
A Data Synchronization Service for Ad Hoc Groups
Terry Coatta∗, Norman C. Hutchinson†, Andrew Warfield‡ and Joseph H. T. Wong§

∗Silicon Chalk Inc., Vancouver, British Columbia, Canada
Email: coatta@silicon-chalk.com

†Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
Email: norm@cs.ubc.ca

‡Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
Email: andrew.warfield@cl.cam.ac.uk

§Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
Email: jwong@cs.ubc.ca

Abstract— The emergence of wireless ad hoc networking has
opened the way for a new style of distributed computing. Ad
hoc networks operate without infrastructure such as routers
or access points. Software designed for this environment faces
new challenges. In traditional networks, partitioning is typically
treated as an exceptional and transient condition. The situation
in ad hoc wireless networks is completely reversed. Each ad
hoc group is an isolated network, partitioned from all other
ad hoc networks. As computers move from one ad hoc group
to another, the set of partitions changes. This paper presents
the design and implementation of a data synchronization service
intended specifically for ad hoc wireless networks. It describes
the underlying factors affecting the design, the protocol used to
achieve synchronization, and some performance measurements
from the actual implementation.

I. INTRODUCTION

One of the fundamental problems in distributed systems is
managing state that is distributed across a set of computers.
There are a wide variety of systems that address this problem,
including: distributed file systems, the network time protocol,
replicated databases, and the domain name system. Histori-
cally, distributed applications that have scaled to support large
numbers of concurrent clients have taken measures to locate
shared data in manageable, typically central locations and
to employ redundancy and replication to survive component
failures [1], [2], [3], [4], [5]. One feature that these systems
have in common is that they do not work well in the face
of network partitions. Without replication of data, a network
partition can mean that data is inaccessible, but even if repli-
cated data is available to all participants, network partitions
often result in a suspension of service because the system
is unable to coordinate access appropriately. In traditional
wired networks though, partitioning is an exceptional case that
typically involves only a small number of nodes, and is both
infrequent and short-lived.

New wireless networking technologies such as 802.11 and
Bluetooth have enabled the emergence of an increasingly
mobile community of users. These technologies support the
creation of ad hoc networking groups, in which users share
resources, interact, and collaborate directly without the support
of fixed networking infrastructure. This opens up new horizons
for how and where computers are used but also present

a drastically different environment, whose properties depart
significantly from those of wired networks.

Ad hoc wireless networks present several new challenges
to software developers: Bandwidth is not as readily avail-
able, and is always shared. Reliability varies considerably
depending on the distance and objects that separate hosts.
Most crucially though, ad hoc networks present a situation in
which partitioning is the norm. Collaborative users will often
work together in small groups, while the entire network will
rarely (if ever) be completely connected. Applications intended
for this environment require communications mechanisms that
acknowledge the disconnectedness that is intrinsic to ad hoc
networks.

This paper presents a data synchronization service for ad
hoc wireless networks that aims to address these issues. Sec-
tion II describes the synchronization needs of a collaborative
tool that supports teaching in laptop-enabled classrooms. This
leads to a set of requirements in Section III. Section IV
contains the design and implementation of the synchronization
service. The paper closes with comparisons to other systems
that deal with similar problems, and a look at future work on
the system.

II. MOTIVATING PROBLEM

The data synchronization service described in this paper
was developed as one component of a distributed application
that is used in classroom or lecture settings to enhance and
assist with education in a face-to-face context. The software
facilitates typical classroom interactions such as presentation,
note taking, asking questions, and working on problem sets.
Architecturally, the application is peer-to-peer, that is, there are
no statically defined servers/masters. Hosts dynamically take
on client or server roles depending on the manner in which
the user is currently interacting with others in the class.

During the early stages of development of this application,
we constructed a data sharing service that was tied tightly
to the particular application domain. However, as work pro-
gressed, it became clear that there were several requirements
related to data sharing that were recurring in various guises
and would be best served by a generic data sharing service

that was application domain neutral. The data sharing needs
of the application broke down into three categories:

1) Resource Availability – Participants in the class need
access to information such as whether certain individuals
are signed in, or whether the instructor is currently
broadcasting course content.

2) Application Data – Participants in the class need to
exchange various sorts of information to each other such
as display names to be used by the application when
identifying someone.

3) Application Configuration – The application itself needs
to exchange information about how certain resources are
being utilized such as which network channel the audio
track for the lecture is being broadcast on.

These issues are not unique to the educational setting. Any
application that supports groups of individuals coming together
and interacting with each other must address these concerns.
The data synchronization service described in this paper has
applicability to a wide variety of applications in the general
domain of collaborative computing.

