Instrumental Variables, DeepIV, and Forbidden Regressions

Aaron Mishkin

UBC MLRG 2019W2

Introduction

Goal: Counterfactual reasoning in the presence of unknown confounders.

From the CONSORT 2010 statement [Schulz et al., 2010];

Introduction: Motivation

Can we draw causal conclusions from observational data?

- Medical Trials: Is the new sunscreen I'm using effective?
- Confounder: I live in my laboratory!
- Pricing: should airlines increase ticket prices next December?
- Confounder: NeurIPS 2019 was in Vancouver.
- Policy: will unemployment continue to drop if the Federal Reserve keeps interest rates low?
- Confounder: US shale oil production increases.

We cannot control for confounders in observational data!

We will graphical models to represent our learning problem.

- X: observed features associated with a trial.
- ϵ : unobserved (possibly unknown) confounders.
- P : the policy variable we will to control.
- Y : the response we want to predict.

- Causal Statements: Y is caused by P.
- Action Sentences: Y will happen if we do P.
- Counterfactuals: Given (x, p, y) happened, how would Y change if we had done P instead?

Introduction: Berkeley Gender Bias Study

S: Gender causes admission to UC Berkeley [Bickel et al., 1975].
A: Estimate mapping $g(p)$ from 1973 admissions records.

Men		Women	
Applications	Admitted	Applications	Admitted
8442	44%	4321	35%

Introduction: Berkeley with a Controlled Trial

Observational Data

Controlled Exp.

Simpson's Paradox: Controlling for the effects of D shows "small but statistically significant bias in favor of women" [Bickel et al., 1975].

Part 1: "Intervention Graphs"

Intervention Graphs

The do(\cdot) operator formalizes this transformation [Pearl, 2009].

Intuition: effects of forcing $P=p_{0}$ vs "natural" occurrence.

Setup

- $\epsilon, \eta \sim \mathcal{N}(0,1)$.
- $P=p+2 \epsilon$.
- $g_{0}(P)=\max \left\{\frac{P}{5}, P\right\}$.
- $Y=g_{0}(P)-2 \epsilon+\eta$.

Graphical Model

Can supervised learning recover $g_{0}\left(P=p_{0}\right)$ from observations?

Intervention Graphs: Supervised Failure

Supervised learning fails because it assumes $P \Perp \epsilon$!

Intervention Graphs: Supervised vs Causal Learning

Given dataset $\mathcal{D}=\left\{p_{i}, y_{i}\right\}_{i=1}^{n}$:

- Supervised Learning estimates the conditional

$$
\mathbb{E}[Y \mid P]=g_{0}(P)-2 \mathbb{E}[\epsilon \mid P]
$$

- Causal Learning estimates the conditional

$$
\mathbb{E}[Y \mid \operatorname{do}(P)]=g_{0}(P)-2 \underbrace{\mathbb{E}[\epsilon]}_{=0}
$$

Intervention Graphs: Known Confounders

What if

1. all confounders are known and in ϵ;
2. ϵ persists across observations;
3. the mapping $Y=f(X, P, \epsilon)$ is known and persists.

Intervention Graphs: Inference

Steps to inference:

1. Abduction: compute posterior $P\left(\epsilon \mid\left\{x_{i}, p_{i}, y_{i}\right\}_{i=1}^{n}\right)$
2. Action: form subgraph corresponding to $\operatorname{do}\left(P=p_{0}\right)$.
3. Prediction: compute $P\left(Y \mid \operatorname{do}\left(P=p_{0}\right),\left\{x_{i}, p_{i}, y_{i}\right\}_{i=1}^{n}\right)$.

Intervention Graphs: Limitations

Our assumptions are unrealistic since

- identifying all confounders is hard.
- assuming all confounders are "global" is unrealistic.
- characterizing $Y=f(X, P, \epsilon)$ requires expert knowledge.

