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The correctness of many algorithms and data structures depends on reachability properties, that is, on the

existence of chains of references between objects in the heap. Reasoning about reachability is difficult for

two main reasons. First, any heap modification may affect an unbounded number of reference chains, which

complicates modular verification, in particular, framing. Second, general graph reachability is not supported

by first-order SMT solvers, which impedes automatic verification.

In this paper, we present a modular specification and verification technique for reachability properties in

separation logic. For each method, we specify reachability only locally within the fragment of the heap on

which the method operates. We identify relative convexity, a novel relation between the heap fragments of a

client and a callee, which enables (first-order) reachability framing, that is, extending reachability properties

from the heap fragment of a callee to the larger fragment of its client, enabling precise procedure-modular

reasoning. Our technique supports practically important heap structures, namely acyclic graphs with a

bounded outdegree as well as (potentially cyclic) graphs with at most one path (modulo cycles) between each

pair of nodes. The integration into separation logic allows us to reason about reachability and other properties

in a uniform way, to verify concurrent programs, and to automate our technique via existing separation logic

verifiers. We demonstrate that our verification technique is amenable to SMT-based verification by encoding a

number of benchmark examples into the Viper verification infrastructure.
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1 INTRODUCTION
Separation logic [Reynolds 2002] has greatly simplified the verification of basic heap data structures

such as lists and trees by leveraging the disjointness of sub-heaps to reason about the effects of

heap modifications. However, verifying data structures that permit unbounded sharing remains

challenging. Their correctness often depends on heap reachability properties, that is, the existence

of paths of references between objects. For instance, the path compression of union-find needs to

preserve the reachability of the root object, the termination of heap traversals might rely on the
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absence of cyclic paths, and the invariant of a garbage collector may prescribe that each object is

reachable from the list of allocated objects or the free-list, but not from both.

Reasoning about reachability properties is difficult for two main reasons. (1) Modularity: reacha-

bility is inherently a non-local property. Any heap modification may affect an unbounded number

of heap paths, which complicates framing, that is, proving modularly that a heap update or method

call does not affect a given reachability property. (2) Automation: general graph reachability is not

supported by SMT solvers, which power most automatic verification tools.

Existingwork addresses these challenges typically by supporting only certain kinds of reachability

properties or certain classes of data structures. For instance, Itzhaky et al. [2014] present a modular

verification technique for reachability properties of a broad class of linked-list programs, but do not

support structures that can have more than one outgoing reference per object. Such structures may

contain an arbitrary number of alternative paths between two objects, and maintaining reachability

information via first-order formulas becomes infeasible. Flows [Krishna et al. 2018] is a technique

providing local reasoning for updates to subgraphs which preserve properties such as reachability,

e.g., changes to a subgraph which neither add nor remove paths between nodes in its boundary.

However, flows do not provide analogous means for local reasoning about methods which are

intended to change these paths (e.g., a function which connects two subgraphs).

This paper presents a modular verification technique for general heap reachability properties

that supports both acyclic data structures with a bounded number of outgoing references per object

(for instance, DAG structures such as BDDs [Akers Jr. 1978]) and (potentially cyclic) 0–1-path

graphs, that is, graphs that contain at most one path (modulo cycles) between each pair of objects

(such as a ring buffer). Our technique is integrated into separation logic, which allows us to reason

about reachability and other properties in a uniform way, to verify concurrent programs, and to

automate our technique via existing separation logic verifiers. Our technique enables modular

reasoning by specifying reachability properties locally within the memory footprint of a method

rather than in the entire heap. A novel form of reachability framing allows one to extend the

reachability properties guaranteed by a callee method to the (larger) footprint of its client. As a

result, each method can be verified modularly, without considering the heap outside its footprint,

the implementations of other methods, or other threads.

Contributions. Our paper makes the following technical contributions:

• Specification:We introduce a specification technique for reachability properties in the context

of separation logic. It enables modular verification, even for concurrent programs (Sec. 2).

• Verification: We present a novel verification technique for reachability properties. In particu-

lar, we identify relative convexity of method footprints as a property that enables precise

reachability framing and procedure-modular reasoning. Our technique goes beyond prior

work [Itzhaky et al. 2014] by supporting all acyclic graphs (Sec. 3).

• Cyclic graphs: We extend our verification technique to cyclic 0–1-path graphs. While reach-

ability framing carries over from the acyclic case, cyclic graphs require a more elaborate

machinery to handle reference field updates (Sec. 4).

• Automation: We demonstrate that our verification technique is amenable to SMT-based

verification by encoding a number of benchmark examples into the Viper verification infras-

tructure [Müller et al. 2016b] (Sec. 5).

