
f4: Facebook’s Warm BLOB Storage System
Subramanian Muralidhar⇤, Wyatt Lloyd†⇤, Sabyasachi Roy⇤, Cory Hill⇤, Ernest Lin⇤, Weiwen Liu⇤,

Satadru Pan⇤, Shiva Shankar⇤, Viswanath Sivakumar⇤, Linpeng Tang‡⇤, Sanjeev Kumar⇤
⇤Facebook Inc., †University of Southern California, ‡Princeton University

Abstract
Facebook’s corpus of photos, videos, and other Binary
Large OBjects (BLOBs) that need to be reliably stored
and quickly accessible is massive and continues to grow.
As the footprint of BLOBs increases, storing them in
our traditional storage system, Haystack, is becoming in-
creasingly inefficient. To increase our storage efficiency,
measured in the effective-replication-factor of BLOBs,
we examine the underlying access patterns of BLOBs
and identify temperature zones that include hot BLOBs
that are accessed frequently and warm BLOBs that are
accessed far less often. Our overall BLOB storage sys-
tem is designed to isolate warm BLOBs and enable us to
use a specialized warm BLOB storage system, f4. f4 is
a new system that lowers the effective-replication-factor
of warm BLOBs while remaining fault tolerant and able
to support the lower throughput demands.

f4 currently stores over 65PBs of logical BLOBs
and reduces their effective-replication-factor from 3.6
to either 2.8 or 2.1. f4 provides low latency; is resilient
to disk, host, rack, and datacenter failures; and provides
sufficient throughput for warm BLOBs.

1. Introduction
As Facebook has grown, and the amount of data shared
per user has grown, storing data efficiently has become
increasingly important. An important class of data that
Facebook stores is Binary Large OBjects (BLOBs),
which are immutable binary data. BLOBs are created
once, read many times, never modified, and sometimes
deleted. BLOB types at Facebook include photos, videos,
documents, traces, heap dumps, and source code. The
storage footprint of BLOBs is large. As of February 2014,
Facebook stored over 400 billion photos.

Haystack [5], Facebook’s original BLOB storage
system, has been in production for over seven years and is
designed for IO-bound workloads. It reduces the number
of disk seeks to read a BLOB to almost always one and
triple replicates data for fault tolerance and to support a
high request rate. However, as Facebook has grown and
evolved, the BLOB storage workload has changed. The
types of BLOBs stored have increased. The diversity in
size and create, read, and delete rates has increased. And,
most importantly, there is now a large and increasing
number of BLOBs with low request rates. For these
BLOBs, triple replication results in over provisioning

from a throughput perspective. Yet, triple replication also
provided important fault tolerance guarantees.

Our newer f4 BLOB storage system provides the
same fault tolerance guarantees as Haystack but at a
lower effective-replication-factor. f4 is simple, modular,
scalable, and fault tolerant; it handles the request rate
of BLOBs we store it in; it responds to requests with
sufficiently low latency; it is tolerant to disk, host, rack
and datacenter failures; and it provides all of this at a low
effective-replication-factor.

We describe f4 as a warm BLOB storage system
because the request rate for its content is lower than that
for content in Haystack and thus is not as “hot.” Warm
is also in contrast with cold storage systems [20, 40]
that reliably store data but may take days or hours to
retrieve it, which is unacceptably long for user-facing
requests. We also describe BLOBs using temperature,
with hot BLOBs receiving many requests and warm
BLOBs receiving few.

There is a strong correlation between the age of
a BLOB and its temperature, as we will demonstrate.
Newly created BLOBs are requested at a far higher rate
than older BLOBs. For instance, the request rate for
week-old BLOBs is an order of magnitude lower than for
less-than-a-day old content for eight of nine examined
types. In addition, there is a strong correlation between
age and the deletion rate. We use these findings to inform
our design: the lower request rate of warm BLOBs en-
ables us to provision a lower maximum throughput for f4
than Haystack, and the low delete rate for warm BLOBs
enables us to simplify f4 by not needing to physically re-
claim space quickly after deletes. We also use our finding
to identify warm content using the correlation between
age and temperature.

Facebook’s overall BLOB storage architecture is de-
signed to enable warm storage. It includes a caching stack
that significantly reduces the load on the storage systems
and enables them to be provisioned for fewer requests
per BLOB; a transformer tier that handles computational-
intense BLOB transformation and can be scaled inde-
pendently of storage; a router tier that abstracts away
the underlying storage systems and enables seamless
migration between them; and the hot storage system,
Haystack, that aggregates newly created BLOBs into vol-
umes and stores them until their request and delete rates
have cooled off enough to be migrated to f4.

1



Web Tier

User Requests (Browsers, Mobile Devices)

CDN

Graph
Store

BLOB Storage System

C1 R1 

C2 C3 R2 

R3 

R4 

Figure 1: Reading (R1-R4) and creating (C1-C3) BLOBs.

f4 stores volumes of warm BLOBs in cells that use dis-
tributed erasure coding, which uses fewer physical bytes
than triple replication. It uses Reed-Solomon(10,4) [46]
coding and lays blocks out on different racks to ensure
resilience to disk, machine, and rack failures within a
single datacenter. Is uses XOR coding in the wide-area
to ensure resilience to datacenter failures. f4 has been
running in production at Facebook for over 19 months.
f4 currently stores over 65PB of logical data and saves
over 53PB of storage.

Our contributions in this paper include:

• A case for warm storage that informs future research
on it and justifies our efforts.

• The design of our overall BLOB storage architecture
that enables warm storage.

• The design of f4, a simple, efficient, and fault tolerant
warm storage solution that reduces our effective-
replication-factor from 3.6 to 2.8 and then to 2.1.

• A production evaluation of f4.

The paper continues with background in Section 2.
Section 3 presents the case for warm storage. Section 4
presents the design of our overall BLOB storage archi-
tecture that enables warm storage. f4 is described in
Section 5. Section 6 covers a production evaluation of
f4, Section 7 covers lessons learned, Section 8 covers
related work, and Section 9 concludes.

2. Background
This section explains where BLOB storage fits in the full
architecture of Facebook. It also describes the different
types of BLOBs we store and their size distributions.

2.1 Where BLOB Storage Fits
Figure 1 shows how BLOB storage fits into the overall
architecture at Facebook. BLOB creates—e.g., a video
upload—originate on the web tier (C1). The web tier
writes the data to the BLOB storage system (C2) and
then stores the handle for that data into our graph store
(C3), Tao [9]. The handle can be used to retrieve or delete

��

����

����

����

����

��

�� ��� ��� ��� ��� ��� ���

�
�
��
��
��
��
��
��
��
��
��
��

��������������

������������
�����

��������
�����

��������

Figure 2: Size distribution for five BLOB types.

the BLOB. Tao associates the handle with other elements
of the graph, e.g., the owner of a video.

BLOB reads—e.g., watching a video—also originate
on the web tier (R1). The web tier accesses the Graph
Store (R2) to find the necessary handles and constructs
a URL that can be used to fetch the BLOB. When
the browser later sends a request for the BLOB (R3),
the request first goes to a content distribution network
(CDN) [2, 34] that caches commonly accessed BLOBs.
If the CDN does not have the requested BLOB, it sends
a request to the BLOB storage system (R4), caches the
BLOB, and returns it to the user. The CDN shields the
storage system from a significant number of requests on
frequently accessed data, and we return to its importance
in Sections 4.1.

2.2 BLOBs Explained
BLOBs are immutable binary data. They are created once,
read potentially many times, and can only be deleted, not
modified. This covers many types of content at Facebook.
Most BLOB types are user facing, such as photos, videos,
and documents. Other BLOB types are internal, such as
traces, heap dumps, and source code. User-facing BLOBs
are more prevalent so we focus on them for the remainder
of the paper and refer to them as simply BLOBs.

Figure 2 shows the distribution of sizes for five types
of BLOBs. There is a significant amount of diversity
in the sizes of BLOBs, which has implications for our
design as discussed in Section 5.6.

3. The Case for Warm Storage
This section motivates the creation of a warm storage
system at Facebook. It demonstrates that temperature
zones exist, age is a good proxy for temperature, and that
warm content is large and growing.

Methodology The data presented in this section is
derived from a two-week trace, benchmarks of existing
systems, and daily snapshots of summary statistics. The
trace includes a random 0.1% of reads, 10% of creates,
and 10% of deletes.