What we really want is to

- allow any number and kind of confounders!
- allow confounders to be "local".
- learn $f(X, P, \epsilon)$ from data!

Part 2: Instrumental Variables

Instrumental Variables

...the drawing of inferences from studies in which subjects have the final choice of program; the randomization is confined to an indirect instrument
(or assignment) that merely encourages or discourages participation in the various programs.

- Pearl [2009]

IV: Expanded Model

We augment our model with an instrumental variable Z that

- affects the distribution of P;
- only affects Y through P;
- is conditionally independent of ϵ.

IV: Air Travel Example

Intuition: " $[F$ is] as good as randomization for the purposes of causal inference" - Hartford et al. [2017].

IV: Formally

Goal: counterfactual predictions of the form

$$
\mathbb{E}\left[Y \mid X, \operatorname{do}\left(P=p_{0}\right)\right]-\mathbb{E}\left[Y \mid X, \operatorname{do}\left(P=p_{1}\right)\right]
$$

Let's make the following assumptions:

1. the additive noise model $Y=g(P, X)+\epsilon$,
2. the following conditions on the IV:
2.1 Relevance: $p(P \mid X, Z)$ is not constant in Z.
2.2 Exclusion: $Z \Perp Y \mid P, X, \epsilon$.
2.3 Unconfounded Instrument: $Z \Perp \epsilon \mid P$.

IV: Model Learning Part 1

Under the do operator:
$\mathbb{E}\left[Y \mid X, \operatorname{do}\left(P=p_{0}\right)\right]-\mathbb{E}\left[Y \mid X, \operatorname{do}\left(P=p_{1}\right)\right]=g\left(p_{0}, X\right)-g\left(p_{1}, X\right)$

$$
+\underbrace{\mathbb{E}[\epsilon-\epsilon \mid X]}_{=0} .
$$

So, we only need to estimate $h(P, X)=g(P, X)+\mathbb{E}[\epsilon \mid X]$!

IV: Model Learning Part 2

Want: $h(P, X)=g(P, X)+\mathbb{E}[\epsilon \mid X]$.
Approach: Marginalize out confounded policy P.

$$
\begin{aligned}
\mathbb{E}[Y \mid X, Z] & =\int_{P}(g(P, X)+\mathbb{E}[\epsilon \mid P, X]) d p(P \mid X, Z) \\
& =\int_{P}(g(P, X)+\mathbb{E}[\epsilon \mid X]) d p(P \mid X, Z) \\
& =\int_{P} h(P, X) d p(P \mid X, Z) .
\end{aligned}
$$

Key Trick: $\mathbb{E}[\epsilon \mid X]$ is the same as $\mathbb{E}[\epsilon \mid P, X]$ when marginalizing.

$$
\text { Objective : } \quad \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(y_{i}, \int_{P} h\left(P, x_{i}\right) d p\left(P \mid z_{i}\right)\right) .
$$

Two-stage methods:

1. Estimate Density: learn $\hat{p}(P \mid X, Z)$ from

$$
D=\left\{p_{i}, x_{i}, z_{i}\right\}_{i=1}^{n} .
$$

2. Estimate Function: learn $\hat{h}(P, X)$ from $\bar{D}=\left\{y_{i}, x_{i}, z_{i}\right\}_{i=1}^{n}$.
3. Evaluate: counterfactual reasoning via $\hat{h}\left(p_{0}, x\right)-\hat{h}\left(p_{1}, x\right)$.