2 SPECIFICATION TECHNIQUE
In this section, we illustrate our technique using a DAG data structure with node type Node and

fields left and right. Method merge in Fig. 1 takes as arguments references l and r to two nodes of

disjoint DAGs and attaches r as descendant of l. It returns link, a node of the first DAG, to which r
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method merge(l: Node, r: Node,

g: Graph, ldag: Graph, rdag: Graph)

returns link: Node

requires g = ldag ⊎ rdag ∧ l ∈ ldag ∧ r ∈ rdag

∀x ,y ∈ g • ¬E(g,x ,y) ∨ ¬P(g,y,x)

∀n • n ∈ ldag ⇔ P(g, l,n)

∀n • n ∈ rdag ⇔ P(g, r,n)

ensures link ∈ ldag

∀x ,y ∈ g • ¬E(g,x ,y) ∨ ¬P(g,y,x)

∀x ,y • E(g,x ,y) ⇐⇒ E0(g,x ,y) ∨ x = link ∧ y = r

∀x ,y • P(g,x ,y) ⇐⇒ P0(g,x ,y) ∨ P0(g,x , link) ∧ P0(g, r,y)

{

if (l.right != null) {

var nldag := sub(g, ldag, l.right)

link := merge(l.right, r, nldag ⊎ rdag, nldag, rdag)

} else {

l.right := r

link := l

}

}

// ghost parameters

// updated node

// define new ghost parameter

// acyclic invariant

// acyclic invariant

Fig. 1. An example program and specification.Method merge attaches theDAG rooted in r to a node
of the DAG rooted in l, and returns that node. We use the edge predicate E and the path predicate
P to specify reachability properties, within a set of objects g. Each specification line is a separate
conjunct. The footprint g is closed due to the equivalences in the last two preconditions.

was attached. The postcondition ensures that exactly one connection was created (via an edge from

link to the root of the second DAG, r), and that heap paths exist in the post-state either if they

existed in the pre-state or were connected by the new edge, (link, r). We explain the specification

of merge in full detail in the remainder of this section.

2.1 Footprints
Separation logics associate an access permission with each memory location. Access permissions

are held by method executions and may be transferred between methods upon calls and returns;

they can be thought of as additional program state used for reasoning (ghost state). A heap location

can be accessed only while the corresponding permission is held. The set of locations that a

method may access is called its footprint. Due to (de)allocation or concurrency, the footprint of a

method may change during its execution. A method’s precondition specifies which permissions to

transfer on calling the method. The initial footprint of a method contains exactly the locations for

which its precondition requires permission. Conversely, the method postcondition specifies which

permissions to return to the client when the method terminates.

The footprint of any method operating on linked heap structures, e.g., lists and DAGs, contains

a statically unknown number of memory locations. To provide a convenient way to refer to a

method’s footprint, we equip each method with a distinct ghost parameter g: Graph to denote its

footprint. For simplicity, instead of specifying the footprint as a set of object-field pairs, we let Graph

denote sets of non-null objects and keep the fields implicit when they are clear from the context.
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The set stored in g is updated whenever the footprint changes, for instance, due to allocation. In

order to be able to refer to the final footprint of a method execution in its postcondition, we make

g an in-out parameter. For simplicity, we assume in the following that the footprint of a method

remains unchanged, s.t. the value of g is constant; an extension is straightforward.

We equip each method with implicit pre- and postconditions to require and ensure permissions

to all locations in the footprint:

requires ∀n ∈ g • acc(n.left) ∗ acc(n.right)

ensures ∀n ∈ g • acc(n.left) ∗ acc(n.right)

Here, acc(x.f ) denotes an access permission to the memory location for field f of object x (like

x . f 7→_ in traditional separation logic [Reynolds 2002]), ∗ denotes separating conjunction, and

the universal quantifier is an iterated separating conjunction (ISC) [Müller et al. 2016a; Reynolds

2002], which (here) denotes permissions to all field locations of objects in the footprint g. In

contrast to using recursive definitions to specify unbounded heap structures (e.g., separation logic

predicates [Parkinson and Bierman 2005; Yang 2001b]), ISC permits arbitrary sharing within the

set g (many field values may alias the same node) and does not prescribe a traversal order within

the data structure. We assume for simplicity that a method specification expresses all required and

returned permissions via these implicit contracts with respect to g, but it is easy to also support

other permission specifications, e.g., points-to predicates and recursive predicates.

In our example, we use two additional ghost parameters ldag and rdag to allow our specification

to simply denote the sets of objects constituting the first and second DAG, respectively. The first

precondition expresses that the method footprint is the disjoint union of these two DAGs.

2.2 Local Reachability
Reasoning in a separation logic has the key advantage that one can modularly verify properties of

a method, and reuse this verification for all calling contexts (and concurrently-running threads).

Enforcing that properties verified for the method depend only on its footprint, guarantees that

they hold independently of the context; we refer to these as the local properties of the footprint.
However, classical reachability in the heap is not a local property of this form. Hence, combining

reachability and separation logic requires us to refine the notion of reachability to one that is local,

as we explain next.