The educational setting shares other challenging character-
istics of the general area of mobile computing. Students are
inherently mobile “workers.” They travel between classes and
study groups, and in each location interact with different, but
generally overlapping sets of individuals. The ad hoc mode of
802.11 wireless networks meets this need precisely as it allows
individuals to come together and create a local network with
virtually no effort.

As individuals move from group to group, their computers
gain and lose connectivity to other computers. For example, a
student’s machine may be in contact with another classmate’s
during a lecture that they share in the morning, lose connec-
tivity during a subsequent period in which they are at different
lectures, and then regain connectivity later when the students
are both participating in a study group.

This last issue is one that is particularly relevant for
collaborative applications. Users can modify shared data at
any time. If a student is interacting with others and makes
some changes to shared data, the application propagates those
changes to the others immediately. However, if the user makes
a similar set of changes at a time when he is not participating
in that group (and hence no longer part of that group’s ad hoc
network), it would be undesirable for other members of the
group to fail to see those changes when the group came back
together. Thus, the application must remember those changes
and opportunistically update other members of the group when
connectivity is re-established.

In order to be useful in the collaborative setting, the sort
of data sharing outlined above needs to happen with minimal
latencies and using a reasonable amount of resources. These
constraints rule out the use of transaction-based systems which
have been the primary mechanism for achieving shared data
consistency in distributed applications. The remainder of this
paper transforms the general needs outlined in this section into
a formal set of requirements, proposes a protocol for satisfying

those requirements, and examines an implementation of the
protocol.

III. REQUIREMENTS

The problem that has been presented in the previous section
motivates the need for a globally shared data-space whose
complete contents are of interest to every host. In order to
provide a usable, consistent shared data-space, we define a set
of properties that our service must satisfy: Global Structure,
Sporadic Connectivity, Data Convergence, and Scalability.

A. Global Structure

A generic data synchronization service cannot rely on
semantic knowledge associated with the data as a means for
detecting and propagating changes. While it would be possible
to create a service that handled totally unstructured data, our
experience is that much of the data shared by collaborative
applications can be expressed quite naturally in a hierarchical
form. Incorporating this hierarchical structure into the data
synchronization service provides a means to efficiently detect
and propagate changes in the shared data. Thus, the data
space is represented as a hierarchical collection of nodes that
we refer to as the directory (given the structural similarities
to other data services such as LDAP and Active Directory).
Individual nodes have the following properties:

• Each node has a name and value.
• Each node has a unique parent node, except the root.
• Each node is uniquely identified by its path from the root.

Each host attempts to store a complete replica of the
directory. Individual hosts can create, destroy, or modify the
values of the nodes within the directory and the synchroniza-
tion service will leverage this structure to detect divergences
between hosts.

B. Sporadic Connectivity

The primary usage pattern for ad hoc networks is to create
(relatively) short-lived, unreliable connections. Because of
this, the synchronization service must be able to achieve
synchronization quickly and incrementally. To achieve this,
the synchronization service will have to quickly identify
divergent areas of the directories stored on a group of hosts,
and efficiently achieve a consistent view of the data in the
identified areas.

C. Data Convergence

As a primary goal of the service is to be lightweight,
we must not use transactional interactions between hosts to
guarantee consistency. Moreover, as the existence of ad hoc
groups implies a constantly changing set of partitions, there
are bound to be conflicts in the data that even transactions
would not avoid. Therefore, we adopt a very simple conflict
resolution mechanism. We assume that the machines using the
directory have synchronized clocks and use the host’s clock
to determine whether a given node is up-to-date with respect
to another host. The basic synchronization requirement is that
once a node’s value has not changed for some time period,

all the participating machines will agree on the value of the
node. Note that while many systems take considerably greater
pains to identify and sometimes even resolve conflicts, we
have found this approach to be very useful for a large class
of data.

D. Scalability

Finally, it is important to consider the desired scale of
groups under which the synchronization service should be
expected to operate. The synchronization service’s scale is
characterized by two factors: the number of hosts in a single
ad hoc group attempting to synchronize their directories, and
the number of nodes in the group’s shared directories.

The service must scale to support large groups of users as
might exist together in a classroom or conference environment
(perhaps several hundred users). Regarding the size of the
directory itself, we anticipate that it should be reasonable
to support a volume of data in excess of what will be
required in most group collaborative applications; the current
implementation is comfortably supports directories containing
thirty thousand nodes.

IV. IMPLEMENTATION

The synchronization service has been implemented as a
service for Microsoft Windows. Hosts communicate with each
other using a UDP broadcast-based protocol. The current
implementation is completely functional and is used as a
component of a commercial collaborative application. The
remainder of this section will present several aspects of the
implementation in detail: the structure of the directory, the
synchronization protocol, the structure of the synchronization
service, and the application API.