2



��� ���� ����� �����
��
��
��
��
�
��
��
��
��
��
��
��
��
���
��
��
��
�

��������������

� � � � � � � � � �

������������
�����

��������
�����������

��������������

Figure 3: Relative request rates by age. Each line is rela-
tive to only itself, absolute values have been denormal-
ized to increase readability, and points mark an order-of-
magnitude decrease in request rate.

Data is presented for nine user-facing BLOB types.
We exclude some data types from some analysis due to
incomplete logging information.

The nine BLOB types include Profile Photos, Photos,
HD Photos, Mobile Sync Photos [17], HD Mobile Sync
Photos, Group Attachments [16], Videos, HD Videos,
and Message (chat) Attachments. Group Attachments
and Message Attachments are opaque BLOBS to our
storage system, they can be text, pdfs, presentation, etc.

Temperature Zones Exist To make the case for warm
storage we first show that temperature zones exist, i.e.,
that content begins as hot, receiving many requests, and
then cools over time, receiving fewer and fewer requests.

Figure 3 shows the relative request rate, requests-per-
object-per-hour, for content of a given age. The two-week
trace of 0.1% of reads was used to create this figure. The
age of each object being read is recorded and these are
bucketed into 1-day intervals. We then count the number
of requests to the daily buckets for each hour in the trace
and report the mean—the medians are similar but noisier.
Absolute values are denormalized to increase readability
so each line is relative to only itself. Points mark order-
of-magnitude decreases.

The existence of temperature zones is clear in the
trend of decreasing request rates over time. For all nine
types, content less than one day old receives more than
100 times the request rate of one-year-old content. For
eight of the types the request rate drops by an order of
magnitude in less than a week, and for six of the types
the request rate drops by 100x in less than 60 days.

Differentiating Temperature Zones Given that tem-
perature zones exist, the next questions to answer are
how to differentiate warm from hot content and when it
is safe to move content to warm storage. We define the

��

���

����

�����

��� ���� ����� ����

��
��
��
��
��
��
���
���
��
��
�

��������������

� � � � � � � � � �

����������������
�����

��������
������������������

����

Figure 4: 99th percentile load in IOPS/TB of data for
different BLOB types for BLOBs of various ages.

warm temperature zone to include unchanging content
with a low request rate. BLOBs are not modified, so the
only changes are the deletes. Thus, differentiating warm
from hot content depends on the request and delete rates.

First, we examine the request rate. To determine
where to draw the line between hot and warm storage
we consider near-worst-case request rates because our
internal service level objects require low near-worst-case
latency during our busiest periods of the day.

Figure 4 shows the 99th percentile or near-worst-case
request load for BLOBs of various types grouped by age.
The two-week trace of 0.1% of reads was used to create
this figure. The age of each object read is recorded and
these are bucketed into intervals equivalent to the time
needed to create 1 TB of that BLOB type. For instance, if
1 TB of a type is created every 3600 seconds, then the first
bucket is for ages of 0-3599 seconds, the second is for
3600-7200 seconds, and so on.1 We then compensate for
the 0.1% sampling rate by looking at windows of 1000
seconds. We report the 99th percentile request rate for
these windows, i.e., we report the 99th percentile count
of requests in a 1000 second window across our two-
week trace for each age bucket. The 4TB disks used in f4
can deliver a maximum of 80 Input/Output Operations
Per Second (IOPS) while keeping per-request latency
acceptably low. The figure shows this peak warm storage
throughput at 20 IOPS/TB.

For seven of the nine types the near-worst-case
throughput is below the capacity of the warm storage sys-
tem in less than a week. For Photos, it takes ~3 months to
drop below the capacity of warm storage and for Profile
Photos it takes a year.

We also examined, but did not rigorously quantify, the
deletion rate of BLOB types over time. The general trend

1 We spread newly created BLOBs over many hosts and disks, so no
host or disk in our system is subject to the extreme loads on far left of
Figure 4. We elaborate on this point further in Section 5.6

3



��

��

��

��

���

����������� ����������� �����������

�
��
��
��
�
��
�
��
��
��
��
�

�����
��������
�����������

��������������
����������������
������������������

��
�� ��
��

��
��

��
��

��
�� ��
��

��
��

��
��

��
��

��
��

��
��

��
����
�� ��
��

��
��

��
��

��
��

��
��

Figure 5: Median percentage of each type that was warm
9-6 months ago, 6-3 months ago, 3 months ago to now.
The remaining percentage of each type is hot.

is that most deletes are for young BLOBs and that once
the request rate for a BLOB drops below the threshold
of warm storage, the delete rate is low as well.

Combining the deletion analysis with the request rate
analysis yields an age of a month as a safe delimiter
between hot and warm content for all but two BLOB
types. One type, Profile Photos, is not moved to warm
storage. The other, Photos, uses a three months threshold.

Warm Content is Large and Growing We finish the
case for warm storage by demonstrating that the percent-
age of content that is warm is large and continuing to
grow. Figure 5 gives the percentage of content that is
warm for three-month intervals for six BLOB types.

We use the above analysis to determine the warm
cutoff for each type, i.e., one month for most types.
This figure reports the median percentage of content for
each type that is warm in three-month intervals from 9-6
months ago, 6-3 months ago, and 3 months ago to now.

The figure shows that warm content is a large percent-
age of all objects: in the oldest interval more than 80%
of objects are warm for all types. It also shows that the
warm fraction is increasing: in the most recent interval
more than 89% of objects are warm for all types.

This section showed that temperature zones exist, that
the line between hot and warm content can safely be
drawn for existing types at Facebook at one month
for most types, and that warm content is a large and
growing percentage of overall BLOB content. Next,
we describe how Facebook’s overall BLOB storage
architecture enables warm storage.

4. BLOB Storage Design
Our BLOB storage design is guided by the principle of
keeping components simple, focused, and well-matched
to their job. In this section we explain volumes, describe

Transformer 
Tier

Router Tier

C2 

C1 R2 

R3 

R4 

Haystack
Hot Storage

f4
Warm Storage

Controller
D2 

D1 CDN

R1 

Figure 6: Overall BLOB Storage Architecture with cre-
ates (C1-C2), deletes (D1-D2), and reads (R1-R4). Cre-
ates are handled by Haystack, most deletes are handled
by Haystack, reads are handled by either Haystack or f4.

the full design of our BLOB storage system, and explain
how it enables focused and simple warm storage with f4.

Volumes We aggregate BLOBs together into logical
volumes. Volumes aggregate filesystem metadata, allow-
ing our storage systems to waste few IOPS as we discuss
further below. We categorize logical volumes into two
classes. Volumes are initially unlocked and support reads,
creates (appends), and deletes. Once volumes are full,
at around 100GB in size, they transition to being locked
and no longer allow creates. Locked volumes only allow
reads and deletes.

Each volume is comprised of three files: a data file, an
index file, and a journal file. The data file and index files
are the same as the published version of Haystack [5],
while the journal file is new. The data file holds each
BLOB along with associated metadata such as the key,
the size, and checksum. The index file is a snapshot of the
in-memory lookup structure of the storage machines. Its
main purpose is allowing rebooted machines to quickly
reconstruct their in-memory indexes. The journal file
tracks BLOBs that have been deleted; whereas in the
original version of Haystack, deletes were handled by
updating the data and index files directly. For locked
volumes, the data and index files are read-only, while the
journal file is read-write. For unlocked volumes, all three
files are read-write.

4.1 Overall Storage System
The full BLOB storage architecture is shown in Figure 6.
Creates enter the system at the router tier (C1) and
are directed to the appropriate host in the hot storage
system (C2). Deletes enter the system at the router
tier (D1) and are directed to the appropriate hosts in
appropriate storage system (D2). Reads enter the system
at the caching stack (R1) and, if not satisfied there,
traverse through the transformer tier (R2) to the router
tier (R3) that directs them to the appropriate host in the
appropriate storage system (R4).

4



Controller The controller ensures the smooth function-
ing of the overall system. It helps with provisioning new
store machines, maintaining a pool of unlocked volumes,
ensuring that all logical volumes have enough physical
volumes backing them, creating new physical volumes
if necessary, and performing periodic maintenance tasks
such as compaction and garbage collection.