IV: Two-Stage Least-Squares
Classic Approach: two-stage least-squares (2SLS).

$$
\begin{aligned}
h(P, X) & =\mathbf{w}_{0}^{\top} P+\mathbf{w}_{1}^{\top} X+\epsilon \\
\mathbb{E}[P \mid X, Z] & =\mathbf{A}_{0} X+\mathbf{A}_{1} Z+r(\epsilon)
\end{aligned}
$$

Then we have the following:

$$
\begin{aligned}
\mathbb{E}[Y \mid X, Z] & =\int_{P} h(P, X) d p(P \mid X, Z) \\
& =\int_{P}\left(\mathbf{w}_{0}^{\top} P+\mathbf{w}_{1}^{\top} X\right) d p(P \mid X, Z) \\
& =\mathbf{w}_{1}^{\top} X+\mathbf{w}_{0}^{\top} \int_{P} P d p(P \mid X, Z) \\
& =\mathbf{w}_{1}^{\top} X+\mathbf{w}_{0}^{\top}\left(\mathbf{A}_{0} X+\mathbf{A}_{1} Z\right)
\end{aligned}
$$

No need for density estimation!

Part 3: Deep IV

Deep IV: Problems with 2SLS

Problem: Linear models aren't very expressive.

- What if we want to do causal inference with time-series?

Deep IV: Problems with 2SLS

Problem: Linear models aren't very expressive.

- How about complex image data?

Deep IV: Approach
Remember our objective function:
Objective : $\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(y_{i}, \int_{P} h\left(P, x_{i}\right) d p\left(P \mid z_{i}\right)\right)$.

Deep IV: Two-stage method using deep neural networks.

1. Treatment Network: estimate $\hat{p}(P \mid \phi(X, Z))$.

- Categorical $P:$ softmax $\mathrm{w} /$ favourite architecture.
- Continuous P : autoregressive models (MADE, RNADE, etc.), normalizing flows (MAF, IAF, etc) and so on.

2. Outcome Network: fit favorite architecture

$$
\hat{h}_{\theta}(P, X) \approx h(P, X)
$$

Autogressive models: [Germain et al., 2015, Uria et al., 2013], Normalizing Flows: [Rezende and Mohamed, 2015, Papamakarios et al., 2017, Kingma et al., 2016]

Deep IV: Training Deep IV Models

1. Treatment Network "easy" via maximum-likelihood:

$$
\phi^{*}=\underset{\phi}{\arg \max }\left\{\sum_{i=1}^{n} \log \hat{p}\left(p_{i} \mid \phi\left(x_{i}, z_{i}\right)\right)\right\}
$$

2. Outcome Network: Monte Carlo approximation for loss:

$$
\begin{aligned}
L(\theta) & =\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(y_{i}, \int_{P} \hat{h}_{\theta}(P, X) d \hat{p}\left(P \mid \phi\left(x_{i}, z_{i}\right)\right)\right) \\
& \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(y_{i}, \frac{1}{M} \sum_{j=1}^{m} \hat{h}_{\theta}\left(p_{j}, x_{i}\right)\right):=\hat{L}(\theta)
\end{aligned}
$$

where $p_{j} \sim \hat{p}\left(P \mid \phi\left(x_{i}, z_{i}\right)\right)$.

Deep IV: Biased and Unbiased Gradients

When $\mathcal{L}(y, \hat{y})=(y-\hat{y})^{2}$:

$$
L(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\int_{P} h\left(P, x_{i}\right) d p\left(P \mid z_{i}\right)\right)^{2} .
$$

If we use a single set of samples to estimate $\mathbb{E}_{\hat{\rho}}\left[\hat{h}_{\theta}\left(P, x_{i}\right)\right]$:

$$
\begin{aligned}
\nabla \hat{L}(\theta) & \approx-2 \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\hat{\rho}}\left[y_{i}-\hat{h}_{\theta}\left(P, x_{i}\right) \nabla_{\theta} \hat{h}_{\theta}\left(P, x_{i}\right)\right] \\
& \geq-2 \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\hat{\rho}}\left[y_{i}-\hat{h}_{\theta}\left(P, x_{i}\right)\right] \mathbb{E}_{\hat{\rho}}\left[\nabla_{\theta} \hat{h}_{\theta}\left(P, x_{i}\right)\right]=\nabla_{\theta} L(\theta)
\end{aligned}
$$

by Jensen's inequality.

