
Generative Adversarial Networks

Aaron Mishkin

UBC MLRG 2018W2

1

Generative Adversial Networks

“Two imaginary celebrities that were dreamed up by a random

number generator.”

https://research.nvidia.com/publication/2017-10 Progressive-Growing-of
2

Why care about GANs?

Why to spend your limited time learning about GANs:

• GANs are achieving state-of-the-art results in a large variety

of image generation tasks.

• There’s been a veritable explosion in GAN publications over

the last few years – many people are very excited!

• GANs are stimulating new theoretical interest in min-max

optimization problems and “smooth games”.

3

Why care about GANs: Hyper-realistic Image Generation

StyleGAN: image generatation with hierarchical style transfer [3].

https://arxiv.org/abs/1812.04948 4

Why care about GANs: Conditionally Generative Models

Conditional GANs: high-resolution image synthesis via semantic

labeling [8].

Input: Segmentation Output: Synthesized Image

https://research.nvidia.com/publication/2017-12 High-Resolution-Image-Synthesis

5

Why care about GANs: Image Super Resolution

SRGAN: Photo-realistic super-resolution [4].

Bicubic Interp. SRGAN Original Image

https://arxiv.org/abs/1609.04802

6

Why care about GANs: Publications

Approximately 500 papers GAN papers as of September 2018!

See https://github.com/hindupuravinash/the-gan-zoo for the exhaustive list of papers.

Image Credit: https://github.com/bgavran.

7

Generative Models

Generative Modeling

Generative Models estimate the probabilistic process that

generated a set of observations D.

• D =
{(

xi , yi
)}n

i=1
: supervised generative models learn the

joint distribution p(xi , yi), often to compute p(yi | xi).

• D =
{

xi
}n
i=1

: unsupervised generative models learn the
distribution of D for clustering, sampling, etc. We can:

• directly estimate p(xi),

• introducing latents yi and estimate p(xi , yi).

8

Generative Modeling: Unsupervised Parametric Approaches

• Direct Estimation: Choose a parameterized family p(x | θ)

and learn θ by maximizing the log-likelihood

θ∗ = argmax θ

n∑
i=1

log p(xi | θ).

• Latent Variable Models: Define a joint distribution

p(x, y | θ) and learn θ by maximizing the log-marginal

likelihood

θ∗ = argmax θ

n∑
i=1

log

∫
zi
p(xi , zi | θ)dz.

Both approaches require that p(x | θ) is easy to evaluate.

9

Generative Modeling: Models for (Very) Complex Data

How can we learn such models for very complex data?

https://www.researchgate.net/figure/Heterogeneousness-and-diversity-of-the-CIFAR-10-entries-in-their-10-

image-categories-The fig1 322148855

10

Generative Modeling: Normalizing Flows and VAEs

Design parameterized densities with huge capacity!

• Normalizing flows: sequence of non-linear transformations to

a simple distribution pz(z)

p(x | θ0:k) = pz(z) where z = f −1
θk
◦ · · · ◦ f −1

θ1
◦ f −1

θ0
(x) .

f −1
θj

must be invertible with tractable log-det. Jacobians.

• VAEs: latent-variable models where inference networks

specify parameters

p(x, y | θ) = p(x | fθ(y))py(y).

The marginal likelihood is maximized via the ELBO.

11

GANs

GANs: Density-Free Models

Generative Adversial Networks (GANs) instead use an

unrestricted generator Gθg (z) such that

p(x | θg) = pz({z}) where {z} = G−1
θg

(x).

• Problem: the inverse image of Gθg (z) may be huge!

• Problem: it’s likely intractable to preserve volume through

G (z; θg).

So, we can’t evaluate p(x | θg) and we can’t learn θg by maximum

likelihood.

12

GANs: Discriminators

GANs learn by comparing model samples with examples from D.

• Sampling from the generator is easy:

x̂ = Gθg (ẑ), where ẑ ∼ pz(z).

• Given a sample x̂, a discriminator tries to distinguish it from

true examples:

D(x) = Pr (x ∼ pdata) .

• The discriminator “supervises” the generator network.

13

GANs: Generator + Descriminator

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-

training-upc-2016

14

GANs: Goodfellow et al. (2014)

• Let z ∈ Rm and pz(z) be a simple base distribution.