Router Tier The router tier is the interface of BLOB
storage; it hides the implementation of storage and en-
ables the addition of new subsystems like f4. Its clients,
the web tier or caching stack, send operations on logical
BLOBs to it.

Router tier machines are identical, they execute the
same logic and all have soft state copies of the logical-
volume-to-physical-volume mapping that is canonically
stored in a separate database (not pictured). The router
tier scales by adding more machines and its size is
independent of the other parts of the overall system.

For reads, a router extracts the logical volume id from
the BLOB id and finds the physical mapping of that
volume. It chooses one of available physical volumes—
typically, the volume on the closest machine—and sends
the request to it. In case of failure, a timeout fires and the
request is directed to the next physical volume.

For creates, the router picks a logical volume with
available space, and sends the BLOB out to all physical
volumes for that logical volume. In case of any errors, any
partially written data is ignored to be garbage collected
later, and a new logical volume is picked for the create.

For deletes, the router issues deletes to all physi-
cal replicas of a BLOB. Responses are handled asyn-
chronously and the delete is continually retried until the
BLOB is fully deleted in case of failure.

The router tier enables warm storage by hiding the
storage implementation from its clients. When a volume
is migrated from the hot storage system to the warm
storage system it temporarily resides in both while the
canonical mapping is updated and then client operations
are transparently directed to the new storage system.

Transformer Tier The transformer tier handles a set
of transformations on the retrieved BLOB. For exam-
ple, these transformations include resizing and cropping
photos. In Facebook’s older system, these computational
intensive transformations were performed on the storage
machines.

The transformer tier enables warm storage by freeing
the storage system to focus solely on providing storage.
Separating computation into its own tier allows us to
scale out the storage tier and the transformer tier inde-
pendently. In turn, that allows us to match the size of
the storage tiers precisely to our needs. Furthermore, it
enables us to choose more optimal hardware for each of
these tasks. In particular, storage nodes can be designed

to hold a large number of disks with only a single CPU
and relatively little RAM.

Caching Stack BLOB reads are initially directed to the
caching stack [2, 34] and if a BLOB is resident in one of
the caches it is returned directly, avoiding a read in the
storage system. This absorbs reads for popular BLOBs
and decreases the request rate at the storage system.
The caching stack enables warm storage by lowering
its request rate.

Hot Storage with Haystack Facebook’s hot storage
system, Haystack, is designed to use only fully-utilized
IOPS. It enables warm storage by handling all BLOB
creates, handling most of the deletes, and handling a
higher read rate.

Haystack is designed to fully utilize disk IOPS by:
• Grouping BLOBs: It creates only a small number

(~100) of files with BLOBs laid out sequentially
in those files. The result is a simple BLOB storage
system that uses a small number of files, and bypasses
the underlying file system for most metadata access.

• Compact metadata management: It identifies the
minimal set of metadata that is needed to locate
each BLOB and carefully lays out this metadata so
that it fits in the available memory on the machine.
This allows the system to waste very few IOPS for
metadata fetches.
BLOBs are grouped into logical volumes. For fault

tolerance and performance, each logical volume maps
into multiple physical volumes or replicas on different
hosts across different geographical regions: all physical
volumes for a logical volume store the same set of
BLOBs. Each physical volume lives entirely on one
Haystack host. There are typically 3 physical volumes for
each logical volume. Each volume holds up to millions
of immutable BLOBs, and can grow to ~100GB in size.

When a host receives a read it looks up the relevant
metadata—the offset in the data file, the size of the
data record, and whether it has been deleted—in the in-
memory hash table. It then performs a single I/O request
to the data file to read the entire data record.

When a host receives a create it synchronously ap-
pends a record to its physical volume, updates the in-
memory hash tables, and synchronously updates the in-
dex and journal files.

When a host receives a delete it updates the its in-
memory hash tables and the journal file. The contents
of the BLOB still exist in the data file. Periodically we
compact volumes, which completely deletes the BLOB
and reclaims its space.

Fault tolerance Haystack has fault tolerance to disk,
host, rack, and datacenter failure through triple replica-
tion of data files and hardware RAID-6 (1.2X replication).

5



Two replicas of each volume are in a primary datacenter
but on different racks, and thus hosts and disks. This pro-
vides resilience to disk, host, and rack failure. RAID-6
provides additional protection against disk failure. The
third replica is in another datacenter and provides re-
silience to datacenter failure.

This scheme provides good fault tolerance and high
throughput for BLOBs, but at an effective-replication-
factor of 3 ⇤ 1.2 = 3.6. This is the main limitation of
Haystack: it is optimized for IOPS but not storage effi-
ciency. As the case for warm storage demonstrated, this
results in significant over replication of many BLOBs.

Expiry-Driven Content Some BLOB types have ex-
piration times for their content. For instance, uploaded
videos are stored in their original format temporary while
they are transcoded to our storage formats. We avoid ever
moving this expiry-driven content to f4 and keep it in
Haystack. The hot storage system copes with the high
delete rate by running compaction frequently to reclaim
the now available space.

5. f4 Design
This section describes our design goals for warm storage
and then describes f4, our warm storage system.

5.1 Design Goals
At a high level, we want our warm storage system to
provide storage efficiency and to provide fault tolerance
so we do not lose data or appear unavailable to our users.

Storage Efficiency One of the key goals of our new
system is to improve storage efficiency, i.e., reduce the
effective-replication-factor while still maintaining a high
degree of reliability and performance.

The effective replication factor describes the ratio of
actual physical size of the data to the logical size stored.
In a system that maintains 3 replicas, and uses RAID-
6 encoding on each node with 12 disks, the effective
replication factor is 3.6.

Fault Tolerance Another important goal for our stor-
age system is fault tolerance to a hierarchy of faults to
ensure we do not lose data and that storage is always
available for client requests. We explicitly consider four
types of failures:

1. Drive failures, at a low single digit annual rate.

2. Host failures, periodically.

3. Rack failures, multiple time per year.

4. Datacenter failures, extremely rare and usually tran-
sient, but potentially more disastrous.

5.2 f4 Overview
f4 is our storage subsystem for warm data. It is comprised
of a number of cells, where each cell lives entirely

BLOB

Stripe

Block 


Volume




































Companions Parity

Figure 7: BLOBs in Blocks in Stripes in Volumes.

within one datacenter and is comprised of homogeneous
hardware. Current cells use 14 racks of 15 hosts [42]
with 30 4TB drives per host. We treat a cell as a unit of
acquisition and as a unit of deployment and roll out.

A cell is responsible for reliably storing a set of locked
volumes and uses Reed-Solomon coding to store these
volumes with lower storage overhead. Distributed erasure
coding achieves reliability at lower-storage overheads
than replication, with the tradeoff of increased rebuild
and recovery times under failure and lower maximum
read throughput. Reed-Solomon coding [46] is one of the
most popular erasure coding techniques, and has been
employed in a number of different systems. A Reed-
Solomon(n, k) code encodes n bits of data with k extra
bits of parity, and can tolerate k failures, at an overall
storage size of n+ k. This scheme protects against disk,
host, and rack failures.

We use a separate XOR coding scheme to tolerate
datacenter or geographic region failure. We pair each
volume/stripe/block with a buddy volume/stripe/block in
a different geographic region. We store an XOR of the
buddies in a third region. This scheme protects against
failure of one of the three regions. We discuss fault
tolerance in Section 5.5

5.3 Individual f4 Cell
Individual f4 cells are resilient to disk, host, and rack
failures and are the primary location and interface for
the BLOBs they store. Each f4 cell handles only locked
volumes, i.e., it only needs to support read and delete
operations against that volume. The data and index files
are read-only. The haystack journal files that track deletes
are not present in f4. Instead, all BLOBs are encrypted
with keys that are stored in an external database. Deleting
the encryption key for a BLOB in f4 logically deletes it
by making it unreadable.

The index files use triple replication within a cell. The
files are small enough that the storage gain from encoding
them is too small to be worth the added complexity.

