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Stochastic Gradient Descent: Workhorse of ML?

“Stochastic gradient descent (SGD) is today one of
the main workhorses for solving large-scale

supervised learning and optimization problems.”
—Drori and Shamir [8]
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Consensus Says…

…and also Agarwal et al. [1], Assran and Rabbat
[2], Assran et al. [3], Bernstein et al.

[6], Damaskinos et al. [7], Geffner and Domke
[9], Gower et al. [10], Grosse and Salakhudinov

[11], Hofmann et al. [12], Kawaguchi and Lu [13], Li
et al. [14], Patterson and Gibson [17], Pillaud-Vivien

et al. [18], Xu et al. [21], Zhang et al. [22]
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Motivation: Challenges in Optimization for ML

Stochastic gradient methods are the most popular algorithms
for fitting ML models,

SGD: wk+1 = wk − ηk∇f̃ (wk).

But practitioners face major challenges with

• Speed: step-size/averaging controls convergence rate.
• Stability: hyper-parameters must be tuned carefully.
• Generalization: optimizers encode statistical tradeoffs.
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Better Optimization via Better Models

Idea: exploit model properties for better optimization.
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Interpolation

Loss: f (w) = 1
n

n∑
i=1

fi(w).

Interpolation is satisfied for f if ∀w,
f (w∗) ≤ f (w) =⇒ fi(w∗) ≤ fi(w).

Separable Not Separable
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Constant Step-size SGD

Interpolation and smoothness imply a noise bound,

E∥∇fi(w)∥2 ≤ ρ (f (w)− f (w∗)) .

• SGD converges with a constant step-size [4, 19].
• SGD is (nearly) as fast as gradient descent.
• SGD converges to the

▶ minimum L2-norm solution for linear regression [20].
▶ max-margin solution for logistic regression [16].
▶ ??? for deep neural networks.

Takeaway: optimization speed and (some) statistical trade-offs.
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Painless SGD

What about stability and
hyper-parameter tuning?

Is grid-search the best we can do?
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Painless SGD: Tuning-free SGD via Line-Searches

Stochastic Armijo Condition : fi(wk+1) ≤ fi(wk)−c ηk∥∇fi(wk)∥2.
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Painless SGD: Stochastic Armijo in Theory
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Painless SGD: Stochastic Armijo in Practice

Classification accuracy for ResNet-34 models trained on
MNIST, CIFAR-10, and CIFAR-100.
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Painless SGD: Added Cost

Backtracking is low-cost and averages once per-iteration.
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Painless SGD: Sensitivity to Assumptions
SGD with line-search is robust, but can still fail catastrophically.
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Questions.
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Bonus: Robust Acceleration for SGD

0 50 100 150 200 250 300 350
Iterations

10 10

10 4

Tr
ai

ni
ng

 L
os

s Synthetic Matrix Fac.

Adam SGD + Armijo Nesterov + Armijo

Stochastic acceleration is possible [15, 19], but
• it’s unstable with the backtracking Armijo line-search; and
• the ”momentum” parameter must be fine-tuned.

Potential Solutions:
• more sophisticated line-search (e.g. FISTA [5]).
• stochastic restarts for oscillations.
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