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Abstract

Software is modular, and so is run-time state. We argue
that by allowing individual layers of the software stack to
store isolated runtime state, we cripple the ability of sys-
tems to effectively scale or respond to failures. Given the
strong desire to build elastic and highly available applica-
tions for the cloud, we proposeSlice, an abstraction that
allows applications to declare appropriate granularities
of scale-oriented state, and allows layers to contribute the
appropriate layer-specific data to those containers. Slices
can be transparently migrated and replicated between ap-
plication instances, thereby simplifying design of elastic
and highly available systems, while retaining the modu-
larity of modern software.

1 Introduction

Dynamic scalability and high availability are conjoined
goals in distributed systems. In both cases, application
state must be packaged in a manner that allows for the
nimble and often unanticipated reconfiguration of a sys-
tem. Consequently, a very large body of research, in both
scalable and reliable systems design [1,2,7,8,14,18,23]
has struggled with the encapsulation and management of
application state. While the problem of application state
has been evident for a long time, we point to the fact that
systems continue to both fail to scale [28–31], and fail
to recover [32–34], as evidence that these problems have
not been adequately solved in existing runtime environ-
ments.

The position of this paper is that managing application
state is the achilles’ heel of providing robust, scalable
applications today. We argue that this is anorthogonal
challenge to the largely solved problem of scaling the
underlying cloud hosting platform. Cloud providers have
demonstrated an excellent capacity to provide low-cost,
unreliable computing at enormous scale. This compute
model is ideal for select stateless applications because

of their ability to respond to failures and reconfigura-
tions [37]. If application run times provided explicit sup-
port to manage application state across scalability and
failure-related reconfigurations, a much broader set of
applications would become capable of leveraging infras-
tructure support for elasticity and high availability.

The principal philosophy of our work is that the applica-
tion is not the correct granularity to consider either scal-
ability or availability: applications are commonly struc-
tured as client-oriented sessions with the (per-client) ses-
sion state carefully coupled to properties such as load
balancing, data consistency, and failure recovery. Con-
sequently, client-oriented sessions form the correct unit
for implementing elasticity and high availability. Unfor-
tunately, per-client session state is not confined to the
application layer alone. External factors such as TCP
state machines, entropy sources, and helper applications
all conspire to produce critical application stateoutside
the address space of a given application.

To this end, we propose a new abstraction that al-
lows each software layer to independently identify fine-
grained sub-state in a session-based unit called acapsule.
Capsules are explicitly linked together across layers in
the software stack to form a vertical chain, orSlice, that
represents all important states belonging to a particular
session. A Slice can be live migrated or replicated from
one running application instance to another. The com-
bined ability migrate and replicate Slices creates new
opportunities for achieving efficient elasticity and high
availability (HA).

As a proof-of-concept, we use an Apache/PHP web
server cluster to show how a legacy application can be re-
structured in a manner that specifies a Slice that extends
through the application’s heap, network state in the ker-
nel, and even extending to external OpenFlow forward-
ing rules. We further discuss how this application—once
restructured to use Slices—can achieve dynamic scale
and a graceful, load-balanced failure recovery.
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Figure 1: Footprints of a client session, in Apache/PHP.
Solid boxes denote session-wide state, while dotted
boxes denote per-request (ephemeral) state. Solid arrows
indicate dependencies while dotted arrows indicate logi-
cal control flow.

2 Slices

Consider, as a running example, a simple Apache/PHP
based web application deployed on a cluster of virtual
machines (VMs). We assume the following: (a) the
VMs have identical operating environments (kernel, pro-
cess binaries, etc.), (b) the filesystem is shared among
the VMs (e.g., NFS), and (c) the cluster is deployed
over a Software Defined Network (SDN), such as Open-
Flow [38]. As shown in Figure 1, a request-response
transaction creates/modifies state in the OpenFlow net-
work, Linux kernel, Apache web server and the PHP ap-
plication. For the purpose of exposition, we have only
considered a representative subset of the data structures
in each layer.