Our technique provides two predicates to express reachability properties in specifications. We

generalize classical reachability by adding an extra footprint parameter, g to make the property

local. The edge predicate EF (g,x ,y) expresses that object x is in the set g and has a field from the

set of fields F storing a non-null object y (which need not be in g). The path predicate P denotes, for

a fixed g and F , the reflexive, transitive closure of E, that is, PF (g,x ,y) expresses that either x = y,
or there is a path of field references from x to y s.t. all objects on the path (except possibly y) are in
g and all fields are in F ; in particular P may denote reachability via multiple fields. We omit the

parameter F when the set of fields is clear from the context; for instance, in our example, F consists

of the (only) reference-typed fields left and right. We say that a path x . . .y is g-local if P(g,x ,y)
holds. Both our edge and path predicates are defined over a mathematical abstraction of the current

heap graph (cf. Sec. 3.1), and are pure in the separation logic sense, allowing us to freely repeat

them in specifications.

Our edge and path predicates enable rich reachability specifications within a method’s footprint.

The preconditions of merge express that the method footprint is acyclic and closed under the edge

relation (due to the second and the last two preconditions), and that ldag and rdag contain exactly

the objects reachable from l and r, resp. In general, method specifications are checked to only

employ edge and path predicates whose first parameter is the method’s footprint or a subset thereof.
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frame nldag rdag

l l.right link r

Fig. 2. An example scenario of running merge on two DAGs rooted in l and r. Small circles corre-
spond to heap objects; solid arrows represent fields initialized in the pre-state that are unchanged;
the dashed arrow represents the new heap edge (created in the post-state by initializing a field).
The frame of the recursive call is surrounded with blue; the footprint is surrounded with red.

Method postconditions typically express how reachability changes within this footprint. In

our example, the first postcondition specifies that the result link is part of the first DAG and its

right-field was initially null. The old-expression allows postconditions to refer to pre-state values;

we write E0(. . .) to abbreviate old(E(. . .)), and analogously for P. We can freely mix reachability

specifications with specifications in terms of the program heap (e.g., the link.right expression).

The other postconditions illustrate how we can specify the new edge and path relations in terms

of their originals, summarizing the method’s effect. In particular, the last postcondition expresses

that an object x reaches an object y in the post-state iff it reached y already in the pre-state, or if x
reaches link in the first DAG and y is in the second DAG. Our method specification leaves link

underspecified, whereas the implementation chooses the rightmost node in the first DAG. We could

easily provide a less abstract specification by using path predicates over (only) the right-field.

The recursive call in method merge needs to supply values for the three ghost parameters. We

construct these values using a predefined function sub(g:Graph,h:Graph,root:Node), which yields

the subset of h reachable from the node root via g-local paths. The properties known for the resulting

set are summarized by the following heap-dependent function [Müller et al. 2016b] declaration:
1

function sub(g: Graph, h: Graph, root: Node): Graph

requires root ∈ h ∧ h ⊆ g

ensures result ⊆ h ∧ root ∈ result ∧ CLOSEDh(result) ∧ ∀n • n ∈ result ⇔ P(g, root,n)

where result refers to the result value of the function; CLOSEDh(r) denotes that an edge that exits r

must not end in h:

CLOSEDh(r) ..⇐⇒ ∀x ∈ r,y • E(r,x ,y) =⇒ y < h\r (1)

Note that CLOSEDh(r) is permissive enough to allow selecting new footprints for method calls

even if the current footprint is open, i.e., if there exist edges that exits the current footprint. To
specify that a subheap is closed in the global heap, we would use a stronger condition:

CLOSED(g) ..⇐⇒ ∀x ∈ g,y < g • ¬E(g,x ,y) (2)

2.3 Verification Challenges
The specification ingredients presented above allow us to combine separation logic specification

with reachability. However, practical verification of these specifications requires the solution of three

challenges. First, we must handle direct updates to the program heap, and model their effects on

1
Unlike methods, functions in our language are guaranteed to be side-effect free. Hence, we do not distinguish between P
and P0 in the postcondition of sub (similar for E and E0).
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our E and P predicates. SMT solvers cannot efficiently automate reasoning about a direct definition

of P as transitive closure, but it has been shown that a first-order approximation technique can

be efficiently used for this purpose [Dong and Su 1995; Lev-Ami et al. 2009]. Second, and most

challenging, we require a technique to deduce reachability for a method call’s client from what is

known about its callee’s footprint: a problem we call reachability framing. This is necessary, for
example, when reasoning about the recursive call to merge in our example of Fig. 1; we must relate

local reachability information in the client’s footprint to that of its callee. Finally, we require a

modeling of our verification technique in an automated tool; we aim for proof obligations ultimately

amenable to first-order SMT solvers, which necessitates effective quantifier instantiation strategies.

3 REACHABILITY IN ACYCLIC STRUCTURES
In this section, we explain the core ingredients of our verification technique for combining reach-

ability information with separation logic style reasoning. Reasoning about a method starts with

assuming its precondition. The precondition provides permissions to access the objects (i.e., nodes)

in its footprint and the reachability constraints that guarantee the existence or the absence of heap

paths connecting some objects from the footprint. As the program performs modifications to some

parts of the heap, our goal is to determine a precise way of checking any (local) reachability query

(e.g., in the method’s postcondition) after these changes. Hence it is important to identify the paths

that were unchanged and those that were created or destroyed by each operation.

