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Stochastic Gradient Descent: Workhorse of ML?

“Stochastic gradient descent (SGD) is today one of
the main workhorses for solving large-scale
supervised learning and optimization problems.”
—Drori and Shamir [8]

2/



Consensus Says...

..and also Agarwal et al. [1], Assran and Rabbat
[2], Assran et al. [3], Bernstein et al.

[6], Damaskinos et al. [7], Geffner and Domke
[9], Gower et al. [10], Grosse and Salakhudinov
[11], Hofmann et al. [12], Kawaguchi and Lu [13], Li
et al. [14], Patterson and Gibson [17], Pillaud-Vivien
et al. [18], Xu et al. [21], Zhang et al. [22]
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Motivation: Challenges in Optimization for ML

Stochastic gradient methods are the most popular algorithms
for fitting ML models,

SGD: Wiy1 = Wi — ﬁkV?(Wk)

But practitioners face major challenges with

e Speed: step-size/averaging controls convergence rate.
e Stability: hyper-parameters must be tuned carefully.

e Generalization: optimizers encode statistical tradeoffs.
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Better Optimization via Better Models

Idea: exploit model properties for better optimization.
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Interpolation

Loss: F(w) — ,172 F(w).

Interpolation is satisfied for fif Vw,
f(w") < flw) = fi(w") < fi(w).

Separable Not Separable
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Constant Step-size SGD

Interpolation and smoothness imply a noise bound,
E[[Vi(w)[* < p(f(w) — f(w")).

e SGD converges with a constant step-size [4, 19].
e SGD is (nearly) as fast as gradient descent.
e SGD converges to the

» minimum Ly-norm solution for linear regression [20].
» max-margin solution for logistic regression [16].
» 777 for deep neural networks.

Takeaway: optimization speed and (some) statistical trade-offs.
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Painless SGD

What about stability and
hyper-parameter tuning?

Is grid-search the best we can do?

8/51



Painless SGD: Tuning-free SGD via Line-Searches

Stochastic Armijo Condition : fi(wyy1) < fi(wi)—cnil| V(w2

f(we=mVfowy)

flw)

Y

Acceptable step-size

— Mk
Acceptable
step-size
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Painless SGD: Stochastic Armijo in Theory

Theorem 1 (Strongly-Convex). Assuming (a) interpolation, (b) L;-smoothness, (c) convexity of f;'s,
and (d) p strong-convexity of f, SGD with Armijo line-search with ¢ = \/2 in Eq. I achieves the rate:

E [Ilw'r - w‘||2] < max { (1 - LL) J(1- .ﬁf}m-)}T llwo — w |

max

Theorem 2 (Convex). Assuming (a) interpolation, (b) L;-smoothness and (c) convexity of f;’s, SGD
with Armijo line-search for all ¢ > 1/2 in Equation 1 and iterate averaging achieves the rate:

) o crmax {aheg ot} .
E|f(wor) — flw }]Swuwn—w [~

Theorem 3 (Non-convex). Assuming (a) the SGC with constant p and (b) L;-smoothness of f;’s,

SGD with Armijo line-search in Equation  withe =1 — %;“E and Setting Npa, = \/_SL,;L achieves the
rate:
10pL
. 2 *
< — - .
_min E|VF(wo)l* < =5 (f(wo) - f(w"))
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Painless SGD: Stochastic Armijo in Practice

Classification accuracy for ResNet-34 models trained on
MNIST, CIFAR-10, and CIFAR-100.
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Painless SGD: Added Cost

Backtracking is low-cost and averages once per-iteration.
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Painless SGD: Sensitivity to Assumptions

SGD with line-search is robust, but can still fail catastrophically.

Distance to the optimum

Bilinear with Interpolation

101 4

100 4

10—1 4

10—3 4

104

0

100 200 300 400

Number of epochs
—— Adam Extra-Adam

Bilinear without Interpolation

3x 10!

2x 10!

Distance to the optimum

10!

—— SEG + Lipschitz

0 100 200 300 400
Number of epochs
—— SVRE + Restarts

B3/



Questions.
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Bonus: Robust Acceleration for SGD

Synthetic Matrix Fac.
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Stochastic acceleration is possible [15, 19], but
e it's unstable with the backtracking Armijo line-search; and
e the "momentum” parameter must be fine-tuned.
Potential Solutions:

e more sophisticated line-search (e.g. FISTA [5]).

e stochastic restarts for oscillations.
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