The data file with the actual BLOB data is encoded
and stored via a Reed-Solomon(n, k) code. Recent f4
cells use n = 10 and k = 4. The file is logically divided
up into contiguous sequences of n blocks, each of size
b. For each such sequence of n blocks, k parity blocks
are generated, thus forming a logical stripe of size n+ k

6






Index API File API

R3 

Data API

Storage Node



Index API File API

R3 

Data API

Storage Node



Index API File API

R3 

Data API

Storage Node



Index API File API

R3 

Data API

Storage Node



df

Coordinator NodeCoordinator Node

RebuilderRebuilderRebuilder Node




Backoff Node

File API

Router Tier

R1 R4 R2 F4 Cell

R5 

R6 




Index API File API

R3 

Data API

Storage Node

Name NodeName Node

KF1 

Figure 8: f4 Single Cell Architecture. R1–R3 shows
a normal-case read. R1, R4, R5 shows a failure-case
read. KF1 show the encryption key fetch that happens
in parallel with the rest of the read path in f4.

blocks. For a given block in a stripe, the other blocks
in the stripe are considered to be its companion blocks.
If the file is not an integral multiple of n blocks, it is
zero-padded to the next multiple. In normal operation
BLOBs are read directly from their data block. If a block
is unavailable it can be recovered by decoding any n of
its companion and parity blocks. A subset of a block,
corresponding to a BLOB, can also be decoded from
only the equivalent subsets of any n of its companion and
parity blocks. Figure 7 shows the relationship between
BLOBs, blocks, strips, and volumes.

The block-size for encoding is chosen to be a large
value—typically 1 GB—for two reasons. First, it de-
creases the number of BLOBs that span multiple blocks
and thus require multiple I/O operations to read. Second,
it reduces the amount of per-block metadata that f4 needs
to maintain. We avoid a larger block size because of the
larger overhead for rebuilding blocks it would incur.

Figure 8 shows a f4 cell. Its components include
storage nodes, name nodes, backoff nodes, rebuilder
nodes, and coordinator nodes.

Name Node The name node maintains the mapping be-
tween data blocks and parity blocks and the storage nodes
that hold the actual blocks. The mapping is distributed
to storage nodes via standard techniques [3, 18]. Name
nodes are made fault tolerant with a standard primary-
backup setup.

Storage Nodes The storage nodes are the main com-
ponent of a cell and handle all normal-case reads and
deletes. Storage nodes expose two APIs: an Index API
that provides existence and location information for vol-
umes, and a File API that provides access to data.

Each node is responsible for the existence and location
information of a subset of the volumes in a cell and

exposes this through its Index API.2 It stores the index—
BLOB to data file, offset, and length—file on disk and
loads them into custom data structures in memory. It also
loads the location-map for each volume that maps offsets
in data files to the physically-stored data blocks. Index
files and location maps are pinned in memory to avoid
disk seeks.

Each BLOB in f4 is encrypted with a per-BLOB
encryption key. Deletes are handled outside of f4 by
deleting a BLOB’s encryption key that is stored in a
separate key store, typically a database. This renders
the BLOB unreadable and effectively deletes it without
requiring the use of compaction in f4. It also enables f4
to eliminate the journal file that Haystack uses to track
key presence and deletion information.

Reads (R1) are handled by validating that the BLOB
exists and then redirecting the caller to the storage node
with the data block that contains the specified BLOB.

The Data API provides data access to the data and
parity blocks the node stores. Normal-case reads are
redirected to the appropriate storage node (R2) that
then reads the BLOB directly from its enclosing data
block (R3). Failure-case reads use the Data API to read
companion and parity blocks needed to reconstruct the
BLOB on a backoff node.

The router tier fetches the per-BLOB encryption key
in parallel with the rest of the read path, i.e., R1–R3 or R1,
R4, R5. The BLOB is then decrypted on the router tier.
Decryption is computationally expensive and performing
it on the router tier allows f4 to focus on efficient storage
and allows decryption to be scaled independently from
storage.

Backoff Nodes When there are failures in a cell, some
data blocks will become unavailable, and serving reads
for the BLOBs it holds will require online reconstruction
of them from companion data blocks and parity blocks.
Backoff nodes are storage-less, CPU-heavy nodes that
handle the online reconstruction of request BLOBs.

Each backoff node exposes a File API that receives
reads from the router tier after a normal-case read fails
(R4). The read request has already been mapped to a data
file, offset, and length by a primary volume-server. The
backoff volume-server sends reads of that length from
the equivalent offsets from all n� 1 companion blocks
and k parity blocks for the unavailable block (R5). Once
it receives n responses it decodes them to reconstruct the
requested BLOB.

This online reconstruction rebuilds only the requested
BLOB, it does not rebuild the full block. Because the
size of a BLOB is typically much smaller than the block

2 Each storage node owns a subset of the volumes in a cell, each
volume is owned by exactly one storage node at a time, and all volumes
are owned at all times. The volume-to-storage-node assignment is
maintained by a separate system that is out of the scope of this paper.

7



size—e.g., 40KB instead of 1GB—reconstructing the
BLOB is much faster and lighter weight than rebuilding
the block. Full block rebuilding is handled offline by
rebuilder nodes.

Rebuilder Nodes At large scale, disk and node failures
are inevitable. When this happens blocks stored on the
failed components need to be rebuilt. Rebuilder nodes are
storage-less, CPU-heavy nodes that handle failure detec-
tion and background reconstruction of data blocks. Each
rebuilder node detects failure through probing and re-
ports the failure to a coordinator node. It rebuilds blocks
by fetching n companion or parity blocks from the failed
block’s strip and decoding them. Rebuilding is a heavy-
weight process that imposes significant I/O and network
load on the storage nodes. Rebuilder nodes throttle them-
selves to avoid adversely impacting online user requests.
Scheduling the rebuilds to minimize the likelihood of
data loss is the responsibility of the coordinator nodes.

Coordinator Nodes A cell requires many maintenance
task, such as scheduling block rebuilding and ensuring
that the current data layout minimizes the chances of
data unavailability. Coordinator nodes are storage-less,
CPU-heavy nodes that handle these cell-wide tasks.

As noted earlier, blocks in a stripe are laid out on dif-
ferent failure domains to maximize reliability. However,
after initial placement and after failure, reconstruction,
and replacement there can be violations where a stripe’s
blocks are in the same failure domain. The coordinator
runs a placement balancer process that validates the block
layout in the cell, and rebalance blocks as appropriate.
Rebalancing operations, like rebuilding operations, in-
cur significant disk and network load on storage nodes
and are also throttled so that user requests are adversely
impacted.

5.4 Geo-replication
Individual f4 cells all reside in a single datacenter and
thus are not tolerant to datacenter failures. To add dat-
acenter fault tolerance we initially double-replicated f4
cells and placed the second replica in a different data-
center. If either datacenter fails, all the BLOBs are still
available from the other datacenter. This provides all of
our fault tolerance requirements and reduces the effective-
replication-factor from 3.6 to 2.8.

Given the rarity of datacenter failure events we
sought a solution that could further reduce the effective-
replication-factor with the tradeoff of decreased through-
put for BLOBs stored at the failed datacenter. We are
currently deploying geo-replicated XOR coding that
reduces the effective-replication-factor to 2.1.

Geo-replicated XOR coding provides datacenter fault
tolerance by storing the XOR of blocks from two differ-
ent volumes primarily stored in two different datacenters
in a third datacenter as shown in Figure 9. Each data

Datacenter 1 
































Datacenter 2 
































Datacenter 3 




































































































































Block B


A XOR B


Block A

Figure 9: Geo-replicated XOR Coding.

and parity block in a volume is XORed with the equiv-
alent data or parity block in the other volume, called
its buddy block, to create their XOR block. These XOR
blocks are stored with normal triple-replicated index files
for the volumes. Again, because the index files are tiny
relative to the data, coding them is not worth the added
complexity.

The 2.1 replication factor comes from the 1.4X for the
primary single cell replication for each of two volumes
and another 1.4X for the geo-replicated XOR of the two
volumes: 1.4⇤2+1.4

2 = 2.1.
Reads are handled by a geo-backoff node that receives

requests for a BLOB that includes the data file, offset,
and length (R6 in Figure 8). This node then fetches the
specified region from the local XOR block and the remote
XOR-companion block and reconstructs the requested
BLOB. These reads go through the normal single-cell
read path through storage nodes Index and File APIs or
backoff node File APIs if there are disk, host, or rack
failures that affect the XOR or XOR-companion blocks.

We chose XOR coding for geo-replication because
it significantly reduces our storage requirements while
meeting our fault tolerance goal of being able to survive
the failure of a datacenter.

