated using
standard SDN routing APIs augmented by custom proto-
col handlers that facilitate session state handover.

3.4 Platform Support

Mirador executes rebalance jobs in batches by (1) se-
lecting a group of objects and/or client connections to
inspect, (2) invoking the planning engine to search for
alternative configurations for these entities, and (3) coor-
dinating the migration tasks required to achieve the new
layout. Batches can overlap, allowing parallelism across
the three stages. Mirador attempts to prioritize the worst
offenders in early batches in order to minimize actuation
costs, but it guarantees that every object is processed at
least once during every job.

Mirador is able to perform its job efficiently thanks to
three unique features provided by the storage platform.
First, the system monitor relies on a notification facil-
ity provided by the cluster metadata service to quickly
identify objects that have been recently created or mod-
ified. This allows nodes in the cluster to make quick,
conservative placement decisions on the data path while
making it easy for Mirador to inspect and modify these
decisions in a timely manner, providing a strong decou-
pling of data and control paths. Second, the planning en-
gine makes use of a prioritization interface implemented
at each node that accepts a metric identifier as an argu-
ment (e.g., network or disk throughput, storage IOPS or
capacity) and returns a list of the busiest workloads cur-
rently being serviced by the node. Mirador can use this
to inspect problematic offenders first when attempting to
minimize specific objective functions (such as load bal-
ancing and capacity constraints) rather than inspecting
objects in arbitrary order. Finally, the actuation sched-
uler implements plans with the help of a migration rou-
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tine that performs optimized background copies of ob-
jects across nodes and supports online reconfiguration of
object metadata. This interface also provides hooks to
the network controller to migrate connections and ses-
sion state across nodes.

4 Evaluation

In this section we explore both the expressive power of
Mirador policies and the impact such policies can have
on real storage workloads. Table 1 lists the rules featured
in this section; some have been used in production de-
ployments for over a year, while others are presented to
demonstrate the breadth and variety of placement strate-
gies enabled by Mirador.

§ 4.1 measures the performance and scalability of the
planning engine, independent of storage hardware. § 4.2
shows how Mirador performs in representative enter-
prise configurations; storage nodes in this section are
equipped with 12 1 TB SSDs, two 10 gigabit Ethernet
ports, 64 GiB of RAM, and 2 Xeon E5-2620 processors
at 2 GHz with 6 cores each and hyperthreading enabled.
§ 4.3 and § 4.4 highlight the flexibility of rule-based
policies, as measured on a smaller development cluster
where 2 800 GB Intel 910 PCle flash cards replace the
12 SSDs on each node.

Client workloads run in virtual machines hosted on four
Dell PowerEdge r420 boxes running VMware ESXi 6.0,
each with two 10 gigabit Ethernet ports, 64 GiB of RAM,
and 2 Xeon ES-2470 processors at 2.3 GHz with 8 cores
and hyperthreading enabled. Clients connect to stor-
age nodes using NFSv3 via a dedicated 48-port SDN-
controlled Arista 7050Tx switch, and VM disk images
are striped across sixteen objects.

4.1 Optimization

We begin by benchmarking the greedy solver, which is
used in all subsequent experiments. Given rules that run
in constant time, this solver has a computational com-
plexity of O(NlogNlogM) for a system with N objects
and M devices.

We measure solver runtime when enforcing
a simple load-balancing policy (based on the
device_has_space and load_balanced rules,
with the latter enforcing a LOAD_SPREAD of 20%) in
deployments of various sizes. In each experiment,
a simulated cluster is modelled with fixed-capacity
devices (no more than ten per node) randomly populated
with objects whose sizes and loads are drawn from a
Pareto distribution, scaled such that no single object
exceeds the capacity of a device and the cluster is
roughly 65% full. For each configuration we present
the time required to find a zero-cost solution as well

as the number of reconfigurations required to achieve
the solution, averaged over ten runs. Some experi-
ments require no reconfigurations because their high
object-to-device ratios result in very small objects that
yield well-balanced load distributions under the initial,
uniformly random placement; the runtimes for these
experiments measure only the time required to validate
the initial configuration.

