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Introduction

Goal: Counterfactual reasoning in the presence of
unknown confounders.

From the CONSORT 2010 statement [Schulz et al., 2010];

https://commons.wikimedia.org/w/index.php?curid=9841081 2⁄41



Introduction: Motivation

Can we draw causal conclusions from observational data?

• Medical Trials: Is the new sunscreen I’m using effective?
I Confounder: I live in my laboratory!

• Pricing: should airlines increase ticket prices next December?
I Confounder: NeurIPS 2019 was in Vancouver.

• Policy: will unemployment continue to drop if the Federal
Reserve keeps interest rates low?
I Confounder: US shale oil production increases.

We cannot control for confounders in observational data!
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Introduction: Graphical Model

X

YP

ε Confounder

Response

Features

Policy

We will graphical models to represent our learning problem.

• X : observed features associated with a trial.

• ε: unobserved (possibly unknown) confounders.

• P: the policy variable we will to control.

• Y : the response we want to predict.
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Introduction: Answering Causal Questions

X

YP

ε Confounder

Response

Features

Policy

• Causal Statements: Y is caused by P.

• Action Sentences: Y will happen if we do P.

• Counterfactuals: Given (x , p, y) happened, how would Y
change if we had done P instead?
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Introduction: Berkeley Gender Bias Study

S: Gender causes admission to UC Berkeley [Bickel et al., 1975].
A: Estimate mapping g(p) from 1973 admissions records.

A

G ?

g(G )

Admission

Gender

Men Women
Applications Admitted Applications Admitted

8442 44% 4321 35%
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Introduction: Berkeley with a Controlled Trial

A

G D

A

G D

Observational Data Controlled Exp.

Simpson’s Paradox: Controlling for the effects of D shows “small
but statistically significant bias in favor of women” [Bickel et al.,

1975].
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Part 1: “Intervention Graphs”

8⁄41



Intervention Graphs

The do(·) operator formalizes this transformation [Pearl, 2009].

X

YP

ε X

Yp0

ε

do(P = p0)

Observation Intervention

Intuition: effects of forcing P = p0 vs “natural” occurrence.
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Intervention Graphs: Supervised vs Causal Learning

Setup Graphical Model

• ε, η ∼ N (0, 1).

• P = p + 2ε.

• g0(P) = max
{
P
5 ,P

}
.

• Y = g0(P)− 2ε+ η. Y

P ε

ηg0(p)

Can supervised learning recover g0(P = p0) from observations?

Synthetic example introduced by Bennett et al. [2019]
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Intervention Graphs: Supervised Failure

6 4 2 0 2 4 6 8

4

2

0

2

4

true g0

estimated by neural net
observed

Supervised learning fails because it assumes P ⊥⊥ ε!

Taken from https://arxiv.org/abs/1905.12495
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Intervention Graphs: Supervised vs Causal Learning

Y

Pε

η

Y

P ε

η

g0(p) g0(p)

do(P)

Observation Intervention

Given dataset D = {pi , yi}ni=1:

• Supervised Learning estimates the conditional

E [Y | P] = g0(P)− 2E [ε | P]

• Causal Learning estimates the conditional

E [Y | do(P)] = g0(P)− 2E [ε]︸︷︷︸
=0
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Intervention Graphs: Known Confounders

i ∈ [n]

Xi

YiPi

ε

X

Y p0

Obervations Intervention

What if

1. all confounders are known and in ε;

2. ε persists across observations;

3. the mapping Y = f (X ,P, ε) is known and persists.
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Intervention Graphs: Inference

i ∈ [n]

Xi

YiPi

ε

X

Y p0

Obervations Intervention

Steps to inference:

1. Abduction: compute posterior P(ε | {xi , pi , yi}ni=1)

2. Action: form subgraph corresponding to do(P = p0).

3. Prediction: compute P(Y | do(P = p0), {xi , pi , yi}ni=1).
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Intervention Graphs: Limitations

Our assumptions are unrealistic since

• identifying all confounders is hard.

• assuming all confounders are “global” is unrealistic.