5.5 f4 Fault Tolerance
Single f4 cells are tolerant to disk, host, and rack fail-
ures. Geo-replicating XOR volumes brings tolerance to
datacenter failures. This subsection explains the failure
domains in a single cell, how f4 lays out blocks to in-
crease its resilience, gives an example of recovery if all
four types of failure all affect the same BLOB, and sum-
marizes how all components of a cell are fault tolerant.

Failure Domains and Block Placement Figure 10 il-
lustrates how data blocks in a stripe are laid out in a
f4 cell. A rack is the largest failure domain and is our
primary concern. Given a stripe S of n data blocks and
k parity blocks, we attempt to lay out the blocks so that
each of these is on a different rack, and at least on a dif-
ferent node. This requires that a cell have at least n+ k

racks, of roughly the same size. Our current implemen-
tation initially lays out blocks making a best-effort to
put each on a different rack. The placement balancer pro-
cess detects and corrects any rare violations that place a
stripe’s blocks on the same rack.

8



Host

Host

Host

Host

Host

Host

Host

Host

Rack 1

Host

Host

Host

Host

Host

Host

Host

Host

Rack r

Host

Host

Host

Host

Host

Host

Host

Host

Rack 2

Host

Host

Host

Host

Host

Host

Host

Host

Rack 3

Host

Host

Host

Host

Host

Host

Host

Host

Rack 4

Host

Host

Host

Host

Host

Host

Host

Host

Rack 5

D1 D2 Dn P1 Pk Stripe(n,k)

Figure 10: Distributing data & parity blocks in a f4 cell.

Laying blocks for a stripe out on different racks also
provide resilience to host and disk failures. Blocks in a
stripe on different racks will also be on different hosts
and disks.

Quadruple Failure Example To illustrate f4’s fault
tolerance we examine a case where a failure at all four
levels affects a single BLOB. The failures include:

1. Primary cell’s datacenter fails.

2. Data block’s XOR block’s rack fails.

3. One of the parity block’s XOR block’s host fails.

4. Data block’s XOR-companion block’s disk fails.

The router tier will detect the primary’s cell datacenter
failure and send a BLOB read request to the XOR
datacenter. The BLOB read request will be converted
to a data file read request with an offset and length by
the Index API on a geo-storage node using the triple-
replicated index file in the XOR datacenter. Then a geo-
backoff node will fetch the equivalent section of the
XOR-data block locally and the buddy block from a
third datacenter. The local XOR-data block read will
initially fail because its enclosing rack is unavailable.
Then the XOR-backoff node reads the XOR-data block
through a (regular) backoff node that reconstructs the
XOR-data block from n of its companion and parity
blocks. Simultaneously, the remote buddy block read will
fail because its enclosing disk failed. A (regular) backoff
node in that datacenter will reconstruct the relevant
section of buddy block from n of its companion and
parity blocks. The XOR-backoff node will then receive
the sections of the XOR-data block and the buddy block,
XOR them, and return the BLOB.

Fault Tolerance for All Our primary fault tolerance
design concern for f4 was providing four level of fault
tolerance for data files, the dominant resource for warm
BLOB storage, at a low effective-replication-factor. We
also require that the other components of a cell be
tolerance to the same faults, but use simpler and more

Node Fault Tolerance Strategy

Name Primary-backup; 2 backups; different racks.
Coordinator "
Backoff Soft state only.
Rebuilder "
Storage:

Index 3x local cell; 3x remote cell.
Data Reed-Solomon local cell; XOR remote cell.

Table 1: Fault tolerance strategy for components of f4.

common techniques because they are not the dominant
resource. Table 1 summarizes the techniques we use for
fault tolerance for all components of a cell for failures
within a cell. We do not provide datacenter fault tolerance
for the other components of a cell because they are fate-
sharing, i.e., datacenter failures take down entire cells.

5.6 Additional Design Points
This subsection briefly covers additional design points
we excluded from the basic f4 design for clarity.

Mixing Age and Types Our BLOB storage system fills
many volumes for each BLOB type concurrently. This
mixes the age of BLOBs within a volume and smoothes
their temperature. The most recent BLOBs in a volume
may have a higher temperature than our target for f4.
But, if the older BLOBs in the volume reduce its overall
temperature below our target the volume may still be
migrated to f4.

Different BLOB types are mixed together on hosts in
a f4 cell to achieve a similar effect. High temperature
types can be migrated to f4 sooner if they are mixed with
low temperature types that will smooth out the overall
load on each disk.

Index Size Consideration The memory needs of f4
(and Haystack) are primarily driven by the memory
footprint of the index. The multiple caching layers in
front of f4 obviate the need for a large buffer cache on
the storage machine.3

Other than for profile photos, the memory sizes for the
index fit into the memory in our custom hardware. For
profile photos, we currently exclude them from f4 and
keep them in Haystack. The index size for profile photos
is still problematic for Haystack hosts, even though they
store fewer BLOBs than f4 hosts. To keep the index size
reasonable we under utilize the storage on the Haystack
hosts. This enabled us to keep Haystack simple and
does not significantly impact the efficiency of the overall
system because there is only a single profile photo per
user and they are quite small.

3 A small buffer cache in Haystack is useful for newly written BLOBs,
which are likely to be read and are not yet in the caching stack.

9



��

���

���

���

���

����

��� ���� ���� ���� ����

�
��
�
��
��
��
��
��
��
��
��
��
�

���������������

����������� ������������

(a) Effect of the caching stack on load.

��

����

����

����

����

��

��� ���� ����� ����

�
�
�

��������������

� � � � � � � � � �

(b) CDF of age of BLOB reads.

��

����

����

����

����

��

��� ���� ����� ����

�
�
�

��������������

� � � � � � � � � �

�����������
�������������

(c) CDF of age of BLOB deletes.

Figure 11: Effects of our general architecture on the workload for f4.

Looking forward, we are evaluating lower-powered
CPUs for the storage nodes because the CPU require-
ments are quite low. Unfortunately, lower powered CPUs
usually come with smaller on-board memories. This, cou-
pled with the fact that the drive densities as well as the
number of drives per box are increasing, means that the
index might not fit in memory for these lower-end con-
figurations. We are exploring storing the index on flash
instead of memory for these future configurations.

Software/Hardware Co-Design An important consid-
eration in the design of f4 was keeping the hardware and
software well matched. Hardware that provides capac-
ity or IOPS that are not used by the software is waste-
ful; software designed with unrealistic expectations of
the hardware will not work. The hardware and software
components of f4 were co-designed to ensure they were
well-matched by using software measurements to inform
hardware choices and vice-versa.

For instance, we measured the candidate hard drives
for f4 using a synthetic benchmark to determine the
maximum IOPS we could consistently achieve while
keeping per-request latency low. We then used these
measurements to inform our choice of drives and our
provisioning on the software side. The f4 software is
designed so the weekly peak load on any drive is less
than the maximum IOPS it can deliver.

6. Evaluation
This evaluation answers four key questions. Does our
overall BLOB storage architecture enable warm storage?
Can f4 handle the warm BLOB storage workload’s
throughput and latency requirements? Is f4 fault tolerant?
And, does f4 save a significant amount of storage?

6.1 Methodology
Section 6.4 presents analytic results, all other results in
this section are based on data captured from our produc-
tion systems. The caching stack results in Section 6.2
are based on a day-long trace of 0.5% of BLOB requests
routed through Facebook’s caching stack; they do not
include results served from browser or device caches.
The read/delete results in Section 6.2 are based on a two-

week sample from the router tier of 0.1% of reads and
10% of deletes. The results in Section 6.3 are obtained
by dynamically tracking all operations to a uniform sam-
ple (0.01%) of all stored content. The storage savings in
Section 6.5 are from measurements on a subset of f4.

We measure performance on our production system
using a uniform sampling function so multiple genera-
tions of our storage machines are reflected in the cap-
tured data. Our older storage machines are commodity
servers with a quad-core Intel Xeon CPU, 16/24/32 GB
of memory, a hardware raid controller with 256-512 byte
NVRAM and 12 x 1TB/2TB/3TB SATA drives. More
recent machines are custom hosts with an Open Vault
2U chassis holding 30 x 3TB/4TB SATA drives [42].
Haystack uses Hardware RAID-6 with a NVRAM write-
back cache while f4 uses these machines in a JBOD (Just
a Bunch Of Disks) configuration.