A. Shared Data Space Structure

As described in the requirements section, the shared data-
space takes the form of a tree. There is a single, global tree,
which may be defined as the union of all trees stored on all
hosts using the synchronization service. A database on each
local host stores the hierarchy of shared data as a collection
of nodes. Each node has two parts: a set of administrative
properties that describe the node and are used primarily to
represent the tree structure and to support synchronization and
an embedded value, which is a string and some associated
properties. The structure of a node is illustrated in Figure 1.

The administrative properties of a node are as follows:

• Node ID: the identity or path of the node.
• Reception Time: the time at which this value was last

updated in the local database.
• Main Hash: a hash value that characterizes the state of

this node and all of its children.
• Child Hash: a hash value that characterizes the state of

the children of the node only.
• Child Nodes: a set of the children of the node.

The properties of a node’s value are as follows:

• String Value: is the string data, used by applications,
stored within this node.

Node ID /classes/CS101

Reception Time 08-01-02-23:00

Main Hash 9afb994ab284…

Child Hash 4f00b891cd0a1…

Child Nodes

Node Value
String Value “CS101 subtree”
Timestamp 07-30-02-11:12

(link from /classes)

Node Structure

Fig. 1. Structure of an Individual Node

• Timestamp: stores the time at which this value was
created. This value is used to select the dominating node
in the case of a conflict.

The hash values stored in each node deserve some additional
explanation. The purpose of the hash function is to reduce a
relatively large state space to a finite set of integers in such a
manner that if two elements of the state space have the same
hash value then it is extremely likely that they are equal. The
hash values may be used to quickly compare subtrees of the
directory for equality. Two hashes are maintained so that it can
quickly be determined whether the difference in two sub-trees
is due do a difference in the root node of the two sub-trees
(main hashes differ, but child hashes are equal) or a difference
in their children (main hashes and child hashes differ).

B. Synchronization Service

The design of the synchronization service requires that
several goals be achieved. At the service’s base, network
interactions must be handled as efficiently as possible. A large
portion of the work within the service involves interacting with
other hosts in the ad hoc group. Meanwhile, the service must
provide a reasonable top-level interface to local applications
that desire to interact with the shared data-space.

Making efficient use of the available wireless bandwidth
is a difficult task, given that there is not a designated server
to handle all requests. As each host, being peer-to-peer, acts
as both a client and a server, there is a risk that a request
from one host will result in a barrage of replies from every
host within the current ad hoc group. The service has been
designed specifically to accommodate adaptation as messages
from other hosts are seen on the network. This is achieved
by maintaining large in-application queues and aggressively
optimizing their contents.

The overall structure of the service is shown in Figure
2. The network interactions section of the diagram handles
synchronization efforts over the network. The implementation
uses three queues: inbound, scheduling, and outbound.

The inbound queue contains messages that have been re-
ceived from the network but have not yet been processed by the
protocol engine. Outbound messages from the protocol engine

Synchronization Service Structure

Inbound queue Outbound queue

Scheduling queue

database

protocol
engine

ad hoc group on wireless network

service
core

applicationsapplications applications

Network Interactions

scheduler

Fig. 2. Synchronization Service Structure

are placed into the scheduling queue and assigned transmission
delay values. As delay values expire, messages are moved from
the scheduling queue to the outbound queue for transmission
on the network.

The scheduler for outbound messages allows time to ad-
vance for items on the scheduling queue only when the in-
bound and outbound queues are both empty. As the processing
on inbound messages often results in the removal of messages
from the scheduling queue, this avoids the transmission of
stale and redundant messages to other hosts.

C. Synchronization Protocol

The synchronization protocol is responsible for communi-
cating directory divergences between members of the group.
As groups may contain any number of members and members
may enter and leave the group at any time without warning,
the protocol must require a minimal coupling between hosts.

In order to achieve this, the synchronization protocol has
a single message type. A message contains one or more
challenges, where a challenge is simply an assertion regarding
the contents of a single node in the tree. All hosts periodically
send a challenge containing their tree’s root node. As the hash
values in the root node describe the entire tree, trees with
different contents are almost guaranteed to have different root
hash values.

When a challenge is received, two actions are taken. First,
the value of the challenge node is compared to the value of
the corresponding node in the local tree. If the node values are
different, the timestamps are compared and the newer value
is selected for the local tree. If the local node possesses the
newer value, it is scheduled for transmission in order to update
the host that sent the stale value. If the local tree’s value is
replaced, hash values are recalculated from that node back up
to the root, reflecting the change across the tree.