• The generator Gθg (z) : Rm → D̃ is a deep neural network.

• D̃ is the manifold of generated examples.

• The discriminator Dθd (x) : D ∪ D̃ → (0, 1) is also a deep

neural network.

https://arxiv.org/abs/1511.06434

15

GANs: Saddle-Point Optimization

Saddle-Point Optimization: learn Gθg (z) and Dθd (x) jointly via

the objective V (θd , θg):

min
θg

max
θd

Epdata
[logDθd (x)]︸ ︷︷ ︸

likelihood of true data

+Epz(z)

[
log
(
1− Dθd (Gθg (z))

)]︸ ︷︷ ︸
likelihood of generated data

16

GANs: Optimal Discriminators

Claim: Given Gθg defining an implicit distribution pg = p(x | θg),

the optimal descriminator is

D∗(x) =
pdata(x)

pdata(x) + pg(x)
.

Proof Sketch:

V (θd , θg) =

∫
D
pdata(x) logD(x)dx +

∫
D̃
p(z) log(1− D(Gθg (z)))dz

=

∫
D∪D̃

pdata(x) logD(x) + pg (x) log(1− D(x))dx

Maximizing the integrand for all x is sufficient and gives the result

(see bonus slides).

Previous Slide: https://commons.wikimedia.org/wiki/File:Saddle point.svg

17

GANs: Jensen-Shannon Divergence and Optimal Generators

Given an optimal discriminator D∗(x), the generator objective is

C (θg) = Epdata

[
logD∗θd (x)

]
+ Epg (x)

[
log
(
1− D∗θd (x)

)]

= Epdata

[
log

pdata(x)

pdata(x) + pg(x)

]
+ Epg (x)

[
log

pg (x)

pdata(x) + pg(x)

]

∝ 1

2
KL

(
pdata

∣∣∣∣∣∣∣∣(pdata + pg)

2

)
+

1

2
KL

(
pg

∣∣∣∣∣∣∣∣(pdata + pg)

2

)
︸ ︷︷ ︸

Jensen-Shannon Divergence

C (θg) achives its global minimum at pg = pdata given an optimal

discriminator!

18

GANs: Learning Generators and Discriminators

Putting these results to use in practice:

• High-capacity discriminators Dθd approximate the

Jensen-Shannon divergence when close to global maximum.

• Dθd is a “differentiable program”.

• We can use Dθd to learn Gθg with our favourite gradient

descent method.

https://arxiv.org/abs/1511.06434

19

GANs: Training Procedure

for i = 1 . . .N do

for k = 1 . . .K do

• Sample noise samples {z1, . . . , zm} ∼ pz(z)

• Sample examples {x1, . . . , xm} from pdata(x).

• Update the discriminator Dθd :

θd = θd−αd∇θd

1

m

m∑
i=1

[
logD

(
xi
)

+ log
(
1− D

(
G
(
zi
)))]

.

end for

• Sample noise samples {z1, . . . , zm} ∼ pz(z).

• Update the generator Gθg :

θg = θg − αg∇θg

1

m

m∑
i=1

log
(
1− D

(
G
(
zi
)))

.

end for 20

Problems (c. 2016)

Problems with GANs

• Vanishing gradients: the discriminator becomes ”too good”

and the generator gradient vanishes.

• Non-Convergence: the generator and discriminator oscillate

without reaching an equilibrium.

• Mode Collapse: the generator distribution collapses to a

small set of examples.

• Mode Dropping: the generator distribution doesn’t fully

cover the data distribution.

21

Problems: Vanishing Gradients

• The minimax objective saturates when Dθd is close to perfect:

V (θd , θg) = Epdata
[logDθd (x)]+Epz(z)

[
log
(
1− Dθd (Gθg (z))

)]
.

• A non-saturating heuristic objective for the generator is

J(Gθg) = −Epz(z)

[
log
(
Dθd (Gθg (z))

)]
.

https://arxiv.org/abs/1701.00160 22

Problems: Addressing Vanishing Gradients

Solutions:

• Change Objectives: use the non-saturating heuristic

objective, maximum-likelihood cost, etc.

• Limit Discriminator: restrict the capacity of the

discriminator.

• Schedule Learning: try to balance training Dθd and Gθg .

