
Aaron Mishkin

Research Goal: reliable and
easy-to-use optimizers for ML.
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Challenges in Optimization for ML

Stochastic gradient methods are the most popular algorithms
for fitting ML models,

SGD: wk+1 = wk − ηk∇f̃ (wk).

But practitioners face major challenges with

• Speed: step-size decay-schedule controls convergence rate.

• Stability: hyper-parameters must be tuned carefully.

• Generalization: optimizers encode statistical tradeoffs.
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Better Optimization via Better Models

Idea: exploit model properties for better optimization.

Consider minimizing f (w) = 1
n

∑n
i=1 fi (w). We say f satisfies

interpolation if ∀w ,

f (w∗) ≤ f (w) =⇒ fi (w
∗) ≤ fi (w).
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First Steps: Constant Step-size SGD

Interpolation and smoothness imply a noise bound,

E‖∇fi (w)‖2 ≤ C (f (w)− f (w∗)) .

• SGD converges with a constant step-size [1, 5].

• SGD is as fast as gradient descent.

• SGD converges to the

I minimum L2-norm solution for linear regression [7].
I max-margin solution for logistic regression [4].

Takeaway: optimization speed and (some) statistical trade-offs.
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Current Work: Robust Parameter-free SGD

We can even pick ηk using backtracking line-search [6]!

Armijo Condition : fi (wk+1) ≤ fi (wk)− c ηk‖∇fi (wk)‖2.
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Stochastic Line-Searches in Practice

Classification accuracy for ResNet-34 models trained on
MNIST, CIFAR-10, and CIFAR-100.
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Questions.
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Bonus: Robust Acceleration for SGD
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Stochastic acceleration is possible [3, 5], but

• it’s unstable with the backtracking Armijo line-search; and

• the ”acceleration” parameter must be fine-tuned.

Potential Solutions:

• more sophisticated line-search (e.g. FISTA [2]).

• stochastic restarts for oscilations.
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