Heap modifications are performed either directly by field updates or indirectly through method

calls. In the former case, the reachability properties known to hold before the update need to be

adjusted to reflect the change of heap references (Sec. 3.2). For a field update, the local reachability

properties before and after the update can be expressed within the same (enclosing method’s)

footprint. The situation is more complex for method calls (Sec. 3.3). To determine the reachability

properties after a call (the reachability framing problem), one needs to combine reachability

properties before the call that are known to be outside of the call’s footprint (hence, unaffected by

the call) with reachability properties guaranteed by the callee method (as expressed in the callee’s

postcondition). These two sets of properties are expressed within the footprints of the client and

the callee, respectively. If these footprints are not equal, then the reachability properties guaranteed

by the callee need to be re-interpreted in the client’s footprint.

We present our techniques for tackling these challenges in the remainder of the paper. We

discuss how our reachability reasoning technique is integrated with separation logic in Sec. 3.1.

The technique for direct field updates discussed in Sec. 3.2 requires the current method’s footprint

to be acyclic; note that we generally permit arbitrary structures, including those with heap cycles,

outside of the footprint. However, our technique for method calls, and all of the formulas that we

present in Sec. 3.3, do not require acyclicity. Instead, we require and exploit relative convexity of

method footprints, a novel restriction that is strong enough to reduce the reachability framing

problem to first-order formulas tractable for SMT solvers, but permissive enough to embrace a

broad spectrum of challenging data structures. Sec. 4 explains how our technique can be extended

to potentially cyclic 0–1-path graphs.

3.1 Encoding of Edge and Path Predicates
Our specification technique supports reachability via the edge predicate E and the path predicate P.
In order to verify such specifications, we encode them into a flavor of separation logic and use an

existing verification tool to construct proofs in that logic. We use Implicit Dynamic Frames [Smans

et al. 2012] for this purpose, a variation of separation logic [Parkinson and Summers 2011] that

separates specifications of access permissions for memory locations from specifications of the

values stored in these locations. For instance, separation logic’s points-to predicate x . f 7→ v is
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specified in implicit dynamic frames as a conjunction of the access permission and the field content:

acc(x.f ) * x.f = v . This separation of permissions and value properties allows us to conveniently

express additional value properties, e.g., sortedness, in addition to reachability properties, without

having to define a new graph-abstraction that exposes the values of interest.

Our edge predicates could be defined directly, e.g., as (x . f1 = v ∨ x . f2 = v) for two fields f1 and
f2; conceptually, E is a first-order abstraction over this property, which may, in particular, be used

in the syntactic triggering patterns [Barrett et al. 2017; de Moura and Bjørner 2008; Detlefs et al.

2005; Moskal 2009] that the SMT solver requires to control quantifier instantiations (and which

cannot include logical operations such as ∨ above).

Unlike the edge predicate E, directly defining the path predicate P would compromise automation.

A definition would involve transitive closure, which is notoriously difficult to handle for SMT

solvers. Therefore, we take a different approach here. We leave the path predicate undefined and

axiomatize its essential properties, for instance, how it is affected by heap updates. We specify

these axioms over mathematical graphs and not directly over the heap-dependent edge and path

predicates. Therefore, our encoding first abstracts the heap within a footprint to a set of edges

(ordered pairs of nodes) and then expresses reachability over those. This abstraction is defined by a

predefined function called snapshot. For simplicity, we define snapshot using the notation of our

source language, but it is only used internally by our encoding. In particular, the function implicitly

depends on the heap and requires permissions to all objects in its footprint g:

function snapshotF (g: Graph): Edgeset

ensures ∀x ,y • x ∈ g ∧ y , null ∧ (x . f1 = y ∨ . . . ∨ x . fn = y) ⇐⇒ (x ,y) ∈ result

Here, Edgeset is the type of sets of pairs of nodes, and F = { f1, . . . , fn}; we omit this parameter when

it is clear from the context. The postcondition can be thought of as an axiom over an uninterpreted

function that defines its semantics. Note that snapshot also collapses edges between two objects

for different field names (duplicate edges are not needed to keep track of reachability).

This abstraction function lets us define the edge predicate in a straightforward way:

EF (g,x ,y) ..⇐⇒ (x ,y) ∈ snapshotF (g) (3)

To avoid the issues with transitive closure mentioned above, we do not define the path predicate

directly, but axiomatize the properties we need for verification. In fact, we define the path relation

in terms of a function P̂ over graphs and then axiomatize the latter, state-independent function:

PF (g,x ,y) ..⇐⇒ P̂(snapshotF (g),x ,y) (4)

For this axiomatization, we carefully control the quantifier instantiation performed by SMT solvers

to avoid diverging proof search. For instance, we include the axiom below, but let the solver

instantiate it only to a fixed depth of unrolling P̂ [Leino and Monahan 2009].