As Table 2 shows, the flexibility provided by Python-
based rules comes with a downside of relatively high
execution times (more than a minute for a system with
100K objects and 1K devices). While we believe there
is ample opportunity to improve our unoptimized imple-
mentation, we have not yet done so, primarily because
rebalance jobs run in overlapping batches, allowing op-
timization and actuation tasks to execute in parallel, and
actuation times typically dominate.

4.2 Actuation

In the following experiment we measure actuation per-
formance by demonstrating how Mirador restores redun-
dancy in the face of hardware failures. We provision four
nodes, each with 12 1 TB SSDs, for a total of 48 devices.
We deploy 1,500 client VMs, each running fio [18]
with a configuration modelled after virtual desktop work-
loads. VMs issue 4 KiB requests against 1 GiB disks.
Requests are drawn from an 80/20 Pareto distribution
with an 80:20 read:write ratio; read and write through-
puts are rate-limited to 192 KiB/sec and 48 KiB/sec, re-
spectively, with a maximum queue depth of 4, generating
an aggregate throughput of roughly 100K IOPS.

Five minutes into the experiment, we take a device offline
and schedule a rebalance job. The rplset_durable
rule assigns infinite cost to objects placed on failed de-
vices, forcing reconfigurations, while load-balancing and
failure-domain rules prioritize the choice of replacement
devices. The job defers actuation until a 15 minute sta-
bilization interval expires so that transient errors do not
trigger unnecessary migrations. During this time it in-
spects more than 118,000 objects, and it eventually re-
builds 3053 in just under 20 minutes, with negligible ef-
fect on client workloads, as seen in Figure 2.

4.3 Resource Objectives

We now shift our attention to the efficacy of specific
placement rules, measuring the degree to which they can
affect client performance in live systems. We first focus
on resource-centric placement rules that leverage knowl-
edge of cluster topology and client configurations to im-
prove performance and simplify lifecycle operations.
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Name Objective Cost  Lines of Code
device_has_space devices are not filled beyond capacity oo 4
rplset_durable replica sets are adequately replicated on healthy devices oo 4
load_balanced load is balanced across devices 70 13
links_balanced load is balanced across links 20 13
node_local client files are co-located on common nodes 60 30
direct_connect client connections are routed directly to their most-frequently accessed nodes 10 14
wss_best_fit active working set sizes do not exceed flash capacities 40 4
isolated cache-unfriendly workloads are co-located 20 30
co_scheduled competing periodic workloads are isolated 20 35

Table 1: Objective functions used in evaluation section; cost gives the penalty incurred for violating the rule.

Objects Devices Reconfigurations Time (seconds)
1K 10 6.40+2.72 0.40+0.06
1K 100  145.50+33.23 0.83+0.08
1K 1000  220.00+12.53 10.114+0.49

10K 10 0.00+0.00 1.614+0.01
10K 100 55.70+5.46 5.54+0.37
10K 1000 1475.00+69.70 16.714+0.88
100K 10 0.004+0.00 17.10+0.37
100K 100 9.30+4.62 22.37+5.38
100K 1000  573.80+22.44 77.21+2.87

Table 2: Greedy solver runtime for various deployment sizes
with a basic load-balancing policy; reconfigurations gives the
number of changes made to yield a zero-cost solution.

4.3.1 Topology-Aware Placement

In this experiment we measure the value of topology-
aware placement policies in distributed systems. We de-
ploy four storage nodes and four clients, with each client
hosting 8 VMs running a fio workload issuing random
4 KiB reads against dedicated 2 GiB virtual disks at
queue depths ranging between 1 and 32.

