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Generative Adversial Networks

“Two imaginary celebrities that were dreamed up by a random

number generator.”

https://research.nvidia.com/publication/2017-10 Progressive-Growing-of
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Why care about GANs?

Why to spend your limited time learning about GANs:

• GANs are achieving state-of-the-art results in a large variety

of image generation tasks.

• There’s been a veritable explosion in GAN publications over

the last few years – many people are very excited!

• GANs are stimulating new theoretical interest in min-max

optimization problems and “smooth games”.
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Why care about GANs: Hyper-realistic Image Generation

StyleGAN: image generatation with hierarchical style transfer [3].

https://arxiv.org/abs/1812.04948 4



Why care about GANs: Conditionally Generative Models

Conditional GANs: high-resolution image synthesis via semantic

labeling [8].

Input: Segmentation Output: Synthesized Image

https://research.nvidia.com/publication/2017-12 High-Resolution-Image-Synthesis
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Why care about GANs: Image Super Resolution

SRGAN: Photo-realistic super-resolution [4].

Bicubic Interp. SRGAN Original Image

https://arxiv.org/abs/1609.04802
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Why care about GANs: Publications

Approximately 500 papers GAN papers as of September 2018!

See https://github.com/hindupuravinash/the-gan-zoo for the exhaustive list of papers.

Image Credit: https://github.com/bgavran.
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Generative Models



Generative Modeling

Generative Models estimate the probabilistic process that

generated a set of observations D.

• D =
{(

xi , yi
)}n

i=1
: supervised generative models learn the

joint distribution p(xi , yi ), often to compute p(yi | xi ).

• D =
{

xi
}n
i=1

: unsupervised generative models learn the
distribution of D for clustering, sampling, etc. We can:

• directly estimate p(xi ),

• introducing latents yi and estimate p(xi , yi ).
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Generative Modeling: Unsupervised Parametric Approaches

• Direct Estimation: Choose a parameterized family p(x | θ)

and learn θ by maximizing the log-likelihood

θ∗ = argmax θ

n∑
i=1

log p(xi | θ).

• Latent Variable Models: Define a joint distribution

p(x, y | θ) and learn θ by maximizing the log-marginal

likelihood

θ∗ = argmax θ

n∑
i=1

log

∫
zi
p(xi , zi | θ)dz.

Both approaches require that p(x | θ) is easy to evaluate.
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Generative Modeling: Models for (Very) Complex Data

How can we learn such models for very complex data?

https://www.researchgate.net/figure/Heterogeneousness-and-diversity-of-the-CIFAR-10-entries-in-their-10-

image-categories-The fig1 322148855
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Generative Modeling: Normalizing Flows and VAEs

Design parameterized densities with huge capacity!

• Normalizing flows: sequence of non-linear transformations to

a simple distribution pz(z)

p(x | θ0:k) = pz(z) where z = f −1
θk
◦ · · · ◦ f −1

θ1
◦ f −1

θ0
(x) .

f −1
θj

must be invertible with tractable log-det. Jacobians.

• VAEs: latent-variable models where inference networks

specify parameters

p(x, y | θ) = p(x | fθ(y))py(y).

The marginal likelihood is maximized via the ELBO.
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GANs



GANs: Density-Free Models

Generative Adversial Networks (GANs) instead use an

unrestricted generator Gθg (z) such that

p(x | θg ) = pz({z}) where {z} = G−1
θg

(x).

• Problem: the inverse image of Gθg (z) may be huge!

• Problem: it’s likely intractable to preserve volume through

G (z; θg ).

So, we can’t evaluate p(x | θg ) and we can’t learn θg by maximum

likelihood.
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GANs: Discriminators

GANs learn by comparing model samples with examples from D.

• Sampling from the generator is easy:

x̂ = Gθg (ẑ), where ẑ ∼ pz(z).

• Given a sample x̂, a discriminator tries to distinguish it from

true examples:

D(x) = Pr (x ∼ pdata) .

• The discriminator “supervises” the generator network.
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GANs: Generator + Descriminator

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-

training-upc-2016
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GANs: Goodfellow et al. (2014)

• Let z ∈ Rm and pz(z) be a simple base distribution.

• The generator Gθg (z) : Rm → D̃ is a deep neural network.

• D̃ is the manifold of generated examples.

• The discriminator Dθd (x) : D ∪ D̃ → (0, 1) is also a deep

neural network.

https://arxiv.org/abs/1511.06434
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GANs: Saddle-Point Optimization

Saddle-Point Optimization: learn Gθg (z) and Dθd (x) jointly via

the objective V (θd , θg ):

min
θg

max
θd

Epdata
[logDθd (x)]︸ ︷︷ ︸

likelihood of true data

+Epz(z)

[
log
(
1− Dθd (Gθg (z))

)]︸ ︷︷ ︸
likelihood of generated data
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GANs: Optimal Discriminators

Claim: Given Gθg defining an implicit distribution pg = p(x | θg ),

the optimal descriminator is

D∗(x) =
pdata(x)

pdata(x) + pg(x)
.

Proof Sketch:

V (θd , θg ) =

∫
D
pdata(x) logD(x)dx +

∫
D̃
p(z) log(1− D(Gθg (z)))dz

=

∫
D∪D̃

pdata(x) logD(x) + pg (x) log(1− D(x))dx

Maximizing the integrand for all x is sufficient and gives the result

(see bonus slides).