• characterizing Y = f (X ,P, ε) requires expert knowledge.

What we really want is to

• allow any number and kind of confounders!

• allow confounders to be “local”.

• learn f (X ,P , ε) from data!
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Part 2: Instrumental Variables
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Instrumental Variables

. . . the drawing of inferences from studies in which
subjects have the final choice of program; the

randomization is confined to an indirect instrument
(or assignment) that merely encourages or

discourages participation in the various programs.
— Pearl [2009]
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IV: Expanded Model

Z

X

YP

ε Confounder

Response

Features

Policy

Instrument

We augment our model with an instrumental variable Z that

• affects the distribution of P;

• only affects Y through P;

• is conditionally independent of ε.
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IV: Air Travel Example

I

P C

F

Conference

Income

Price

Fuel

Intuition: “[F is] as good as randomization for the purposes of
causal inference”— Hartford et al. [2017].
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IV: Formally

Goal: counterfactual predictions of the form

E [Y | X , do(P = p0)]− E [Y | X , do(P = p1)] .

Let’s make the following assumptions:

1. the additive noise model Y = g (P,X ) + ε,

2. the following conditions on the IV:

2.1 Relevance: p(P | X ,Z ) is not constant in Z .

2.2 Exclusion: Z ⊥⊥ Y | P,X , ε.

2.3 Unconfounded Instrument: Z ⊥⊥ ε | P.
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IV: Model Learning Part 1

Z

X

Yp

ε

Y = g(P,X ) + ε

Intervention

Under the do operator:

E [Y | X , do(P = p0)]− E [Y | X , do(P = p1)] = g(p0,X )− g(p1,X )

+ E [ε− ε | X ]︸ ︷︷ ︸
=0

.

So, we only need to estimate h(P,X ) = g(P,X ) + E [ε | X ]!
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IV: Model Learning Part 2

Want: h(P,X ) = g(P,X ) + E [ε | X ].

Approach: Marginalize out confounded policy P.

E [Y | X ,Z ] =

∫
P

(g (P,X ) + E [ε | P,X ]) dp(P | X ,Z )

=

∫
P

(g (P,X ) + E [ε | X ]) dp(P | X ,Z )

=

∫
P
h(P,X )dp(P | X ,Z ).

Key Trick: E [ε | X ] is the same as E [ε | P,X ] when marginalizing.
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IV: Two-Stage Methods

Objective :
1

n

n∑
i=1

L
(
yi ,

∫
P
h(P, xi )dp(P | zi )

)
.

Two-stage methods:

1. Estimate Density: learn p̂ (P | X ,Z ) from
D = {pi , xi , zi}ni=1.

2. Estimate Function: learn ĥ(P,X ) from D̄ = {yi , xi , zi}ni=1.

3. Evaluate: counterfactual reasoning via ĥ (p0, x)− ĥ (p1, x).
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IV: Two-Stage Least-Squares

Classic Approach: two-stage least-squares (2SLS).

h(P,X ) = w>0 P + w>1 X + ε

E[P | X ,Z ] = A0X + A1Z + r (ε)

Then we have the following:

E [Y | X ,Z ] =

∫
P
h(P,X )dp(P | X ,Z )

=

∫
P

(
w>0 P + w>1 X

)
dp(P | X ,Z )

= w>1 X + w>0

∫
P
Pdp(P | X ,Z )

= w>1 X + w>0 (A0X + A1Z ) .

No need for density estimation!

See Angrist and Pischke [2008].
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Part 3: Deep IV
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Deep IV: Problems with 2SLS

Problem: Linear models aren’t very expressive.

• What if we want to do causal inference with time-series?

Federal Reserve Economic Research, Federal Reserve Bank of Saint Louis. https://fred.stlouisfed.org/
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Deep IV: Problems with 2SLS

Problem: Linear models aren’t very expressive.

• How about complex image data?

https://alexgkendall.com/computer vision/bayesian deep learning for safe ai/
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Deep IV: Approach

Remember our objective function:

Objective :
1

n

n∑
i=1

L
(
yi ,

∫
P
h(P, xi )dp(P | zi )

)
.