Figure 3a presents the application-perceived latency
achieved under three different placement policies when
VMs issue requests at a queue depth of one. The random
policy distributes stripes across backend devices using
a simple consistent hashing scheme and applies a ran-
dom one-to-one mapping from clients to storage nodes.
This results in a configuration where each node serves
requests from exactly one client, and with four nodes,
roughly 75% of reads access remotely-hosted stripes.
This topology-agnostic strategy is simple to implement,
and, assuming workload uniformity, can be expected to
achieve even utilization across the cluster, although it
does require significant backend network communica-
tion. Indeed, as the number of storage nodes in a cluster
increases, the likelihood that any node is able to serve re-
quests locally decreases; in the limit, all requests require
a backend RTT. This behavior is captured by the remote
policy, which places stripes such that no node has a local
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Figure 2: Rebuilding replicas after a device failure.

copy of any of the data belonging to the clients it serves.
The local policy follows the opposite strategy, placing all
stripes for a given VM on a single node and ensuring that
clients connect directly to the nodes hosting their data.
Notably, all three policies are implemented in less than
twenty lines of code, demonstrating the expressiveness
of Mirador’s optimization framework.

By co-locating VM stripes and intelligently routing
client connections, the local policy eliminates additional
backend RTTs and yields appreciable performance im-
provements, with median latencies 18% and 22% lower
than those of the random and remote policies, respec-
tively. Similar reductions are obtained across all mea-
sured queue depths, leading to comparable increases in
throughput, as shown in Figure 3b.

4.3.2 Elastic Scale Out

In addition to improving application-perceived perfor-
mance, minimizing cross-node communication enables
linear scale out across nodes. While a random placement
policy would incur proportionally more network RTTs as
a cluster grows in size (potentially consuming oversub-
scribed cross-rack bandwidth), local placement strate-
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Figure 3: Performance under three different placement strategies. The local policy yields a median latency 18% and 22% lower
than the random and remote policies, respectively, resulting in an average throughput increase of 26%. (Error bars in Figure 3b give
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Figure 4: Mirador responds to changes in cluster topology and workload behavior. Data is immediately migrated to new storage
nodes as they are introduced in 20 minute increments, starting at time #,¢; the brief throughput drops are due to competition with
background data copies. At time g5, two of the four client machines are deactivated; the remaining client load is subsequently
redistributed, at which point performance is limited by client resources.

gies can make full use of new hardware with minimal
communication overhead. This is illustrated in Figure 4,
which presents a timeline of aggregate client IOPS as
storage nodes are added to a cluster. At time # the clus-
ter is configured with a single storage node serving four
clients, each hosting 16 VMs issuing random 4 KiB reads
at a queue depth of 32; performance is initially bottle-
necked by the limited storage. At time 9, an additional
node is introduced, and the placement service automati-
cally rebalances the data and client connections to make
use of it. It takes just over two minutes to move roughly
half the data in the cluster onto the new node. This mi-
gration is performed as a low-priority background task
to limit interference with client I0. Two additional nodes
are added at twenty minute intervals, and in each case,
after a brief dip in client performance caused by compet-
ing migration traffic, throughput increases linearly.

The performance and scalability benefits of the local pol-
icy are appealing, but to be practical, this approach re-

quires a truly dynamic placement service. While both lo-
cal and random policies are susceptible to utilization im-
balances caused by non-uniform workload patterns (e.g.,
workload ‘hot spots’), the problem is exacerbated in the
local case. For example, if all workloads placed on a spe-
cific node happen to become idle at the same time, that
node will be underutilized. Figure 4 shows exactly this
scenario at time fg5, where two clients are deactivated and
the nodes serving them sit idle, halving overall through-
put. After waiting for workload behavior to stabilize, the
placement service responds to this imbalance by migrat-
ing some of the remaining VMs onto the idle storage, at
which point the clients become the bottleneck.