23

Problems: Non-Convergence

Simultaneous gradient descent is not guaranteed to converge for

minimax objectives.

• Goodfellow et al. only showed convergence when updates are

made in the function space [2].

• The parameterization of Dθd and Gθg results in highly

non-convex objective.

• In practice, training tends to oscillate – updates “undo” each

other.

24

Problems: Addressing Non-Convergence

Solutions: Lots and lots of hacks!

https://github.com/soumith/ganhacks

25

Problems: Mode Collapse and Mode Dropping

One Explanation: SGD may optimize the max-min objective

max
θd

min
θg

Epdata
[logDθd (x)] + Epz(z)

[
log
(
1− Dθd (Gθg (z))

)]
Intuition: the generator maps all z values to the x̂ that is mostly

likely to fool the discriminator.

https://arxiv.org/abs/1701.00160

26

A Possible Solution

A Possible Solution: Alternative Divergences

There are a large variety of divergence measures for distributions:

• f-Divergences: (e.g. Jensen-Shannon, Kullback-Leibler)

Df (P ||Q) =

∫
χ
q(x)f (

p(x)

q(x)
)dx

• GANs [2], f-GANs [7], and more.

• Integral Probability Metrics: (e.g. Earth Movers Distance,

Maximum Mean Discrepancy)

γF (P ||Q) = sup
f ∈F

∣∣∣∣ ∫ fdP −
∫

fdQ

∣∣∣∣
• Wasserstein GANs [1], Fisher GANs [6], Sobolev GANs [5] and

more.

27

A Possible Solution: Wasserstein GANs

Wasserstein GANs: Strong theory and excellent empirical results.

• “In no experiment did we see evidence of mode collapse for

the WGAN algorithm.” [1]

https://arxiv.org/abs/1701.07875

28

Summary

Summary

Recap:

• GANs are a class of density-free generative models with

(mostly) unrestricted generator functions.

• Introducing adversial discriminator networks allows GANs to

learn by minimizing the Jensen-Shannon divergence.

• Concurrently learning the generator and discriminator is
challenging due to

• Vanishing Gradients,

• Non-convergence due to oscilliation

• Mode collapse and mode dropping.

• A variety of alternative objective functions are being proposed.

29

Agknowledgements and References

There are lots of excellent references on GANs:

• Sebastian Nowozin’s presentation at MLSS 2018.

• NIPS 2016 tutorial on GANs by Ian Goodfellow.

• A nice explanation of Wasserstein GANs by Alex Irpan.

30

https://github.com/nowozin/mlss2018-madrid-gan
https://arxiv.org/abs/1701.00160
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html

Bonus: Optimal Discriminators Cont.

The integrand

h(D(x)) = pdata(x) logD(x) + pg (x) log(1− D(x))

is concave for D(x) ∈ (0, 1). We take the derivative and compute

a stationary point in the domain:

∂h(D(x))

∂D(x)
=

pdata(x)

D(x)
− pg (x)

1− D(x)
= 0

⇒ D(x) =
pdata(x)

pdata(x) + pg(x)
.

This minimizes the integrand over the domain of the discriminator,

completing the proof.

31

References i

Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein gan.

arXiv preprint arXiv:1701.07875, 2017.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.

Generative adversarial networks. arxiv e-prints.

arXiv preprint arXiv:1406.2661, 2014.

Tero Karras, Samuli Laine, and Timo Aila.

A style-based generator architecture for generative adversarial

networks.

arXiv preprint arXiv:1812.04948, 2018.

32

References ii

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew

Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes

Totz, Zehan Wang, et al.

Photo-realistic single image super-resolution using a generative

adversarial network.

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4681–4690, 2017.

Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, and Yu Cheng.

Sobolev gan.

arXiv preprint arXiv:1711.04894, 2017.

Youssef Mroueh and Tom Sercu.

Fisher gan.

In Advances in Neural Information Processing Systems, pages 2513–2523,

2017.

33

References iii

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka.

f-gan: Training generative neural samplers using variational

divergence minimization.

In Advances in neural information processing systems, pages 271–279,

2016.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz,

and Bryan Catanzaro.

High-resolution image synthesis and semantic manipulation with

conditional gans.

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8798–8807, 2018.

34

	Generative Models
	GANs
	Problems (c. 2016)
	A Possible Solution
	Summary