2.1 Defining a Slice

As depicted in Figure 2, a Slice is a collection of related
states associated with a client session that spans all layers
of the software stack. For ease of discussion, we assume
that the software stack consists of only one subsystem
per layer. At each layer, the Slice is made up of one or
morecapsules, where a capsule is the bare minimum—
essential—state associated with the corresponding client
session. For example, in the OS kernel in Figure 1, the
socket and TCP state associated with each client may be
identified as a capsule. Each layer explicitly expresses

Figure 2: Explicitly defined state capsules at each layer
linked together to form a Slice. Every layer exposes a
common set of APIs allowing a centralized entity to track
dependencies between capsules within a Slice and mi-
grate or replicate it across VMs.

dependencies between its capsules and the capsules in
the lower layer. Capsules from each layer are chained
together to make a Slice. For the example in Figure 1,
each Slice contains the bare minimum state—across all
layers—associated with a given client session.

By classifying state in each layer of a VM as (a) belong-
ing to a Slice, (b) global state shared among all Slices,
or (c) other,1 we can view the application cluster as a
set of Slices, and not as a set of VMs. A Slice can be
migrated from one VM to another or replicated between
VMs; this is coordinated by an Orchestrator with a global
view of Slices. A Slice, thus, forms the fundamental unit
of reconfiguration for scaling and high availability. We
discuss the Slice based approach to elasticity and HA in
Section 3.

2.2 The Slice API

In order for a software layer to delineate its capsules, we
advocate an API based approach to state management.
Figure 3 describes a set of APIs that should be imple-
mented by each layer. These APIs allow any layer to de-
lineate which pieces of its state form a capsule, identify
their dependencies to other layers’ state, and enable cap-
sules (and subsequently Slices) to be migrated or repli-
cated between VMs.

Delineating State. A layer identifies its own capsules
by structuring its software such that capsule state is in-
dependent from other state used in the layer. To this end,
a CapsuleList interface is implemented to manage

1This is a generalization of the Split/Merge [21] memory abstrac-
tion from our earlier work.
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Figure 3: The Slice API

different capsules in a layer. As state is allocated within
its structures, the layer communicates the creation and
deletion of each capsule to the Orchestrator through the
register capsule and deregister capsule
calls, respectively. TheCapsuleList interface forces
all capsules to be referenced in a standard manner as part
of a Slice (or by other layers) and migrated or replicated,
as described below.

Specifying Dependencies.If a capsule has dependen-
cies, they need to be expressed explicitly to the Orches-
trator using theset dep call. As it creates capsules,
each layer specifies its dependencies from the lower
layer to the Orchestrator. The Orchestrator maintains a
mapping between a capsule ID and the set of capsules
it depends on.2 When the uppermost layer issues the
create slice call with its capsule ID, the Orchestra-
tor runs through the dependency mappings and generates
a list of capsules that fall into the Slice.3

Canonicalization. To specify a dependency, a layer
must obtain a unique capsule ID from the underlying
layer. To this end, each capsule implements a mechanism
to canonicalize references to state from the underlying
layer, as part of theCapsuleList interface. Typically,
references are specified in the form of handles (e.g., file
descriptors, pointers, etc.). The value of a handle may
not be unique across layers in the same level, when con-
sidering the entire set of VMs in the cluster. Theget id

2Note that capsule to capsule dependencies can have only local
scope, i.e., within the same VM.

3In practice, an implementation would contain a Local Orchestrator
Agent inside the VM and a Global Orchestrator. A layer would only
interact with the local agent. Once a slice has been created,information
can be asynchronously propagated to the Global Orchestrator.

call translates a handle to its globally unique ID that was
registered with the Orchestrator. Theget handle call
does the inverse translation.