4.4 Workload Objectives

Placement policies informed by resource monitoring can
provide significant improvements in performance and ef-
ficiency, but they are somewhat reactive in the sense that
they must constantly try to ‘catch up’ to changes in work-
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load behavior. In this section we introduce and evaluate
several techniques for improving data placement based
on longitudinal observations of workload behavior.

The following examples are motivated by an analysis
of hundreds of thousands of workload profiles collected
from production deployments over the course of more
than a year. The synthetic workloads evaluated here,
while relatively simple, reflect some of the broad patterns
we observe in these real-world profiles.

For these experiments, we extend the storage configura-
tion described in § 4.3 with a disk-based capacity tier.
The placement service controls how objects are assigned
to flash devices as before; nodes manage the flash cards
as LRU caches and page objects to disk in 512 KiB
blocks. We artificially reduce the capacity of each flash
device to 4 GiB to stress the tiering subsystem. While
our evaluation focuses on conventional tiered storage, we
note that the techniques presented here are applicable to a
wide variety of hierarchical and NUMA architectures in
which expensive, high-performance memories are com-
bined with cheaper, more capacious alternatives, possi-
bly connected by throughput-limited networks.

4.4.1 Footprint-Aware Placement

Many real-world workloads feature working sets
(roughly defined as the set of data that is frequently ac-
cessed over a given period of time) that are much smaller
than their total data sets [13,56]. Policies that make de-
cisions based only on knowledge of the latter may lead
to suboptimal configurations. We show how augmenting
traditional capacity rules with knowledge of working set
sizes can lead to improved placement decisions.

We begin by deploying eight VMs across two clients
connected to a cluster of two nodes. Each VM disk image
holds 32 GiB, but the VMs are configured to run random
4 KiB read workloads over a fixed subset of the disks,
such that working set sizes range from 500 MiB to 4 GiB.
Given two nodes with 8 GiB of flash each, it is impossi-
ble to store all 256 GiB of VM data in flash; however, the
total workload footprint as measured by the analysis ser-
vice is roughly 17 GiB, and if carefully arranged, it can
fit almost entirely in flash without exceeding the capacity
of any single device by more than 1 GiB.

We measure the application-perceived latency for these
VMs in two configurations. In the first, VMs are parti-
tioned evenly among the two nodes using the /local policy
described in § 4.3.1 to avoid network RTTs. In the sec-
ond, the same placement policy is used, but it is extended
with one additional rule that discourages configurations
where combined working set sizes exceed the capacity of
a given flash card. The cost of violating this rule is higher
than the cost of violating the node-local rule, codifying
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Figure 5: Fitting working sets to flash capacities (‘best fit’)
yields a median latency of 997 psecs, compared to 2088 psecs
for the ‘local’ policy that eliminates backend network RTTs but
serves more requests from disk.

a preference for remote flash accesses over local disk ac-
cesses. The greedy solver is a good fit for this problem
and arrives at a configuration in which only one flash de-
vice serves a combined working set size larger than its
capacity.

As Figure 5 shows, the best-fit policy results in signifi-
cantly lower latencies, because the cost of additional net-
work hops is dwarfed by the penalty incurred by cache
misses. The purely local policy exhibits less predictable
performance and a long latency tail because of cumula-
tive queuing effects at the disk tier. This is a clear ex-
ample of how combining knowledge of the relative ca-
pabilities of network links and storage tiers with detailed
workload profiling can improve placement decisions.

4.4.2 Noisy Neighbor Isolation

We next introduce four cache-unfriendly workloads each
with 4 GiB disks. The workloads perform linear scans
that, given 4 GiB LRU caches, are always served from
disk and result in substantial cache pollution. These
workloads make it impossible to completely satisfy the
working set size rule of the previous experiment.