Once the node values have been compared, the node hashes
are compared to ensure that the children of the two versions
of the tree are consistent. If the hashes do not match exactly,

the immediate children of the node are sent as challenges. In
this manner, challenges quickly descend through the tree and
divergent nodes are advertised to other hosts in the ad hoc
group.

As the protocol is broadcast-based, each host in the group
receives every challenge message that is sent. In order to
prevent the entire group from replying at once, outbound
messages are scheduled with a random delay. This delay is
based on the last update time of a given node; hosts with more
up-to-date values will tend to respond more quickly. This delay
also allows hosts to avoid redundant broadcasts by removing
messages from the scheduling queue as duplicate (or newer)
node messages are received.

D. Service API

The service provides a simple interface for applications.
This interface is composed of four primary methods: getDirec-
toryContents, which returns a read-only copy of the contents
of the directory; setNodeValue, which adds the given node
to the directory; addListener which attaches the specified
function to the service to receive notifications of updates; and
removeListener, which removes the specified listener function
from the notification list.

When an application adds a node or modifies the value of a
node, that node is immediately transmitted to the ad hoc group.
In this manner, updates are incorporated within the connected
hosts of the ad hoc group very rapidly, without necessitating
their discovery through hash value comparison between hosts.

V. CURRENT STATE OF THE SYNCHRONIZATION SERVICE

The synchronization service has gone through three ma-
jor overhauls since its inception and has provided a core
infrastructure component for our collaborative classroom ap-
plication. A full description of the evolution and performance
improvements over the past two years is beyond the scope
of this paper and will be left to a future work. In summary
though, we have found that the broadcast-based replication
mechanism is very sensitive to even apparently small changes
in the protocol.

The service has realized marked performance improvement
since it was first written and currently runs stably in ad hoc
networks with upwards of one hundred wireless participants.

VI. COMPARISON TO OTHER SYSTEMS

As noted in the introduction, there are a large number
of systems that address the issue of data replication and
distribution. We believe that the characteristics that distinguish
our work are: shared read and write access to the data, the
peer-to-peer nature of the protocol, the use of broadcast to op-
timize synchronization, and the low overhead associated with
its implementation. We present here a selection of existing
systems that provide data replication and note how they differ
from ours. Note here that we are examining the current set of
peer-to-peer research efforts which allow data to be updated
or modified. These applications are markedly different from
popular peer-to-peer file sharing applications, for which data

is generally immutable, coarse-grained, and not synchronized
across the entire membership [6].

Distributed Hash Tables such as Tapestry [7] and Chord
[8] attempt to spread data over a set of nodes to improve
access latencies while taking advantage of group resources.
These systems depend on a stable membership and incur large
costs for membership changes. DHTs attempt to spread data
across a set of nodes while maintaining fast access, while we
replicate data on each node to survive a constantly changing
membership.

LDAP and related systems [9] provide a hierarchical data
store that bears some resemblance to our directory. However,
these systems typically follow a more traditional approach to
availability, replicating central servers and using transactional
mechanisms [10] to ensure consistency.

The Bayou [11], [12] project is quite similar in goal to our
own work. While the protocol is peer-to-peer in nature, there
are elements of the conflict resolution protocol that require a
master, although the master can be dynamically selected. In
addition, Bayou requires hosts to keep more complex state
information than does our protocol. Bayou messages must be
retained to enable conflict resolution. Finally, Bayou is not
broadcast-based, and so is less suited to data synchronization
within an ad hoc group.

The Clique [13] project at HP Labs Grenoble has aimed
to build a peer-to-peer replicated file system and its approach
bears similarity to our own. Clique is different from the work
described here in several ways: their one-to-many messaging
is based on IP multicast rather than wireless broadcast, differ-
ences between nodes in their system are detected using a high-
level metadata journal rather than a tree of hashes, and our
directory is much more akin to a distributed data structure than
a file system; operations in our system are of a considerably
finer granularity.

Finally, LIME [14] (Linda in Mobile Environments) shares
the goal of providing a data-structure-based middleware for ad
hoc computing. Their system is tuple-based and specifically
addresses location by, for instance, allowing large portions of
a shared data structure to be available only when the mobile
client is in a specific physical location. While we are very
excited about the idea of a data-structure based middleware for
collaborative applications, we feel that our approach may be
more pragmatic, at least in the domain of specific applications.