P̂(G,x ,y) ..⇐⇒ x = y ∨ ∃z • (x , z) ∈ G ∧ P̂(G, z,y) (5)

3.2 Field Updates
A field update x.f := v may affect reachability properties in the heap and, thus, both edge and

path predicates. Since our encoding contains a precise definition of the edge predicate in terms of

the underlying heap (via (3) and the definition of snapshot), the verifier can determine which edge

predicates hold after a field update.

However, determining the effect of a single field update on the path relation is more intricate as

its the axiomatization is not sufficient to determine which predicates hold after a field assignment

(e.g., because this reasoning step would require induction proofs, which SMT solvers cannot find

automatically). We solve this problem by adapting an existing approach: for acyclic graphs (which
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x u v y

Fig. 3. The reachability update problem in presence of alternative paths. Concrete heap edges are
represented by straight arrows, while (possibly, zero-length) heap paths are represented by wavy
arrows. The upper path x . . .y depends on the edge (u,v); removing this edge would destroy the
path, but x may still reach y after deleting (u,v), here, via the lower path. Alternative paths may
occur in our setting because we permit multiple reference fields per object.

we focus on in this section), one can provide first-order update formulas that express precisely how

adding or deleting a single edge affects reachability [Dong and Su 1995; Lev-Ami et al. 2009]. For

example, the following update formula characterizes the effect of adding an edge between nodes a
and b (e.g., by initializing a field of a):

∀x ,y • PF (g,x ,y) ⇐⇒ PF
0
(g,x ,y) ∨ PF

0
(g,x ,a) ∧ PF

0
(g,b,y) (6)

where P and P0 denote the path predicate in the states before and after the update.

The update formula for removing an edge is more complex. Since we allow for an arbitrary

out-degree of nodes (via multiple reference fields), it is possible for there to exist multiple paths

between two different nodes (Fig. 3). When adding an edge between two nodes, the new P relation

can be updated relatively simply, e.g., via (6); no paths have been lost, and only paths connected

by this new edge are created. On removal of an edge, no paths are created, but, for node pairs

previously connected by a path using this edge, it is unclear whether or not they belong to the new

P relation, due to the possibility of alternative paths. This entails a more-complex update formula

for the edge-removal case (due to Dong and Su [1995]); see [Ter-Gabrielyan et al. 2019a, App. A]

for details. A general field update entails removing and then adding an edge, as we demonstrate for

our merge example in Fig. 7.

Our verification technique rewrites each field update x.f := v with a method call to an internal

update method with the same footprint g as for the current method. The postconditions of update

make the reachability update formulas available to the SMT solver. This way, we assume the update

formulas for each field set F that is used in the current method specification and that contains the

updated field f (reachability for other field sets is not affected by the update).

The else-branch in the example from Fig. 1 modifies the heap through a single field update.

The second postcondition describes the effect on the edge relation; it follows directly from the

definition of the edge predicate. The third postcondition, about the path relation, is exactly the

update formula (6), with link and r for a and b, resp.

3.3 Method Calls and Relatively Convex Footprints
Update formulas allow us to precisely capture the effect of adding or removing individual edges,
which is sufficient to reason about field updates. However, reasoning modularly about method calls

requires us to determine the effect of multiple heap updates. According to the callee’s specification,

we can partition the footprint g of the client into the footprint h of the callee and the remainder f

(g = f ⊎ h). This remainder is the frame of the call and cannot be modified by the callee method.

The postcondition of a callee method provides a specification of reachability information within its

footprint h. The challenge is to determine the effect of the call on reachability within the (generally

larger) footprint g of its client. For the edge relation, this extrapolation is straightforward:

∀x ∈ f ⊎ h,y • E(f ⊎ h,x ,y) ⇐⇒ E(f,x ,y) ∨ E(h,x ,y) (7)
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call(h)

P0(h)

P(h)

P0(f) = P(f)

P0(g)

(9)

P(g)

(9)

h ≺ g (11)

h ≺ g (12)

(15)

(8)

Fig. 4. The flow of reachability information in the presence of method calls. Reachability informa-
tion in the client’s footprint g = f⊎ h is split into reachability information within h and f before the
call, the effect of the call on h is accounted for, and then the information is recombined to paths in
g. The numbers in parentheses indicate ingredients of our technique explained in this section.

In separation logic, a method may modify any heap edges that originate in its footprint; hence, the

predicate E(h,x ,y) implies that x is in the footprint h and E(f,x ,y) implies that x is in the frame f.

We refer to edges that cross the boundary of the footprint as cut points: if x ∈ h,y < h, then (x ,y) is
an exit point of the footprint, and if x < h,y ∈ h, then (x ,y) is an entry point into the footprint.