We measure the request latency of the original work-
loads as they compete with these new cache-unfriendly
workloads under two policies: a fair share policy that
distributes the cache-unfriendly workloads evenly across
the flash devices, and an isolation policy that attempts to
limit overall cache pollution by introducing a new rule
that encourages co-locating cache-unfriendly workloads
on common nodes, regardless of whether or not they
fit within flash together. As Figure 6 shows, this lat-
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Figure 6: Isolating cache-unfriendly workloads on a single
device yields a median latency of 1036 pusecs, compared to
3220 usecs for the “fair’ policy that distributes these workloads
uniformly across all devices.

ter policy exhibits a bimodal latency distribution, with
nearly 48% of requests enjoying latencies less than one
millisecond while a handful of ‘victim’ workloads ex-
perience higher latencies due to contention with cache-
unfriendly competitors. The fair share policy, on the
other hand, features a more uniform distribution, with all
workloads suffering equally, and a median latency more
than three times higher than that of the isolated policy.

4.4.3 Workload Co-scheduling

Finally, we introduce a technique for leveraging long-
term temporal patterns in workload behavior to improve
data placement. We frequently see storage workloads
with pronounced diurnal patterns of high activity at key
hours of the day followed by longer periods of idleness.
This behavior typically correlates with workday habits
and regularly scheduled maintenance tasks [16, 37, 46].
Similar effects can be seen at much smaller scales in
CPU caches, where the strategy of co-locating applica-
tions to avoid contention is called ‘co-scheduling’ [50].

We present a simple algorithm for reducing cache con-
tention of periodic workloads. The workload analysis
service maintains an extended time series of the footprint
of each workload, where footprint is defined as the num-
ber of unique blocks accessed over some time window; in
this experiment we use a window of ten minutes. Given
a set of workloads, we compute the degree to which they
contend by measuring how much their bursts overlap.
Specifically, we model the cost of co-locating two work-
loads W) and W, with corresponding footprint functions
Sf1(t) and f>(¢) as [min(f;(z), f2(z)). We use this metric
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Figure 7: Co-scheduling periodic workloads.

to estimate the cost of placing workloads together on a
given device, and employ a linear first-fit algorithm [14]
to search for an arrangement of workloads across avail-
able devices that minimizes the aggregate cost. Finally,
we introduce the co_scheduled rule which encodes an
affinity for assignments that match this arrangement.

We evaluate this heuristic by deploying 8 VMs with
4 GiB disks across two storage nodes each with two
4 GiB flash devices. The VMs perform 10 workloads
featuring periodic hour-long bursts of random reads fol-
lowed by idle intervals of roughly 3 hours, with the peri-
odic phases shifted in some VMs such that not all work-
loads are active at the same time. The combined foot-
print of any two concurrent bursts exceeds the size of any
single flash device, and if co-located, will incur signifi-
cant paging. We measure request latency under a number
of different configurations: random, in which stripes are
randomly distributed across devices, optimal and pessi-
mal, in which VMs are distributed two to a device so as
to minimize and maximize contention, respectively, and
first-fit, as described above.

Figure 7 plots latency CDFs for each of these config-
urations. The penalty of concurrent bursts is evident
from the pronounced disparity between the optimal and
pessimal cases; in the latter configuration, contention
among co-located workloads is high, drastically exceed-
ing the available flash capacity. The first-fit approxima-
tion closely tracks optimal in the first two quartiles but
performs more like random in the last two, suggesting
room for improvement either by developing a more so-
phisticated search algorithm or responding more aggres-
sively to workload changes.

S Experience

To see how Mirador performs in real-world environ-
ments, we sample logs detailing more than 8,000 rebal-
ance jobs in clusters installed across nearly 50 customer
sites and ranging in size from 8 to 96 devices. Figure 8 il-
lustrates how time spent in the optimization stage scales
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no zero-cost solution was found after a single optimization
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in proportion to the number of objects inspected; these
measurements include rate-limiting delays imposed to
prevent Mirador from impacting client workloads when
reading metadata. Figure 9 plots the number of observed
violations against the number of objects inspected per
job, and highlights jobs that fail to find a zero-cost so-
lution after a single optimization pass. This occurs in
only 2.5% of sampled jobs in which objective functions
are violated, and in 71% of these cases, no zero-cost so-
lutions are possible due to environmental circumstances
(some log samples cover periods in which devices were
intentionally taken offline for testing or maintenance).