Part 4: Experimental Results and Forbidden Techniques

Results: Price Sensitivity

Synthetic Price Sensitivity: $\rho \in[0,1]$ tunes confounding.

- Customer Type: $S \in\{1, \ldots, 7\}$; Price Sensitivity: ψ_{t}
- $Z \sim \mathcal{N}(0,1), \quad \eta \sim \mathcal{N}(0,1)$
- $\epsilon \sim \mathcal{N}\left(\rho * \eta, 1-\rho^{2}\right)$.

Important!

- $P=25+(Z+3) \psi_{t}+\eta$
- $Y=100+(10+P) S \psi_{t}-2 P+\epsilon$
$\rho=0.75$

$\rho=0.5$

$\rho=0.25$

$$
\rho=0.1
$$

$$
\left.\begin{array}{lllll}
\hline 8 \\
0 \\
0
\end{array}\right]
$$

Training Sample in 1000s

Results: Price Sensitivity with Image Features

What if S is an MNIST digit?

Results: Any Issues?

Did we do something wrong?

A Forbidden Regression
"Forbidden regressions were forbidden by MIT Professor Jerry Hausman in 1975, and while they occasionally resurface in an under-supervised thesis, they are still technically off-limits."
—Angrist and Pischke [2008]

Forbidden Regression: 2SLS vs DeepIV

Let f be some (non-linear) function and consider

$$
\begin{aligned}
h(P, X) & =\mathbf{w}_{0}^{\top} P+\mathbf{w}_{1}^{\top} X+\epsilon \\
\mathbb{E}[P \mid X, Z] & =f(X, Z, \epsilon),
\end{aligned}
$$

Amazing Property: 2 SLS is consistent if h is linear even if f isn't!

- Prove using orthogonality of residual and prediction.

Deep IV: bias from $\hat{p}(P \mid \phi(X, Z))$ propagates to $\hat{h}_{\theta}(P, X)$.

- Asymptotically OK if density estimation is realizable.

Today:

- Our goal was counterfactual reasoning from observations.
- Naive supervised learning can fail catastrophically due to confounders.
- Probabilistic counterfactuals are possible with persistent confounders.
- Instrumental variables allow counterfactual inference when confounders are unknown.
- Deep IV uses instrumental variables with neural networks for flexible counterfactual reasoning.

Questions?

References I

Joshua D Angrist and Jörn-Steffen Pischke. Mostly harmless econometrics: An empiricist's companion. Princeton university press, 2008.
Andrew Bennett, Nathan Kallus, and Tobias Schnabel. Deep generalized method of moments for instrumental variable analysis. In Advances in Neural Information Processing Systems, pages 3559-3569, 2019.
Peter J Bickel, Eugene A Hammel, and J William O'Connell. Sex bias in graduate admissions: Data from berkeley. Science, 187 (4175):398-404, 1975.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for distribution estimation. In International Conference on Machine Learning, pages 881-889, 2015.

References II

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep iv: A flexible approach for counterfactual prediction. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1414-1423. JMLR. org, 2017.
Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved variational inference with inverse autoregressive flow. In Advances in neural information processing systems, pages 4743-4751, 2016.
George Papamakarios, Theo Pavlakou, and lain Murray. Masked autoregressive flow for density estimation. In Advances in Neural Information Processing Systems, pages 2338-2347, 2017.
Judea Pearl. Causality. Cambridge university press, 2009.
Danilo Jimenez Rezende and Shakir Mohamed. Variational
inference with normalizing flows. arXiv preprint arXiv:1505.05770, 2015.

References III

Kenneth F Schulz, Douglas G Altman, and David Moher. Consort 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC medicine, 8(1):18, 2010.

Benigno Uria, lain Murray, and Hugo Larochelle. Rnade: The real-valued neural autoregressive density-estimator. In Advances in Neural Information Processing Systems, pages 2175-2183, 2013.

