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Generative Adversial Networks

“Two imaginary celebrities that were dreamed up by a random
number generator.”

https:/ /research.nvidia.com/publication /2017-10_Progressive-Growing-of



Why care about GANs?

Why to spend your limited time learning about GANs:

e GANs are achieving state-of-the-art results in a large variety
of image generation tasks.

e There's been a veritable explosion in GAN publications over
the last few years — many people are very excited!

e GANSs are stimulating new theoretical interest in min-max
optimization problems and “smooth games”.



Why care about GANs: Hyper-realistic Image Generation

StyleGAN: image generatation with hierarchical style transfer [3].

https://arxiv.org/abs/1812.04948 4



Why care about GANs: Conditionally Generative Models

Conditional GANs: high-resolution image synthesis via semantic
labeling [8].

Input: Segmentation Output: Synthesized Image

https://research.nvidia.com/publication /2017-12_High-Resolution-Image-Synthesis



Why care about GANs: Image Super Resolution

SRGAN: Photo-realistic super-resolution [4].

Bicubic Interp. SRGAN Original Image
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https://arxiv.org/abs/1609.04802



Why care about GANs: Publications

Cumulative number of named GAN papers by month
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Approximately 500 papers GAN papers as of September 2018!

See https://github.com/hindupuravinash /the-gan-zoo for the exhaustive list of papers. 7



Generative Models



Generative Modeling

Generative Models estimate the probabilistic process that
generated a set of observations D.

e D= {(x",y")}le: supervised generative models learn the
joint distribution p(x’,y'), often to compute p(y' | x').
e D= {xi}7:1: unsupervised generative models learn the
distribution of D for clustering, sampling, etc. We can:
e directly estimate p(x),
e introducing latents y' and estimate p(x',y").



Generative Modeling: Unsupervised Parametric Approaches

e Direct Estimation: Choose a parameterized family p(x | 6)
and learn 6 by maximizing the log-likelihood

0" = arg max 0 Z log p(x' | 6).
i=1

e Latent Variable Models: Define a joint distribution
p(x,y | ) and learn 6 by maximizing the log-marginal
likelihood

0" = arg maxez log / p(x' 2" | 0)dz.

i=1 z

Both approaches require that p(x | ) is easy to evaluate.



Generative Modeling: Models for (Very) Complex Data

How can we learn such models for very complex data?
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https://www.researchgate.net/figure/Heterogeneousness-and-diversity-of-the-CIFAR-10-entries-in-their-10-



Generative Modeling: Normalizing Flows and VAEs

Design parameterized densities with huge capacity!

e Normalizing flows: sequence of non-linear transformations to
a simple distribution p,(z)

p(x | 6o.) = pz(z) where z = f9;1 0---0 fezl o fegl (x).

fefl must be invertible with tractable log-det. Jacobians.
J

e VAEs: latent-variable models where inference networks
specify parameters

p(x,y | 0) = p(x | fa(y))py(y)-

The marginal likelihood is maximized via the ELBO.
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GANs




GANSs: Density-Free Models

Generative Adversial Networks (GANSs) instead use an
unrestricted generator Gy, (z) such that

p(x | 0¢) = pa({z}) where {z} = G, (x).

e Problem: the inverse image of Gy, (z) may be huge!

e Problem: it's likely intractable to preserve volume through
G(z;0;).

So, we can't evaluate p(x | f5) and we can't learn 6z by maximum
likelihood.
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GANs: Discriminators

GANSs learn by comparing model samples with examples from D.
e Sampling from the generator is easy:
X = Gy, (2), where Z ~ p,(z).

e Given a sample X, a discriminator tries to distinguish it from

true examples:
D(X) =Pr (X ~ pdata) .

e The discriminator “supervises” the generator network.

13



GANs: Generator 4+ Descriminator
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https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-

training-upc-2016
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GANs: Goodfellow et al. (2014)

e Let z€ R™ and p,(z) be a simple base distribution.
e The generator Gy, (z) : R™ — D is a deep neural network.

e D is the manifold of generated examples.
e The discriminator Dy, (x) : DUD — (0,1) is also a deep

neural network.

Discriminator

5

https://arxiv.org/abs/1511.06434
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GANSs: Saddle-Point Optimization

Saddle-Point Optimization: learn Gy, (z) and Dy, (x) jointly via
the objective V/(04,0,):

min max E pgaca [108 Dy, (X)] +Ep, () [log (1 — Ds,(Go,(2)))]

Og d

likelihood of true data likelihood of generated data
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GANs: Optimal Discriminators

Claim: Given Gy, defining an implicit distribution p; = p(x | 0),
the optimal descriminator is

* o Pdata (X)
D) = Pdata(X) + Pg(X).

Proof Sketch:
V(04.05) = /D paaea(x) log D(x)dx + /D p(2) log(1 — D(Gy, (2)))dz

— [ pasnalx)log D(x) + py(x) log(1 ~ D(x))x
DUD

Maximizing the integrand for all x is sufficient and gives the result
(see bonus slides).

Previous Slide: https://commons.wikimedia.org/wiki/File:Saddle_point.svg
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GANs: Jensen-Shannon Divergence and Optimal Generators

Given an optimal discriminator D*(x), the generator objective is

C(0g) = Ep,... [Iog ng(x)] + Epg(x) [Iog (1 — ng(x))]

Pdata (X)
=K
Pars |: . Pdata (X) + pg(x

Pg(X) }

)] * Eexto ["’g Pana(X) + Py(x)

1
X EKL (pdata

(Pdata;‘ Pg)> 4 %KL <Pg

(Pdata + Pg) >
2

Jensen-Shannon Divergence

C(0g) achives its global minimum at pg = pgata given an optimal
discriminator!
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GANSs: Learning Generators and Discriminators

Putting these results to use in practice:

e High-capacity discriminators Dy, approximate the
Jensen-Shannon divergence when close to global maximum.

e Dy, is a "differentiable program”.

e We can use Dy, to learn Gy, with our favourite gradient

descent method.