Unfortunately, a simple rule such as (7) does not exist for relating paths in f⊎h to those in f and h.
A path can span fields from both heap partitions, and, in general, could cross the boundary between

the two unboundedly many times. It is known that, in full generality, a first-order reachability

framing formula for our path predicate cannot exist (see e.g., [Itzhaky et al. 2014]). The key insight

behind our technique for handling method calls is that this intractable situation becomes tractable

if the footprint of the callee is relatively convex in the composed heap.

Definition 1 (Relatively Convex Footprints). In a given program state and for a given set of
reference fields F , footprint h defines a relatively convex sub-footprint of footprint g (written h ≺ g)
iff g = f ⊎ h for some footprint f, and no paths within g leave h and then return:

∀x ,y ∈ h,u ∈ f • ¬PF (g,x ,u) ∨ ¬PF (g,u,y)

We show, in the remainder of this section, how we exploit this property to enable precise, first-

order, and modular reasoning about reachability in presence of method calls. In particular, we are

able to make tractable the problem of framing reachability information when a method footprint h is

relatively convex in its client’s footprint g. This requirement is checked by our technique at the call

site, but is typically naturally the case. For example, any method operating on a recursively-defined

data type, its sub-structures or portions thereof (such as linked list segments), a strongly connected

component of a potentially-cyclic structure, or combinations of these will have a relatively convex

footprint. DAG traversals also have relatively convex footprints. For instance, the recursive call to

merge in our running example of Fig. 1 and the corresponding illustration in Fig. 2 demonstrate a

method call with a relatively convex footprint. Note that both acyclicity and relative convexity are

defined relatively to a field set F . Therefore, even operations on data structures with back-pointers

(such as parent-pointers in a tree) typically have relatively convex footprints as long as the path

predicates are defined in terms of only forward-references or only back-pointers.
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Fig. 5. No paths originating and ending inside a relatively convex footprint may go though nodes
of its frame. Therefore, the paths that originate in the frame may enter and exit the footprint at
most once. This gives five possibilities for a path to interact with a relatively convex footprint.

Method call overview. A high-level overview of our solution is illustrated in Fig. 4. We use P0 to
represent the paths before the call, and P for those afterwards. According to standard separation

logic reasoning, method calls are only allowed if the callee’s footprint h is a subset of the client’s

(g = f⊎ h, for some frame f). Under the additional requirement that h ≺ g, the technique we present

in this section shows how to decompose reachability information before the call (i.e., expressed in

terms of P0(g, . . .)) into paths in the callee’s footprint (P0(h, . . .)) and paths in the frame (P0(f, . . .)).
The callee’s specification is responsible for relating P(h, . . .) information to P0(h, . . .) information,

i.e., specifying how reachability changes within the callee’s footprint. Conversely, reachability

purely in the frame f cannot be changed by a call, since it does not have the permissions to do so.

Indeed, based on consideration of the permissions not passed to the method call, we know that the

following formula holds (which we call separation-logic framing):

∀x ∈ f,y • P(f,x ,y) ⇐⇒ P0(f,x ,y) (8)

Our technique then provides means of reconstructing reachability in the client’s footprint (P(g, . . .))
from the information we have after the call in terms of P(h, . . .) and P(f, . . .).

Path partitioning. The first key step of our solution is path partitioning. We exploit relative convexity

of the callee’s footprint to define formulas for soundly and precisely relating reachability in a client’s

footprint to reachability in the callee and its frame, and vice versa. Fig. 5 illustrates the possibilities

for a path in the client’s footprint g to interact with a relatively convex footprint h. We proceed by

analyzing Fig. 5 by cases, deriving formulas one of which must hold in each possible case.

Crucially, our relative convexity assumption h ≺ g guarantees that no paths x . . .y in g = f ⊎ h

enter or leave h more than once. We summarize the five cases for paths from x to y based on the

distribution of these nodes between the footprint, h, and the frame of the call, f: (i) x ,y ∈ h as is the

whole path, (ii) x ∈ f,y ∈ h; the path crosses the boundary once, (iii) x ∈ h,y ∈ f again crossing

once, (iv) x ,y ∈ f with a path entering and leaving h once, and (v) x ,y ∈ f with a path entirely in f.

Note that these cases are exhaustive for a path between x ,y ∈ g, due to our convexity restriction.

These five cases translate to the following formulas, allowing us to relate reachability in f ⊎ h

and reachability in the two subheaps f and h individually, which we call path partitioning formulas:
(i) ∀x ∈ h, y ∈ h • P(f ⊎ h,x ,y) ⇐⇒ P(h,x ,y)

(ii) ∀x ∈ f, y ∈ h • P(f ⊎ h,x ,y) ⇐⇒ ∃a ∈ h • P(f,x ,a) ∧ P(h,a,y)

(iii) ∀x ∈ h, y ∈ f • P(f ⊎ h,x ,y) ⇐⇒ ∃b ∈ f • P(h,x ,b) ∧ P(f,b,y)