We have found Mirador’s flexibility and extensibility to
be two of its best attributes. Over the nearly 18 months
in which it has been in production, we have adapted it
to new replication policies and storage architectures sim-
ply by modifying existing rules and adding new ones. It
has also been straightforward to extend Mirador to sup-
port new functionality: in addition to providing capac-
ity balancing across storage devices and network links, it
now plays a central role in cluster expansion, hardware
retirement, failure recovery, health monitoring, and disk
scrubbing features. For example, upon discovering an
invalid data checksum, our disk scrubbing service sim-
ply marks the affected object as corrupt and notifies the
placement service, where a custom rule forces the mi-

gration of marked objects to new locations, effectively
rebuilding them from valid replicas in the process.

Our deployment strategy to date has been conservative:
we ship a fixed set of rules (currently seven) and con-
trol how and when they are used. Assigning appropri-
ate costs to rules requires domain knowledge, since rules
often articulate conflicting objectives and poorly chosen
costs can lead to unintended behavior. As an example,
if solvers fail to identify a zero-cost solution, they yield
the one with the lowest aggregate cost — if multiple rules
conflict for a given assignment, the assignment which
minimizes the overall cost is chosen. It is thus impor-
tant to know which objective functions a replica set may
violate so that high priority rules are assigned costs suf-
ficiently large enough to avoid priority inversion in the
face of violations of multiple lower-priority rules.

While objective functions neatly encapsulate individual
placement goals and are relatively easy to reason about,
comprehensive policies are more complex and must be
carefully vetted. We validate rules, both in isolation and
combination, with hundreds of policy tests. Declarative
test cases specify a cluster configuration and initial data
layout along with an expected optimization plan; the test
harness generates a storage system model from the spec-
ification, invokes the planning engine, and validates the
output. We have also built a fuzz tester that can stress
policies in unanticipated ways. The test induces a se-
quence of random events (such as the addition and re-
moval of nodes, changes in load, etc.) and invokes the
policy validation tool after each step. Any cluster config-
uration that generates a policy violation is automatically
converted into a test case to be added to the regression
suite after the desired behavior is determined by manual
inspection. Validating any non-trivial placement policy
can require a fair amount of experimentation, but in our
experience, the cost-based framework provided by Mi-
rador provides knobs that greatly simplify this task.

In production, rebalance jobs run in two passes: the
first enforces critical rules related to redundancy and
fault tolerance, while the second additionally enforces
rules related to load-balancing and performance. This is
done because the planning engine must inspect objects in
batches (batches are limited to roughly 10,000 objects to
keep memory overheads constant), and we want to avoid
filling a device in an early batch in order to satisfy low-
priority rules when that same device may be necessary to
satisfy higher-priority rules in a later batch.

Early testing revealed the importance of carefully tuning
data migration rates. Our migration service originally
provided two priorities, with the higher of these intended
for failure scenarios in which replicas need to be rebuilt.
In practice, however, we found that such failures place
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additional stress on the system, often driving latencies
up. Introducing high-priority migration traffic in these
situations can lead to timeouts that only make things
worse, especially under load. We have since adopted a
single migration priority based on an adaptive queuing
algorithm that aims to isolate migration traffic as much
as possible while ensuring forward progress is made.

6 Related Work

Researchers have proposed a wide variety of strategies
for addressing the data placement problem, also known
as the file assignment problem [15]. Deterministic ap-
proaches are common in large-scale systems [38,41, 48,
51, 53] because they are decentralized and impose min-
imal metadata overheads, and they achieve probabilisti-
cally uniform load distribution for large numbers of ob-
jects [43,45]. Consistent hashing [30] provides relatively
stable placement even as storage targets are added and re-
moved [21,57]. Related schemes offer refinements like
the ability to prioritize storage targets and modify repli-
cation factors [26, 27, 52], but these approaches are in-
trinsically less flexible than dynamic policies.