6.2 General Architecture Enables Warm Storage
Our general architecture enables our warm storage sys-
tem in four ways: (1) the caching stack reduces the load
on f4; (2) the hot storage system bears the majority of
reads and deletes, allowing our warm storage system to
focus on efficient storage; (3) the router tier allows us to
migrate volumes easily because it is an abstraction layer
on top of the physical storage; and (4) the transformer tier
allows an independent scaling of processing and storage.

The latter two points (3) and (4) are fundamental to
our design. We validate points (1) and (2) experimentally.

Caching Stack Enables f4 Figure 11a shows the nor-
malized request rate for BLOBs before and after the
caching stack for different groups of BLOBs based on
age. The Figure shows the caching stack reduces the
request rate for all BLOBs to ~30% of what it would
have otherwise been. Caching is the most effective for
the most popular content, which we expect to be newer
content. Thus, we expect the reduction in load from the
cache to be less for older content. Our data shows this
with the caching stack reducing the request rate to 3+
month old BLOBs to ~55% of its pre-caching volume.
This reduction is still significant, however, without it the
load for these BLOBs would increase 100�55

55 = 82%.

10



��

��

��

��

��

���

� � � � � � � �

��
��
��
�

�����������

���� ������� ���� �������

Figure 12: Maximum request rates over a week to f4’s
most loaded cluster.

Haystack Enables f4 Figure 11b shows the CDF of the
age of read BLOBs. Haystack handles all read requests
for BLOBs less than 3 months old and some of the
read request for BLOBs older than that.4 This accounts
for more than 50% of the read requests, significantly
lowering the load on f4.

Figure 11c shows the CDF of the age of deleted
BLOBs. All deletes are plotted, and all deletes excluding
those for BLOBs that auto-expire after a day are plotted.
Haystack again handles all deletes for content less than 3
months old. Haystack absorbs most BLOB deletes—over
70% of deletes excluding auto-expiry, and over 80% of
deletes including auto-expiry—making them less of a
concern for f4.

6.3 f4 Production Performance
This subsection characterizes f4’s performance in pro-
duction and demonstrated it can handle the warm storage
workload and that it provides low latency for reads.

f4 Handles Peak Load The IOPS requirement for real-
time requests is determined by the peak load rather
than average requirement, so we need to look at peak
request rates at a fine granularity. Figure 12 shows load
in IOPS/TB for the f4 cluster with the highest load over
the course of a week. The data is gathered from the 0.1%
of reads trace and we compensate for the sampling rate
by examining windows of 1000 seconds (instead of 1
second). Our trace identifies only the cluster for each
request, so we randomly assign BLOBs to disks and use
this assignment to determine the load on disks, machines,
and racks. The maximum across all disk, machines, and
racks is reported for each time interval.

The figure show the request rate has predictable peaks
and troughs that result from different users across the
globe accessing the site at different times and this can
vary load by almost 2x during the course of a day.

4 We currently use an approximately 3-month cutoff for all types in
production for simplicity. BLOBs older than 3 months can be served
by Haystack due to lag in migrations to f4.

��

����

����

����

����

��

�� ��� ��� ��� ��� ����

�
�
��
��
��
��
��
�
��
��
��
��

������������

��������
��

Figure 13: CDF of local read latency for Haystack/f4.

The maximum rack load is indistinguishable from
the cluster load in the figure and peaks at 3.5 IOPS/TB
during the trace week. The maximum machine load is
slightly higher and peaks at 4.1 IOPS/TB. Maximum disk
load is notably higher and peaks at 8.5 IOPS/TB. All of
these are still less than half the 20 IOPS/TB maximum
rate of f4. Even when examining the near-worse-case
loads, f4 is able to cope with the lower throughput and
decreased variance demands of warm BLOBs.

f4 Provides Low Latency Figure 13 shows the same
region read latency for Haystack and f4. In our system,
most (>99%) of the storage tier read accesses are within
the same region. The latencies for f4 reads are higher
than those for Haystack, e.g., the median read latency is
14 ms for Haystack and 17 ms for f4. But, the latency
for f4 are still sufficiently low to provide a good user
experience: the latency for reads in f4 is less than 30 ms

for 80% of them and 80ms for 99% of them.

6.4 f4 is Resilient to Failure
f4 is resilient to datacenter failures because we replicate
data in multiple geographically distinct locations. Here
we verify that f4 is resilient to disk, host, and rack failure.

Our implementation places blocks on different racks
initially and continually monitors and rebalances blocks
so they are on different racks due to failure. The result is
that blocks are almost always in different failure domains,
which we assume to be true for the rest of this analysis.
Figure 14 shows the CDF of BLOBs that are unavailable
if N disks, hosts, or racks fail in an f4 cell. Worst case,
expected case, and best case CDFs are plotted. All results
assume we lose some data when there are more than 4
failures in a stripe, though there is work that can recover
some of this data [22] we do not implement it. Worst case
results assume failures are assigned to one or a small
number of blocks first and that parity blocks are the last
to fail. Best case results assume failures are assigned to
individual racks first and that parity blocks are the first to
fail. Non-parity blocks can be used to individually extract
the BLOBs they enclose. Expected results are calculated

11



��

����

����

����

����

��

�� ��� ���� �����

�
�
��
��
��
��
��
���
��
��
��
�
��

�������������������

� ��� ���� ����

����������

(a)

��

����

����

����

����

��

�� ��� ����

�
�
��
��
��
��
��
���
��
��
��
�
��

�������������������

� �� �� ���

��������

(b)

��

����

����

����

����

��

�� �� �� �� �� ��� ��� ���

�
�
��
��
��
��
��
���
��
��
��
�
��

�������������

���������

(c)

Figure 14: Fraction of unavailable BLOBs for a f4 cell with N disk, host, and rack failures.

by the Monte Carlo method. There are 30 disks/host, 15
hosts/rack, and 14 racks.

Figure 14a shows the results for N disk failures. In the
worst case there are some unavailable BLOBs after 4 disk
failures, 50% unavailable BLOBs after 2250 disk failures,
and 100% unavailable BLOBs after 4500 disk failures. In
the best case there are no unavailable BLOBs until there
are more than 1800 disk failures. In expectation, there
will be some unavailable BLOBs after 450 disk failures,
and 50% unavailable BLOBs after 3200 disk failures.

Figure 14b shows the results for N host failures. In
the worst case there are unavailable BLOBs after 4 host
failures, 50% unavailable BLOBs after 74 host failures,
and 100% unavailable BLOBs after 150 host failures. In
the best case, there are no unavailable BLOBs until there
are more than 60 host failures. In expectation, there will
be some unavailable BLOBs with 32 host failures and
50% unavailable BLOBs once there are 100 host failures.

Figure 14c shows the results for N rack failures. In the
worst case there are unavailable BLOBs after 4 rack fail-
ures and 100% unavailable BLOBs after 10 rack failures.
Even in the best case, there will be some unavailable
BLOBs once there are 5 rack failures. In expectation,
once there are 7 rack failures 50% of BLOBs will be
unavailable. Taken together Figure 14 demonstrates that
f4 is resilient to failure.

Failure Experience In general, we see an Annualized
Failure Rate (AFR) of ~1% for our disks and they are
replaced in less than 3 business days so we typically have
at most a few disks out at a time per cluster. We recently
received a batch of bad disks and have a higher failure
rate for the cluster they are in, as discussed further in
Section 7. Even so, we are always on the far left parts
of the graphs in Figure 14 where there is no difference
between worst/best/expected thus far. Host failures occur
less often, though we do not have a rule-of-thumb failure
rate for them. Host failures typically do not lose data,
once the faulty component is replaced (e.g., DRAM) the
host returns with the data still on its disks. Our worst
failure thus far has been a self-inflicted drill that rebuilt
2 hosts worth of data (240 TB) in the background over 3

days. The only adverse affect of the drill was an increase
in p99 latency to 500ms.

6.5 f4 Saves Storage
f4 saves storage space by reducing the effective-replication-
factor of BLOBs, but it does not reclaim the space of
deleted BLOBs. Thus, the true benefit in reduced storage
for f4 must account for the space. We measured the space
used for deleted data in f4, which was 6.8%.