Previous Slide: https://commons.wikimedia.org/wiki/File:Saddle point.svg
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GANs: Jensen-Shannon Divergence and Optimal Generators

Given an optimal discriminator D∗(x), the generator objective is

C (θg ) = Epdata

[
logD∗θd (x)

]
+ Epg (x)

[
log
(
1− D∗θd (x)

)]

= Epdata

[
log

pdata(x)

pdata(x) + pg(x)

]
+ Epg (x)

[
log

pg (x)

pdata(x) + pg(x)

]

∝ 1

2
KL

(
pdata

∣∣∣∣∣∣∣∣(pdata + pg )

2

)
+

1

2
KL

(
pg

∣∣∣∣∣∣∣∣(pdata + pg )

2

)
︸ ︷︷ ︸

Jensen-Shannon Divergence

C (θg ) achives its global minimum at pg = pdata given an optimal

discriminator!
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GANs: Learning Generators and Discriminators

Putting these results to use in practice:

• High-capacity discriminators Dθd approximate the

Jensen-Shannon divergence when close to global maximum.

• Dθd is a “differentiable program”.

• We can use Dθd to learn Gθg with our favourite gradient

descent method.

https://arxiv.org/abs/1511.06434
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GANs: Training Procedure

for i = 1 . . .N do

for k = 1 . . .K do

• Sample noise samples {z1, . . . , zm} ∼ pz(z)

• Sample examples {x1, . . . , xm} from pdata(x).

• Update the discriminator Dθd :

θd = θd−αd∇θd

1

m

m∑
i=1

[
logD

(
xi
)

+ log
(
1− D

(
G
(
zi
)))]

.

end for

• Sample noise samples {z1, . . . , zm} ∼ pz(z).

• Update the generator Gθg :

θg = θg − αg∇θg

1

m

m∑
i=1

log
(
1− D

(
G
(
zi
)))

.

end for 20
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Problems with GANs

• Vanishing gradients: the discriminator becomes ”too good”

and the generator gradient vanishes.

• Non-Convergence: the generator and discriminator oscillate

without reaching an equilibrium.

• Mode Collapse: the generator distribution collapses to a

small set of examples.

• Mode Dropping: the generator distribution doesn’t fully

cover the data distribution.
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Problems: Vanishing Gradients

• The minimax objective saturates when Dθd is close to perfect:

V (θd , θg ) = Epdata
[logDθd (x)]+Epz(z)

[
log
(
1− Dθd (Gθg (z))

)]
.

• A non-saturating heuristic objective for the generator is

J(Gθg ) = −Epz(z)

[
log
(
Dθd (Gθg (z))

)]
.

https://arxiv.org/abs/1701.00160 22



Problems: Addressing Vanishing Gradients

Solutions:

• Change Objectives: use the non-saturating heuristic

objective, maximum-likelihood cost, etc.

• Limit Discriminator: restrict the capacity of the

discriminator.

• Schedule Learning: try to balance training Dθd and Gθg .

23



Problems: Non-Convergence

Simultaneous gradient descent is not guaranteed to converge for

minimax objectives.

• Goodfellow et al. only showed convergence when updates are

made in the function space [2].

• The parameterization of Dθd and Gθg results in highly

non-convex objective.

• In practice, training tends to oscillate – updates “undo” each

other.
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Problems: Addressing Non-Convergence

Solutions: Lots and lots of hacks!

https://github.com/soumith/ganhacks
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Problems: Mode Collapse and Mode Dropping

One Explanation: SGD may optimize the max-min objective

max
θd

min
θg

Epdata
[logDθd (x)] + Epz(z)

[
log
(
1− Dθd (Gθg (z))

)]
Intuition: the generator maps all z values to the x̂ that is mostly

likely to fool the discriminator.

https://arxiv.org/abs/1701.00160
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A Possible Solution



A Possible Solution: Alternative Divergences

There are a large variety of divergence measures for distributions:

• f-Divergences: (e.g. Jensen-Shannon, Kullback-Leibler)

Df (P ||Q) =

∫
χ
q(x)f (

p(x)

q(x)
)dx

• GANs [2], f-GANs [7], and more.

• Integral Probability Metrics: (e.g. Earth Movers Distance,

Maximum Mean Discrepancy)

γF (P ||Q) = sup
f ∈F

∣∣∣∣ ∫ fdP −
∫

fdQ

∣∣∣∣
• Wasserstein GANs [1], Fisher GANs [6], Sobolev GANs [5] and

more.
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A Possible Solution: Wasserstein GANs

Wasserstein GANs: Strong theory and excellent empirical results.

• “In no experiment did we see evidence of mode collapse for

the WGAN algorithm.” [1]

https://arxiv.org/abs/1701.07875
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Summary



Summary

Recap:

• GANs are a class of density-free generative models with

(mostly) unrestricted generator functions.

• Introducing adversial discriminator networks allows GANs to

learn by minimizing the Jensen-Shannon divergence.

• Concurrently learning the generator and discriminator is
challenging due to

• Vanishing Gradients,

• Non-convergence due to oscilliation

• Mode collapse and mode dropping.

• A variety of alternative objective functions are being proposed.
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Agknowledgements and References

There are lots of excellent references on GANs:

• Sebastian Nowozin’s presentation at MLSS 2018.

• NIPS 2016 tutorial on GANs by Ian Goodfellow.

• A nice explanation of Wasserstein GANs by Alex Irpan.
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Bonus: Optimal Discriminators Cont.

The integrand

h(D(x)) = pdata(x) logD(x) + pg (x) log(1− D(x))

is concave for D(x) ∈ (0, 1). We take the derivative and compute

a stationary point in the domain:

∂h(D(x))

∂D(x)
=

pdata(x)

D(x)
− pg (x)

1− D(x)
= 0

⇒ D(x) =
pdata(x)

pdata(x) + pg(x)
.

This minimizes the integrand over the domain of the discriminator,

completing the proof.
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