(iv)–(v) ∀x ∈ f, y ∈ f • P(f ⊎ h,x ,y) ⇐⇒ P(f,x ,y) ∨

∃a ∈ h,b ∈ f • P(f,x ,a) ∧ P(h,a,b) ∧ P(f,b,y)

(9)

These formulas can be used left-to-right or right-to-left. In the former case, we obtain a canonical

means of decomposing information about paths in a composed footprint of the client into information
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u

y x

footprint

Fig. 6. The footprint (surroundedwith red) is relatively convex before amethod call, satisfying (11).
The heap edge created by the call is represented by a dashed arrow. The new edge (x ,u) is an exit
point of the footprint into the frame; since its end nodeu reaches the footprint via some pathu . . .y,
adding (x ,u) violates the relative convexity property of the footprint (12).

about paths in the callee’s footprint and paths in the frame. In the latter case, we obtain means of

reassembling reachability information in the composed footprint from that in the constituent parts.

In practice, we add separate assume statements for both directions of each formula, so that we can

clearly specify to the underlying SMT solver when to instantiate the formula in which direction.

It is due to our relative convexity assumption that there exist simple first-order path partitioning

formulas (9). Without this assumption, the number of cut points of h could be arbitrary, and
localization of reachability information would require either considering an unbounded set of cases

or higher-order reasoning, preventing automatic verification.

For simplicity, formulas (9) cover only the cases x ,y ∈ g: however, paths that are local to a

particular footprint may leave that footprint by a single edge (and so case (i) above, for example,

does not provide information about such paths in h). The following formulas reduce the case y < g
to the cases already covered by introducing a node u ∈ g with an edge to y:

∀x ∈ h,y < h • P(h,x ,y) ⇐⇒ ∃u ∈ h • P(h,x ,u) ∧ E(h,u,y)
∀x ∈ f,y < f • P(f,x ,y) ⇐⇒ ∃u ∈ f • P(f,x ,u) ∧ E(f,u,y)

(10)

Checking relative convexity of footprints. In terms of reasoning about calls, we emit assume statements

for our path partitioning formulas both before and after a method call (to decompose paths into

those matching the callee’s footprint and frame before the call, and to reconstruct information from

these sources back to the client’s footprint, afterwards; cf. Fig. 4). In both cases, before assuming our

path-partitioning formulas, we first check that the footprint is relatively convex (since this property

justifies their soundness); as we show in Fig. 6, a method’s footprint could be relatively convex

before the call but non-convex in the client’s footprint afterwards. The two checks employed by our

technique must be expressed in slightly different terms. Before the call (and without yet emitting

our path-partitioning formulas) the g-local reachability information is available, and we directly

use the formula from Def. 1:

∀x ,y ∈ h,u ∈ f • ¬P(g,x ,u) ∨ ¬P(g,u,y) (11)

However, after the call we obtain the h-local reachability from the postcondition of the callee,

while the f-local reachability is preserved. We cannot use g-local reachability in the post-state of

the call; the aim of our path-partitioning formulas is to deduce information in this form, and these

are only justified after making the convexity check. Therefore, after the method call, we use the

following alternative formulation:

∀x ,y ∈ h,u ∈ f • ¬P(h,x ,u) ∨ ¬P(f,u,y) (12)

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 121. Publication date: October 2019.



121:12
A
rshavir

Ter-G
abrielyan,A

lexander
J.Sum

m
ers,and

Peter
M
üller

method merge(l: Node, r: Node,

g:Graph, ldag:Graph, rdag:Graph)

returns link: Node

requires ...

ensures ...

{

if (l.right != null) {

var nldag := sub(g, ldag, l.right)

link := merge(l.right, r,

nldag⊎rdag, nldag, rdag)

} else {

l.right := r

link := l

}

}

method merge(l: Ref, r: Ref,

g: Set[Ref], ldag: Set[Ref], rdag: Set[Ref])

returns link: Ref

requires ...

ensures ...

{

if (l.right != null) {

var nldag: Set[Ref] := sub(g, ldag, l.right)

var g1: Set[Ref] := nldag union rdag

DeduceRelationshipBetweenSubHeaps(g1, g)

var frame: Set[Ref] := g setminus g1

EnableFocusOnConvexSubHeap(g, g1)

EnableFocusOnFrame(g1, g, frame)

label l1

link := merge(l.right, r,

nldag union rdag, nldag, rdag)

label l2

EnableFocusOnConvexSubHeap(g, g1)

EnableFocus(g, frame)

ApplyConvexTCFraming(l1, l2, g1, g, frame)

} else {

if (r != l.right) {

if (l.right != null) unlinkDAG
{left,right}
right (g, l)

if (r != null) linkDAG
{left,right}
right (g, l, r) }

link := l }

}
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// Convert (1)⇄(2)

// (10), case i of (9)

// (10), (15)

// Pre-state of the call

// Post-state of the call

// (10), case i of (9)

// (1), (2)

// (7), (8), cases ii–iv of (9)

// (6)