Unplugging/Plugging. The Orchestrator can detach a
Slice from a VM and the network and attach it to a dif-
ferent VM, forming the basis for migration or replica-
tion. To accomplish this, each capsule must have the ca-
pability to be “unplugged” from its layer in a VM and
“plugged” into an equivalent layer in a different VM. To
this end, each capsule implementsplug capsule and
unplug capsule as part of theCapsuleList inter-
face. Unplugging/plugging a capsule in the OpenFlow
layer translates to deleting the corresponding flow rules
and installing updated flow rules, respectively.4 The
plug/unplug operations must ensure that all references
to the capsule have been released before unplugging a
capsule. To help track references, each capsule forces
the software in its layer to explicitly obtain/release refer-
ences to capsules by using theget ref andput ref
API, respectively.

3 Slicing Elasticity and High Availability

The ability to unplug,live migrate, and plug a Slice en-
ables two powerful operations:

• Split the set of Slices operated by one VM into two
or more subsets, such that each subset of Slices can
be processed in parallel by multiple VMs.

• Merge the set of Slices operated by two or more
VMs into a single superset to be processed by one
VM.

We now discuss the high level design of a system that
leverages splitting and merging of Slices to achieve elas-
ticity and high availability.

3.1 Dynamic Scalability

An application designed around the Slice abstraction can
be transparently and rapidly scaled out while avoiding
the creation of infrastructure hotspots. Consider the stan-
dard scale out operation in the cloud. When the work-
load crosses a particular threshold, one or more VMs are
added to the application cluster to handle new incoming
load. By splitting and migrating Slices, not only can an
application scale-out, but it can alsoshed load from cur-
rently overloaded VMs onto the newly added ones.

When the load on the system decreases, the set of Slices
in one or more VMs can simply be merged into other
VMs, thereby, improving overall system utilization. This
is different from current scale-in strategies that rely on

4In order to maintain client connectivity as a Slice moves across
VMs, each VM is configured with the same MAC and IP address.
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Figure 4: Example of using Slices for HA

waiting for existing sessions to terminate before killing
the running VM. Splitting and merging of Slices is trans-
parent to the client such that the network connectivity
remains intact. The Orchestrator controls scale-out, load
shedding, scale-in at runtime through configurable exter-
nal policies.

3.2 Fine-Grained High Availability

The ability to live migrate a Slice opens up new avenues
for exploring fine-grained high availability (HA) solu-
tions. Instead of creating a new VM to hold backup data
in a Slice, we can reuse spare resources in the existing
cluster [27].

Lightweight HA. As shown in Figure 4(a), when pro-
tecting data in a VM, only the Slice data needs to be
backed up. Global state is already synchronized across
other VMs in the cluster; other state in every VM is ei-
ther ephemeral with respect to the Slice or simply inde-
pendent of a Slice’s state. By replicating only Slice data,
the resource requirements of HA are drastically reduced
compared to VM replication techniques.

Failover is a Merge.Continuous VM replication [7] can
be applied at Slice level for high availability. As illus-
trated in Figure 4(b), when a VM fails, the Orchestrator
simply merges the standby Slices into their respective
VMs. The associated network flows are also re-routed
as part of the merge process. Slice level checkpointing

can leverage output buffering [25] and speculative exe-
cution, to ensure that only committed state is exposed to
the client. As a result, client connectivity remains intact
post failover.

Fine-Grained Output Buffering. A VM can be con-
sidered as a collection of Slices, one per session, whose
outputs are independent of one another. VM replica-
tion techniques [7, 14, 17, 22] treat the entire system as
one single state machine, for the purposes of output
buffering. Such coarse grained output buffering adds
a high overhead to the end-to-end latency of a session.
Higher checkpoint frequencies can mitigate latency im-
pact, but the suspend/resume overhead per checkpoint
can no longer be amortized. Slices can be checkpointed
concurrently at a high frequency, thereby enabling in-
dividual session outputs to be released independent of
other Slices, while reducing the latency overhead of out-
put buffering.