Let replhay = 3.6 be the effective replication factor
for Haystack, replf4 = 2.8 or 2.1 be the effective
replication factor of f4, delf4 = .068 the fraction of
BLOBs in f4 that are deleted, and logicalf4 > 65PB be
the logical size of BLOBs stored in f4. Then the reduction
in storage space from f4 is:

Reduction = (replhay � replf4 ⇤
1

1� delf4
) ⇤ logicalwarm

= (3.6� replf4 ⇤ 1.07) ⇤ 65PB
= 30PB at 2.8, 68PB at 2.1, 53PB currently

With a current corpus over 65 PB, f4 saved over 39
PB of storage at the 2.8 effective-replication-factor and
will save over 87 PB of storage at 2.1. f4 currently saves
over 53PB with the partial deployment of 2.1.

7. Experience
In the course of designing, building, deploying, and
refining f4 we learned many lessons. Among these the
importance of simplicity for operational stability, the
importance of measuring underlying software for your
use case’s efficiency, and the need for heterogeneity in
hardware to reduce the likelihood of correlated failures
stand out.

The importance of simplicity in the design of a system
for keeping its deployment stable crops up in many
systems within Facebook [41] and was reinforced by our
experience with f4. An early version of f4 used journal
files to track deletes in the same way that Haystack does.
This single read-write file was at odds with the rest of
the f4 design, which is read-only. The at-most-one-writer
requirement of the distributed file system at the heart of

12



our implementation (HDFS), the inevitability of failure
in large distributed systems, and the rarity of writes to
the journal file did not play well together. This was the
foremost source of production issues for f4. Our later
design that removed this read-write journal file pushed
delete tracking to another system that was designed to be
read-write. This change simplified f4 by making it fully
read-only and fixed the production issues.

Measuring and understanding the underlying software
that f4 was built on top of helped improve the efficiency
of f4. f4’s implementation is built on top of the Hadoop
File System (HDFS). Reads in HDFS are typically han-
dled by any server in the cluster and then proxied by that
server to the server that has the requested data. Through
measurement we found that this proxied read has lower
throughput and higher latency than expected due to the
way HDFS schedules IO threads. In particular, HDFS
used a thread for each parallel network IO request and
Java’s multithreading did not scale well to a large number
of parallel requests, which resulted in an increasing back-
log of network IO requests. We worked around this with a
two-part read, described in Section 5.3, that avoids prox-
ying the read through HDFS. This workaround resulted
in the expected throughput and latency for f4.

We recently learned about the importance of hetero-
geneity in the underlying hardware for f4 when a crop of
disks started failing at a higher rate than normal. In addi-
tion, one of our regions experienced higher than average
temperatures that exacerbated the failure rate of the bad
disks. This combination of bad disks and high tempera-
tures resulted in an increase from the normal ~1% AFR
to an AFR over 60% for a period of weeks. Fortunately,
the high-failure-rate disks were constrained to a single
cell and there was no data loss because the buddy and
XOR blocks were in other cells with lower temperatures
that were unaffected. In the future we plan on using hard-
ware heterogeneity to decrease the likelihood of such
correlated failures.

8. Related Work
We divide related work into distributed file system,
distributed disk arrays, erasure codes, erasure coded
storage, hierarchical storage, other related techniques,
and BLOB storage systems. f4 is primarily distinguished
by its specificity and thus simplicity, and by virtue of it
running in production at massive scale across many disk,
hosts, racks, and datacenters.

Distributed File Systems There are many classic dis-
tributed file systems including Cedar [26], Andrew [32],
Sprite [39], Coda [48], Harp [38], xfs [3], and Petal [36]
among many others. Notable recent examples include the
Google File System [18], BigTable [12], and Ceph [53].
All of these file systems are much more general, and thus

necessarily more complex, than f4 whose design was
informed by its simpler workload.

Distributed Disk Arrays There is also a large body of
work on striping data across multiple disks for improved
throughput and fault tolerance that was first advocated
in a case for RAID [43]. Later work included Zebra [30]
that forms of a client’s write into a log and stripes them
together, similar to how we stripe many BLOBs together
in a block. Other work includes disk shadowing [7], max-
imizing performance in a striped disk array [13], parity
declustering [31], parity logging [51], AFRAID [49],
TickerTAIP [11], NASD [19], and D-GRAID [50]. Chen
et al.’s survey on provides a thorough overview of RAID
in practice [14]. f4 continues the tradition of distributing
data for reliability, but does so across racks and datacen-
ter as well as disks and hosts.

Erasure Codes Erasure codes enjoy a long history
starting with the Hamming’s original error-correcting
code [27]. Our work uses Reed-Solomon codes [46] and
XOR codes. EVENODD [8] simplifies error correction
using XOR codes. WEAVER codes [24] are a more
recent XOR-based erasure code. HoVer codes [25] add
parity in two dimensions, similar to our local vs. geo-
replicated distinction, though at a much lower level and
with more similar techniques. STAIR codes [37] provide
fault tolerance to disk sector failures, a level below our
currently smallest failure domain. XORing elephants [4]
presents a new family of erasure codes that are more
efficiently repairable. A hitchhiker’s guide to fast and
efficient data reconstruction [45] presents new codes that
reduce network and disk usage. f4 uses erasure codes as
tools and does not innovate in this area.

Erasure Coded Storage Plank gave a tutorial on Reed-
Solomon codes for error correction in RAID-like sys-
tems [44]. f4 implements something similar, but uses
checksums colocated with blocks for error detection and
uses Reed-Solomon for erasure correction that can tol-
erate more failures at same parity level. More recent
erasure coded storage includes Oceanstore [35], a peer-
to-peer erasure coded system. Weatherspoon et al. [52]
provide a detailed comparison of replication vs. erasure-
coding for peer-to-peer networks. Other systems include
Glacier [23] and Ursa Minor [1]. Windows Azure stor-
age [33] uses new Local Reconstruction Codes for effi-
cient recovery with local and global parity information,
but is not a Maximum Distance Separable (MDS) code.
Our local Reed-Solomon coding is MDS, though the
combination with XOR is not.

Hierarchical Storage The literature is also rich with
work on hierarchical storage that uses different storage
subsystems for different working sets. A canonical exam-
ple is HP AutoRAID [54] that has two levels of storage
with replication at the top-level and RAID 5 for the bot-

13



tom level. HP AutoRAID transparently migrates data
between the two levels based on inactivity. The replica-
tion our BLOB storage system is similar, though at a
far larger scale, for a simpler workload, and with very
different migration choices and costs.

Other Similar Techniques Our approach of append-
ing new BLOBs to a physical volume resembles log-
structured file systems [47], and greatly improves our
write latency. Harter et al. [28] analyzed the I/O behavior
of iBench, a collection of productivity and multimedia
applications and observed that many modern applications
manage a single file as a mini-filesystem. This is also
how we treat our files (including data files, index files
and journal files). Copyset replication [15] explores how
to group replicas to decrease the likelihood of data loss,
but does not use erasure codes.

BLOB Storage Our work on warm storage builds on
some key ideas from Haystack [5], Facebook’s hot BLOB
storage system. Huang et al. [34] performed an exten-
sive study of Facebook photo and found that advanced
caching algorithms would increase cache hit ratios and
further drive down backend load. If implemented, this
could enable faster migration from hot storage to f4.
Harter et al. [29] performed a multilayer study of the
Facebook Messages stack, which is also built on top
of HDFS. Blobstore [6] provides a good overview of
Twitter’s in-house photo storage system, but does not de-
scribe performance or efficiency aspects in much detail.
Microsoft’s Windows Azure Storage [10] is designed to
be a generic cloud service while ours is a more special-
ized application, with more unique challenges as well
as optimization opportunities. Their coding techniques
are discussed above. Google provides a durable but re-
duced availability storage service (DRA) on its cloud
platform [21], but implementation details are not public
and there is no support for migrating groups of objects
(buckets) from normal to DRA storage.

9. Conclusion
Facebook’s BLOB corpus is massive, growing, and in-
creasingly warm. This paper made a case for a special-
ized warm BLOB storage system, described an overall
BLOB storage system that enables warm storage, and
gave the design of f4. f4 reduces the effective-replication-
factor of warm BLOBs from 3.6 to 2.1; is fault tolerant
to disk, host, rack, and datacenter failures; provides low
latency for client requests; and is able to cope with the
lower throughput demands of warm BLOBs.

References
[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.

Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,
M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamo-
hideen, J. D. Strunk, E. Thereska, M. Wachs, and J. J.