Discriminator

https://arxiv.org/abs/1511.06434
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GANs: Training Procedure

fori=1...Ndo
for k=1...K do

e Sample noise samples {z!,...,zM} ~ p,(2)

e Sample examples {x!,... x™} from pqata(X).
e Update the discriminator Dy, :

1 ¢ i i
04 = 04 —0gVo,— Z; [llog D (x) +log (1 - D (G (z)))] -
end for
e Sample noise samples {z!,...,z™} ~ p,(2).
e Update the generator Gy, :

1 ¢ ;
Og = 0 — 05V, — > log (1-D (G ().
i=1

end for 20



Problems (c. 2016)




Problems with GANs

e Vanishing gradients: the discriminator becomes "too good”
and the generator gradient vanishes.

e Non-Convergence: the generator and discriminator oscillate
without reaching an equilibrium.

e Mode Collapse: the generator distribution collapses to a
small set of examples.

e Mode Dropping: the generator distribution doesn’t fully
cover the data distribution.

21



Problems: Vanishing Gradients

e The minimax objective saturates when Dy, is close to perfect:

V(ed’ eg) - Epdata [Iog D‘gd (X)]"HEpz(z) [Iog (1 - D‘gd(Geg(z)))] :

e A non-saturating heuristic objective for the generator is

J(6Gs,) = ~Ep,(z) [log (Ds, (G, (2))) ] -

JG)

— Minimax

_15 4 — Non-saturating heuristic

— Maximum likelihood cost

—920 I I I I
0.0 0.2 0.4 0.6 0.8 1.0

D(G(2))

https://arxiv.org/abs/1701.00160 22



Problems: Addressing Vanishing Gradients

Solutions:

e Change Objectives: use the non-saturating heuristic
objective, maximume-likelihood cost, etc.

e Limit Discriminator: restrict the capacity of the
discriminator.

e Schedule Learning: try to balance training Dy, and Gy, .

23



Problems: Non-Convergence

Simultaneous gradient descent is not guaranteed to converge for
minimax objectives.

e Goodfellow et al. only showed convergence when updates are
made in the function space [2].

e The parameterization of Dy, and Gy, results in highly
non-convex objective.

e In practice, training tends to oscillate — updates “undo” each
other.

24



Problems: Addressing Non-Convergence

Solutions: Lots and lots of hacks!

6: Use Soft and Noisy Labels

Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then
replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for
example).

o Salimans et. al. 2016

make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator
7: DCGAN / Hybrid Models

* Use DCGAN when you can. It works!
« if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN

8: Use stability tricks from RL

Experience Replay

o Keep a replay buffer of past generations and occassionally show them

o Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
All stability tricks that work for deep deterministic policy gradients
See Pfau & Vinyals (2016)

9: Use the ADAM Optimizer

optim.Adam rules!
© See Radford et. al. 2015

Use SGD for discriminator and ADAM for generator

25
https://github.com/soumith/ganhacks



Problems: Mode Collapse and Mode Dropping

One Explanation: SGD may optimize the max-min objective
maxmin Ep,,., {log Doy (x)] + Ep,(z) [log (1 — D, (G, (2)))]
g

Intuition: the generator maps all z values to the X that is mostly
likely to fool the discriminator.

® - - -

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

https://arxiv.org/abs/1701.00160
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A Possible Solution




A Possible Solution: Alternative Divergences

There are a large variety of divergence measures for distributions:

o f-Divergences: (e.g. Jensen-Shannon, Kullback-Leibler)

or (P110) = [ q(x)f(’;g;)dx

e GANs [2], f-GANs [7], and more.
e Integral Probability Metrics: (e.g. Earth Movers Distance,

| e /fdQ‘

e Wasserstein GANs [1], Fisher GANs [6], Sobolev GANSs [5] and
more.

Maximum Mean Discrepancy)

vF (P [|Q) = sup
feF

27



A Possible Solution: Wasserstein GANs

Wasserstein GANs: Strong theory and excellent empirical results.

e “In no experiment did we see evidence of mode collapse for
the WGAN algorithm.” [1]

1.0
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’ — GAN Discriminator
——  WGAN Critic
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8 6 —4 -2 0 2 4 6 8
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Summary




Recap:

e GANs are a class of density-free generative models with
(mostly) unrestricted generator functions.

e Introducing adversial discriminator networks allows GANs to
learn by minimizing the Jensen-Shannon divergence.

e Concurrently learning the generator and discriminator is
challenging due to

e Vanishing Gradients,
e Non-convergence due to oscilliation
e Mode collapse and mode dropping.

e A variety of alternative objective functions are being proposed.

29



Agknowledgements and References

There are lots of excellent references on GANs:

e Sebastian Nowozin's presentation at MLSS 2018.
e NIPS 2016 tutorial on GANs by lan Goodfellow.

e A nice explanation of Wasserstein GANs by Alex Irpan.
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https://github.com/nowozin/mlss2018-madrid-gan
https://arxiv.org/abs/1701.00160
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html

Bonus: Optimal Discriminators Cont.

The integrand

h(D(x)) = Pdata(x) log D(x) + pg(x) log(1 — D(x))

is concave for D(x) € (0,1). We take the derivative and compute
a stationary point in the domain:

dh(D(x)) _ Pdata(X) _ pg(x)
OD(x D(x) 1 — D(x)
=

o Pdata (X)
D) = ) + pg(0)

=0

This minimizes the integrand over the domain of the discriminator,
completing the proof.
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