Proactive Load Balancing. Replicating application
stateen masse [27] between two VMs can lead to un-
even distribution of load across the system when one or
more VMs fail. The Orchestrator distributes the standby
Slices from a VM in a load balanced fashion across the
cluster. Such a proactive load balancing technique en-
sures that no single VM will be overloaded when one or
more VMs in the cluster fail.

Elastic HA. The HA implementation can be made elas-
tic vis-a-vis the amount of resources available. As the
cluster shrinks/grows, the Orchestrator continually re-
balances the load on the cluster by splitting and merg-
ing both active and standby Slices. The rebalancing
of standby Slices maintains the load balanced recovery
property stated above.

4 Restructuring the Software Stack

Designing an entire software stack around the notion
of Slices requires that each subsystem/layer be modular
with respect to its state. The system must identify the
state that goes into a Slice, manage synchronized state
across Slices, manage consistency during Slice migra-
tion, etc. This section discusses the key challenges in
restructuring a layer for slicing.

Lists. The CapsuleList interface shown in Fig-
ure 3 enables tracking the number of accessors of an
object and provides a generic mechanism to plug/un-
plug objects. A software layer managing multiple
capsules of the same type generally maintains some
form of a list datastructure. For example, the ker-
nel maintains a hash table of open TCP sockets in
the tcp hashinfo hash table. References are ob-
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tained through the inet lookup skb function. In
such cases, only minimal modifications are required to
the existing implementation to support functions like
unplug capsule/plug capsule. In the absence
of such interfaces, the developer needs to take explicit
control of state management in the layer and implement
the CapsuleList interface.

Unplugging/Plugging Safely.A Slice can be unplugged
only when there are no references to it. Generally, by
suspending the ingress flow of the client connection, the
client session’s request pipeline drains out quickly. In-
side the VM, any inflight request/response data in the
Slice needs to be processed and flushed out before the
unplug operation. When unplugging a capsule, any ref-
erences to state outside of its Slice, in the current VM
should be released and reacquired again, upon plugging
into a different VM.5

Plugging kernel objects, like TCP state, can piggyback
on existing code to create a TCP connection and unplug-
ging can reuse the code to close a TCP connection. Care
needs to be taken when dealing with resources that gen-
erate output. For instance, in the case of a TCP object,
SYN or RST packets have to be discarded when plugging
and unplugging.

Network Endpoints with Same MAC/IP. Migrating the
Slice requires that the target VM have the same MAC/IP,
so as to maintain client connectivity. In our earlier
work [21], we demonstrated the feasibility of this ap-
proach by dynamically scaling a cluster of middleboxes
with same network endpoint on an OpenFlow network.6

Global State Synchronization. Global state exists in
several forms: locks, read-mostly configuration data,
counters, and other data structures. Global state can be
thought of as belonging to capsules that are eternally
plugged into every node in the cluster and kept syn-
chronized. The Slice API can be augmented to spec-
ify global state and its consistency requirements. Non-
critical global state (e.g., counters) can generally tol-
erate eventual consistency and can be managed using
techniques like combiners [10, 16], sloppy counters [5],
application-specific merge procedures [26], etc. State
that requires strong consistency can be managed using
standard distributed locking techniques [6,11].

5During Slice migration, incoming requests on the client session
can be buffered at the target VM’s hypervisor.

6IP rewriting load balancers will not work in this scenario because
they only target solutions that migrate application layer session state;
state that is generally independent of the server’s MAC/IP.

5 Limitations

Applications that require frequent global synchroniza-
tion will not benefit from the Slice abstraction, if the syn-
chronization requires strong consistency. We acknowl-
edge that this is a significant barrier towards application
scalability. But, we note that the application would have
to deal with the synchronization issue in any other design
as well, if it wishes to scale across multiple VMs in the
cloud.