VII. FUTURE WORK

We have identified several interesting areas of extension
to the existing work. We would like to further improve the
efficiency of the directory, perhaps by focusing synchroniza-
tion efforts on more recently modified data. We are exploring
the possibility of introducing a weak transactional semantic
where an interdependent set of nodes under a common parent
will not be made visible until all are present. An area of
particular interest to the authors lies in expanding the existing
service to allow applications to specify their interest in specific
subtrees of the global directory. Finally, the directory could be
expanded to provide an event-based communication system.

As updates to the tree are synchronized with other nodes
very quickly, hosts may be able to use it as a publish-and-
subscribe event system for asynchronous communications in
ad hoc groups.

VIII. CONCLUSIONS

Our efforts to build a collaborative application targeted for
ad hoc wireless networks identified the need to replicate data
across ad hoc groups. Traditional approaches to replication are
not well suited to this type of environment due to their reliance
on master/slave architectures and transactions. Furthermore, as
ad hoc groups form and dissolve over time, replicated data
must be carried from its original source to other hosts for
which a direct communication path may never exist.

These high-level requirements were transformed into a rig-
orously defined data structure and accompanying specifications
of the expected semantics of its replication both within an ad
hoc group and across multiple ad hoc groups.

An implementation of this data structure and the syn-
chronization protocol is currently being used as part of the
fundamental infrastructure of our collaborative application. In
that capacity, it is performing very well, and satisfies the
application’s need to identify the presence of participants,
share data amongst participants, and configure the set of
applications that constitute the ad hoc group.

Our experience in building this one type of collaborative
application suggests that the type of data sharing required
is not unique to this application, but is, in fact, common to
all applications that are intended to support collaboration in
dynamic environments.

REFERENCES

[1] A. Black, N. Hutchinson, E. Jul, and H. Levy, “Object structure in
the Emerald system,” in Conference proceedings on Object-oriented
Programming Systems, Languages and Applications. ACM Press, 1986,
pp. 78–86.

[2] E. D. Lazowska, H. M. Levy, G. T. Almes, M. J. Fischer, R. J. Fowler,
and S. C. Vestal, “The architecture of the Eden system,” in Proceedings
of the eighth ACM Symposium on Operating Systems Principles. ACM
Press, 1981, pp. 148–159.

[3] E. Levy and A. Silberschatz, “Distributed file systems: concepts and
examples,” ACM Computing Surveys, vol. 22, no. 4, pp. 321–374, 1990.

[4] B. Liskov, “Distributed programming in Argus,” Communications of the
ACM, vol. 31, no. 3, pp. 300–312, 1988.

[5] P. D. O’Brien, D. C. Halbert, and M. F. Kilian, “The Trellis program-
ming environment,” in Conference proceedings on Object-oriented Pro-
gramming Systems, Languages and Applications, ser. ACM SIGPLAN
Notices, vol. 22, no. 12. ACM Press, 1987, pp. 91–102.

[6] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan, “Measurement, modeling, and analysis of a peer-to-peer file-
sharing workload,” in Proceedings of the nineteenth ACM Symposium
on Operating Systems Principles. ACM Press, 2003, pp. 314–329.

[7] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
infrastructure for fault-tolerant wide-area location and routing,” UC
Berkeley, Tech. Rep. UCB/CSD-01-1141, April 2001.

[8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications. ACM Press,
2001, pp. 149–160.

[9] T. Howes and M. Smith, RFC1823: The LDAP Application Program
Interface. IETF Network Working Group, August 1995.

[10] J. Gray, “Notes on database operating systems,” in Operating Systems:
An Advanced Course, ser. Lecture Notes in Computer Science, R. Bayer,
R. Graham, and G. Seegmuller, Eds. Springer-Verlag, 1978, vol. 60,
pp. 393–481.

[11] A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and B. B. Welch, “The Bayou architecture: Support for data
sharing among mobile users,” in Proceedings IEEE Workshop on Mobile
Computing Systems & Applications, Santa Cruz, California, 8-9 1994,
pp. 2–7.

[12] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer, “Bayou: replicated
database services for world-wide applications,” in Proceedings of the 7th
workshop on ACM SIGOPS European workshop. ACM Press, 1996,
pp. 275–280.

[13] B. Richard, D. M. Nioclais, and D. Chalon, “Clique: A transparent,
peer-to-peer replicated file system,” in Proceedings of the 4th Interna-
tional Conference on Mobile Data Management, ser. Lecture Notes in
Computer Science, vol. 2574. Springer-Verlag, 2003, pp. 351–355.

[14] A. L. Murphy, G. P. Picco, and G. Roman, “LIME: A middleware for
physical and logical mobility,” in Proceedings of the 21st International
Conference on Distributed Computing Systems. Phoenix, AZ, USA:
IEEE Computer Society, April 16-19 2001, pp. 524–233.