Deep IV: Two-stage method using deep neural networks.

1. Treatment Network: estimate p̂ (P | φ(X ,Z ) ).

I Categorical P: softmax w/ favourite architecture.

I Continuous P: autoregressive models (MADE, RNADE, etc.),
normalizing flows (MAF, IAF, etc) and so on.

2. Outcome Network: fit favorite architecture

ĥθ(P,X ) ≈ h(P,X ).

Autogressive models: [Germain et al., 2015, Uria et al., 2013], Normalizing Flows: [Rezende and Mohamed,

2015, Papamakarios et al., 2017, Kingma et al., 2016]

28⁄41



Deep IV: Training Deep IV Models

1. Treatment Network “easy” via maximum-likelihood:

φ∗ = argmax
φ

{
n∑

i=1

log p̂ (pi | φ(xi , zi ) )

}

2. Outcome Network: Monte Carlo approximation for loss:

L(θ) =
1

n

n∑
i=1

L
(
yi ,

∫
P
ĥθ (P,X )dp̂ (P | φ(xi , zi ) )

)

≈ 1

n

n∑
i=1

L

yi ,
1

M

m∑
j=1

ĥθ (pj , xi )

 := L̂(θ),

where pj ∼ p̂ (P | φ(xi , zi ) ).
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Deep IV: Biased and Unbiased Gradients

When L(y , ŷ) = (y − ŷ)2:

L(θ) =
1

n

n∑
i=1

(
yi −

∫
P
h(P, xi )dp(P | zi )

)2

.

If we use a single set of samples to estimate Ep̂

[
ĥθ (P, xi )

]
:

∇L̂(θ) ≈ −2
1

n

n∑
i=1

Ep̂

[
yi − ĥθ (P, xi )∇θĥθ (P, xi )

]
≥ −2

1

n

n∑
i=1

Ep̂

[
yi − ĥθ (P, xi )

]
Ep̂

[
∇θĥθ (P, xi )

]
= ∇θL(θ),

by Jensen’s inequality.
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Part 4: Experimental Results
and Forbidden Techniques
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Results: Price Sensitivity

Synthetic Price Sensitivity: ρ ∈ [0, 1] tunes confounding.

• Customer Type: S ∈ {1, . . . , 7} ; Price Sensitivity: ψt

• Z ∼ N (0, 1), η ∼ N (0, 1)

• ε ∼ N (ρ ∗ η, 1− ρ2).
Important!⇐==================

• P = 25 + (Z + 3)ψt + η

• Y = 100 + (10 + P)Sψt − 2P + ε
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Results: Price Sensitivity with Image Features
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Results: Any Issues?

Did we do something wrong?
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A Forbidden Regression

“Forbidden regressions were forbidden by MIT
Professor Jerry Hausman in 1975, and while they

occasionally resurface in an under-supervised thesis,
they are still technically off-limits.”

—Angrist and Pischke [2008]
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Forbidden Regression: 2SLS vs DeepIV

Let f be some (non-linear) function and consider

h(P,X ) = w>0 P + w>1 X + ε

E[P | X ,Z ] = f (X ,Z , ε),

Amazing Property: 2SLS is consistent if h is linear even if f isn’t!

• Prove using orthogonality of residual and prediction.

Deep IV: bias from p̂ (P | φ(X ,Z ) ) propagates to ĥθ(P,X ).

• Asymptotically OK if density estimation is realizable.

See this PDF for a hint on how to proceed.

36⁄41

http://web.hku.hk/~pingyu/6005/LN/LN5_Least%20Squares%20Estimation-%20Large-Sample%20Properties.pdf


Recap

Today:
• Our goal was counterfactual reasoning from observations.

• Naive supervised learning can fail catastrophically due
to confounders.

• Probabilistic counterfactuals are possible with
persistent confounders.

• Instrumental variables allow counterfactual inference
when confounders are unknown.

• Deep IV uses instrumental variables with neural networks
for flexible counterfactual reasoning.

37⁄41



Questions?

Z

X
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ε Confounder

Response

Features

Policy
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