Similarly, Slices may not be suitable for applications
with extremely short lived sessions. The overhead of ini-
tiating and terminating Slice replication cannot be amor-
tized if the sessions last for very short periods, such as
a few seconds. In the common case, where session du-
rations are on the order of minutes, both stateless and
stateful systems can benefit from Slice based approach
to elasticity and high availability.

6 Related Work

Our earlier work [21] described system level abstrac-
tions to provide transparent elasticity for virtual middle-
boxes. Along a similar vein, this paper targets a much
broader class of end-user applications and aims to pro-
vide both elasticity and high availability. Unlike middle-
boxes, these applications do not easily lend themselves
to the data and execution model assumed in our previous
work.

Vertical Abstractions. The vertical Slice abstraction
shares close similarities with Resource Containers [3].
While both abstractions encapsulate session state at all
layers of the software stack, resource containers enable
fine-grained control over resource consumption for a
given session, while Slices enable load-balanced elastic-
ity and high availability for the entire application cluster.

Migrating Slices vs Processes.Slice migration faces
some of the same challenges as process migration. There
is a plethora of work on process migration [4,9,15,19,20,
24]. The main challenge in process migration is migrat-
ing residual dependencies outside process scope (e.g.,
shared state between processes, open network connec-
tions and files). For example, a kernel object on the
source—referenced by a descriptor—may not exist on
the destination. Zap [12, 19] proposes a solution by in-
troducing the notion of process domains—a collection
of processes with a virtualized view of the OS. During
migration, the entire process domain and its system de-
pendencies are migrated to the target.

Using the Slice abstraction, it is not necessary to pro-
vide a virtualized view of the OS. Capsules are created
and managed in every layer of the system. The objects
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referred to by descriptors that can be problematic at the
process level reside in capsules in the OS and are explic-
itly linked to the same Slice as their descriptors. There-
fore, as long as capsules are specified at all layers in the
stack, (to some extent, Zap [12] has demonstrated the
feasibility of such encapsulation on modern kernels, for
popular applications like Apache, MySQL, etc.), migrat-
ing a Slice leaves no residual dependencies at the source.

Dynamic Scalability. Existing work on application scal-
ability has mostly focused on managing state in the appli-
cation layer. Stateless applications offload session state
management to scalable backends like Dynamo [8] and
Sinfonia [1]. Stateful applications [39–42] typically use
application clustering to scale in the cloud.

The common theme underscoring all these systems is
that a deployment is scaled inunits of virtual ma-
chines [13, 35]. Only the application layer state can mi-
grate across the cluster. The system and network level
state maintains affinity to the local VM, and restricts the
mobility of sessions. As a consequence, sessions turn
sticky, creating infrastructure hotspots and slowing down
the scale-in process. With Slices, an application can be
split/merged dynamically according to load, in an effi-
cient manner, as described in Section 3.1.

High Availability. System level approaches [7, 14, 22]
can provide transparent HA by replicating the entire VM
to a standby host. The failover process is completely
transparent to both end user and the application. How-
ever, protecting an entire VM’s state is a sledgeham-
mer approach to HA, with two main limitations: (1) it
incurs at least 2X resource overhead by maintaining a
hot spare for each VM, which limits the scalability of
the application cluster, and (2) latency sensitive applica-
tions incur high performance overhead [7] as the check-
points are coarse grained. Application level approaches
to HA [27, 36] overcome these limitations. However,
they fail to manage system level state resulting in loss of
transparency during failover. Slice based HA design pro-
vides the same recovery properties as system level HA
techniques but at much lower overhead, similar to appli-
cation level approaches, as described in Section 3.2.

7 Conclusion

Lack of system support for managing session related
state inside the OS and network has led to unnecessary
design complexity at the application level. This paper
presents Slice, a vertical abstraction that connects ses-
sion related state across all software layers in the sys-
tem into a single conjoined entity. Slices can be live mi-
grated and replicated across application instances. This
creates new opportunities for jointly achieving elasticity

and high availability, while allowing a simple and clean
design of end applications.
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