Wylie. Ursa minor: Versatile cluster-based storage. In
Proceedings of the USENIX Conference on File and Stor-
age Technologies (FAST), 2005.

[2] Akamai. http://www.akamai.com.

[3] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patter-
son, D. S. Roselli, and R. Y. Wang. Serverless network
file systems. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 1995.

[4] M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur. Xoring elephants: Novel
erasure codes for big data. Proceedings of the VLDB
Endowment (PVLDB), 6(5), 2013.

[5] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel.
Finding a needle in haystack: Facebook’s photo storage.
In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), 2010.

[6] A. Bigian. Blobstore: Twitter’s in-house photo storage
system. http://tinyurl.com/cda5ahq, 2012.

[7] D. Bitton and J. Gray. Disk shadowing. In Proceedings of
the International Conference on Very Large Data Bases
(VLDB), 1988.

[8] M. Blaum, J. Brady, J. Bruck, and J. Menon. Evenodd:
An efficient scheme for tolerating double disk failures in
raid architectures. IEEE Transactions on Computers, 44
(2), 1995.

[9] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,
H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. Tao: Facebook’s distributed data store
for the social graph. In Proceedings of the Usenix Annual
Technical Conference (ATC), 2013.

[10] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Hari-
das, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar,
S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u.
Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. Mc-
Nett, S. Sankaran, K. Manivannan, and L. Rigas. Windows
azure storage: A highly available cloud storage service
with strong consistency. In Proceedings of ACM Sympo-
sium on Operating Systems Principles (SOSP), 2011.

[11] P. Cao, S. B. Lin, S. Venkataraman, and J. Wilkes. The
tickertaip parallel raid architecture. ACM Transactions on
Computer Systems (TOCS), 12(3), 1994.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data.
ACM Transactions of Computer Systems (TOCS), 26(2),
2008.

[13] P. M. Chen and D. A. Patterson. Maximizing performance
in a striped disk array. In Proceedings of the Annual In-
ternational Symposium on Computer Architecture (ISCA),
1990.

[14] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. Raid: High-performance, reliable secondary
storage. ACM Computing Surveys, 26(2), 1994.

14

http://www.akamai.com
http://tinyurl.com/cda5ahq


[15] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout,
and M. Rosenblum. Copysets: Reducing the frequency of
data loss in cloud storage. In Proceedings of the Usenix
Annual Technical Conference (ATC), 2013.

[16] Facebook Groups. Facebook groups. https://www.

facebook.com/help/groups.

[17] Facebook Mobile Photo Sync. Facebook mobile
photo sync. https://www.facebook.com/help/

photosync.

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. In Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles (SOSP), 2003.

[19] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W.
Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
and J. Zelenka. A cost-effective, high-bandwidth storage
architecture. In ACM SIGPLAN Notices, 1998.

[20] A. Glacier. https://aws.amazon.com/glacier/.

[21] Google. Durable reduced availability storage.
https://developers.google.com/storage/

docs/durable-reduced-availability, 2014.

[22] V. Guruswami and M. Sudan. Improved decoding of
reed-solomon and algebraic-geometry codes. IEEE Trans-
actions on Information Theory, 1999.

[23] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive cor-
related failures. In Proceedings of the Conference on
Symposium on Networked Systems Design & Implementa-
tion (NSDI), 2005.

[24] J. L. Hafner. Weaver codes: Highly fault tolerant erasure
codes for storage systems. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST),
2005.

[25] J. L. Hafner. Hover erasure codes for disk arrays. In
International Conference on Dependable Systems and
Networks (DSN), 2006.

[26] R. Hagmann. Reimplementing the cedar file system
using logging and group commit. In Proceedings of
the ACM Symposium on Operating Systems Principles
(SOSP), 1987.

[27] R. W. Hamming. Error detecting and error correcting
codes. Bell System technical journal, 29(2), 1950.

[28] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. A file is not a file: Under-
standing the i/o behavior of apple desktop applications.
In Proc. Symposium on Operating Systems Principles
(SOSP), 2011.

[29] T. Harter, D. Borthakur, S. Dong, A. S. Aiyer, L. Tang,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Analy-
sis of hdfs under hbase: A facebook messages case study.
In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2014.

[30] J. H. Hartman and J. K. Ousterhout. The zebra striped
network file system. ACM Transactions on Computer
Systems (TOCS), 13(3), 1995.

[31] M. Holland and G. A. Gibson. Parity declustering for
continuous operation in redundant disk arrays. In Pro-
ceedings of the International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS), 1992.

[32] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems (TOCS), 6(1), 1988.

[33] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, S. Yekhanin, et al. Erasure coding
in windows azure storage. In Proceedings of the Usenix
Annual Technical Conference (ATC), 2012.

[34] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Ku-
mar, and H. C. Li. An analysis of facebook photo caching.
In Proceedings of the Symposium on Operating Systems
Principles (SOSP), Nov. 2013.

[35] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, et al. Oceanstore: An architecture for
global-scale persistent storage. ACM Sigplan Notices, 35
(11), 2000.

[36] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. In Proceedings of the Architectural support for pro-
gramming languages and operating systems (ASPLOS),
1996.

[37] M. Li and P. P. C. Lee. Stair codes: A general family of
erasure codes for tolerating device and sector failures in
practical storage systems. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST),
2014.

[38] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the harp file system.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 1991.

[39] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching
in the sprite network file system. ACM Transaction on
Computer Systems (TOCS), 6(1), 1988.

[40] J. Niccolai. Facebook puts 10,000 blu-ray discs in low-
power storage system. http://tinyurl.com/qx759f4,
2014.

[41] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling mem-
cache at facebook. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2013.

[42] Open Compute. Open compute. http://www.

opencompute.org/.
[43] D. A. Patterson, G. Gibson, and R. H. Katz. A case

for redundant arrays of inexpensive disks (raid). In
Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, 1988.

[44] J. S. Plank et al. A tutorial on reed-solomon coding for
fault-tolerance in raid-like systems. Software: Practice
and Experience, 27(9), 1997.

15

https://www.facebook.com/help/groups
https://www.facebook.com/help/groups
https://www.facebook.com/help/photosync
https://www.facebook.com/help/photosync
https://aws.amazon.com/glacier/
https://developers.google.com/storage/docs/durable-reduced-availability
https://developers.google.com/storage/docs/durable-reduced-availability
http://tinyurl.com/qx759f4
http://www.opencompute.org/
http://www.opencompute.org/


[45] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur,
and K. Ramchandran. A hitchhikers guide to fast and
efficient data reconstruction in erasure-coded data centers.
In Proceedings of the ACM conference on SIGCOMM,
2014.

[46] I. S. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of the Society for Industrial and
Applied Mathematics, 8, 1960.

[47] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions of Computer Systems (TOCS), 10(1), 1992.

[48] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A highly available
file system for a distributed workstation environment.
IEEE Transactions on Computers, 39(4), 1990.

[49] S. Savage and J. Wilkes. Afraid: A frequently redundant
array of independent disks. In Proceedings of the Usenix
Annual Technical Conference (ATC), 1996.

[50] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Improving storage system
availability with d-graid. ACM Transactions on Storage
(TOS), 1(2), 2005.

[51] D. Stodolsky, G. Gibson, and M. Holland. Parity log-
ging overcoming the small write problem in redundant
disk arrays. In Proceedings of the Annual International
Symposium on Computer Architecture (ISCA), 1993.

[52] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. In Interna-
tional workshop on Peer-To-Peer Systems (IPTPS. 2002.

[53] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In In Proceedings of Symposium
on Operating Systems Design and Implementation (OSDI),
2006.

[54] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The hp
autoraid hierarchical storage system. ACM Transactions
on Computer Systems (TOCS), 14(1), 1996.

16


	Introduction
	Background
	Where BLOB Storage Fits
	BLOBs Explained

	The Case for Warm Storage
	BLOB Storage Design
	Overall Storage System

	f4 Design
	Design Goals
	f4 Overview
	Individual f4 Cell
	Geo-replication
	f4 Fault Tolerance
	Additional Design Points

	Evaluation
	Methodology
	General Architecture Enables Warm Storage
	f4 Production Performance
	f4 is Resilient to Failure
	f4 Saves Storage

	Experience
	Related Work
	Conclusion