Non-deterministic strategies maintain explicit metadata
in order to locate data. Some of these systems employ
random or semi-random placement policies for the sake
of simplicity and scalability [34,39,42], but others man-
age placement with hard-coded policies [20,47]. Cus-
tomized policies provide better control over properties
such as locality and fault tolerance, which can be partic-
ularly important as clusters expand across racks [29].

Explicit metadata also make it easier to perform fine-
grain migrations in response to topology and workload
changes, allowing systems to redistribute load and ame-
liorate hot spots [35, 37]. Hierarchical Storage Man-
agement and multi-tier systems dynamically migrate
data between heterogeneous devices, typically employ-
ing policies based on simple heuristics intended to move
infrequently accessed data to cheaper, more capacious
storage or slower, more compact encodings [4, 54].

Mirador has much in common with recent systems de-
signed to optimize specific performance and efficiency
objectives. Guerra et al. [23] describe a tiering system
that makes fine-grain placement decisions to reduce en-
ergy consumption in SANs by distributing workloads
among the most power-efficient devices capable of sat-
isfying measured performance requirements. Janus [5]
is a cloud-scale system that uses an empirical cacheabil-
ity metric to arrange data across heterogeneous media
in a manner that maximizes reads from flash, using lin-
ear programming to compute optimal layouts. Volley [2]
models latency and locality using a weighted spring anal-
ogy and makes placement suggestions for geographically

distributed cloud services. Tuba [9] is a replicated key-
value store designed for wide area networks that allows
applications to specify latency and consistency require-
ments via service level agreements (SLAs). It collects
hit ratios and latency measurements and periodically re-
configures replication and placement settings to maxi-
mize system utility (as defined by SLAs) while honoring
client-provided constraints on properties like durability
and cost. Mirador supports arbitrary cost-function opti-
mizations using a generic framework and supports poli-
cies that control network flows as well as data placement.

Mirador also resembles resource planning systems [6,
8] like Hippodrome [7], which employ a similar ob-
serve/optimize/actuate pipeline to design cost-efficient
storage systems. Given a set of workload descrip-
tions and an inventory of available hardware, these tools
search for low-cost array configurations and data layouts
that satisfy performance and capacity requirements. Like
Mirador, they simplify a computationally challenging
multidimensional bin-packing problem by combining es-
tablished optimization techniques with domain-specific
heuristics. However, while these systems employ cus-
tomized search algorithms with built-in heuristics, Mi-
rador codifies heuristics as rules with varying costs and
relies on generic solvers to search for low-cost solutions,
making it easier to add new heuristics over time.

Ursa Minor [1] is a clustered storage system that sup-
ports dynamically configurable m-of-n erasure codes, ex-
tending the data placement problem along multiple new
dimensions. Strunk et al. [49] describe a provision-
ing tool for this system that searches for code param-
eters and data layouts that maximize user-defined util-
ity for a given set of workloads, where utility quanti-
fies metrics such as availability, reliability, and perfor-
mance. Utility functions and objective functions both
provide flexibility when evaluating potential configura-
tions; however, Mirador’s greedy algorithm and support
for domain-specific hints may be more appropriate for
online rebalancing than the randomized genetic algo-
rithm proposed by Strunk et al.

7 Conclusion

Mirador is a placement service designed for heteroge-
neous distributed storage systems. It leverages the high
throughput of non-volatile memories to actively migrate
data in response to workload and environmental changes.
It supports flexible, robust policies composed of simple
objective functions that specify strategies for both data
and network placement. Combining ideas from con-
straint satisfaction with domain-specific language bind-
ings and APIs, it searches a high-dimension solution
space for configurations that yield performance and ef-
ficiency gains over more static alternatives.
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