// Sec. 3.2

Fig. 7. Encoding merge in Viper. Types are translated directly. The specifications (Sec. 2.1) are omitted for brevity. The reference field update is
translated via unlinkDAG, linkDAG (Sec. 3.2). The method call is augmented with local assumptions in the form of macros (lines starting with capital
letters), constraining the states l1, l2. The macros with infix Convex also check relative convexity of corresponding footprints (Sec. 3.3). The
complete encoding is part of the publicly available artifact [Ter-Gabrielyan et al. 2019b].
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Relating reachability information before and after a method call. Based solely on our assumption of

relatively convex footprints, we now have a rich set of formulas available for precisely relating

reachability information before and after a method call. To illustrate how our formulas can be used

in practice, we consider one of the verification conditions needed for verifying the postcondition in

Fig. 1 after the recursive call to merge. Concretely, we consider the following Hoare triple:{
l.right , null ∧ P0(g, r,n)

}
link := merge(l.right, r, h, ...)

{
P(g, l,n)

}
Here, g and h are the footprints of the client and the callee, resp., l and r are the roots of the left and

right DAGs, resp. (Fig. 2), and n is some node reachable from r in the pre-state; we omit the rest of

the arguments of merge for brevity. The condition l.right , null comes from the if statement in

Fig. 1 and holds before (and after) the recursive call; we enter this branch iff we have not yet found

the link node and must keep recursively traversing the current structure. We proceed with a proof

sketch for the postcondition of this Hoare triple. Other checks needed to verify the Hoare triple

include relative convexity checks (11) and (12), and the precondition check before the recursive

call; these require similar reasoning steps and are omitted for brevity.

The postcondition P(g, l,n) expresses the existence of a path l . . .n. We justify this postcondition

by showing the existence of a (single-edge) frame-local path l . . . l.right and an h-local path

l.right . . .n (where h is the footprint of the call). The former sub-path starts in l < h and ends in

l.right ∈ h (since h = nldag ⊎ rdag, where nldag was constructed via sub), and the latter sub-path

starts in l.right ∈ h and ends in n ∈ h (n ∈ rdag follows from the precondition P0(g, r,n) of
the Hoare triple and the last precondition of merge, while rdag ⊆ h because h = nldag ⊎ rdag).

The distribution of the starting and ending nodes of these sub-paths enables an instantiation of

(ii) from (9) with l, l.right, n for x , a, y, resp., reducing the overall proof goal to the two predicates
P(f, l, l.right) and P(h, l.right,n). First, since l.right , null, the former predicate can be justified

by (5) and the postcondition of snapshot. Second, we instantiate the last postcondition of merge

with l.right, n for x , y, resp. in order to reduce the latter predicate to P0(h, l.right, link) and
P0(h, r,n). Note that, since the path l.right . . . link starts in the root of nldag, the former predicate

is implied by the last postcondition of merge. We can justify the latter predicate, P0(h, r,n), with an

instantiation of (i) from (9) with r, n for x , y, resp., since (as we argued above) r,n ∈ h. □

3.4 Frame-Localized Reachability
The ingredients presented thus far form the core of our solution for handling method calls, but

are not yet sufficient to preserve reachability information in all cases, as we explain next. In some

cases, we need to be able to localize reachability information in the frame of the call (cf. the left
branch in Fig. 4). But precise frame-local reachability information cannot be obtained the same way

as footprint-local reachability because, unlike method footprints, our technique permits the frame

to be non-convex in the client’s footprint. For example, consider a call to a method that operates on

an acyclic list segment; the footprint of this call must be convex, while the frame would generally

be non-convex in the entire list. Since the issue is subtle, we illustrate how information can be lost

with a concrete example, and then show how to plug the gap.

The problematic scenario. The program in Fig. 8 consists of two methods: the client, joinAndModify,

and the callee, disconnectAll. This program2
concerns a particular shape of DAG structure, which

we call a hammock between two nodes. We say that a (closed) DAG h is a hammock between two

(distinct) nodes s and t iff it consists of all nodes reachable from its node s (called the source) that
reach its distinct node t (called the sink):

2
The essential property of the example in Fig. 8 is that the client method creates heap edges inside the footprint of the callee

(and not just in the frame of the call), whereas the callee destroys some of the paths in its footprint.
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method joinAndModify(g: Graph,

f: Graph, s1: Node, t1: Node,

h: Graph, s2: Node, t2: Node)

requires g = f ⊎ h ∧

HAMMOCKg (f, s1, t1) ∧ HAMMOCKg (h, s2, t2)
∧ s1.left = null ∧ t2.right = null

ensures P(g, s1, t1)

{ /* state 0 */ s1.left := s2; t2.right := t1
/* state 1 */ disconnectAll(h)

/* state 2 */ }

method disconnectAll(g: Graph)

ensures (∀x ,y ∈ g • P(g,x ,y) ⇔ x = y) ∧

∀x ∈ g,y < g • E(g,x ,y) ⇔ E0(g,x ,y)

Themethod disconnectAll destroys all non-trivial
paths inside h (exemplifying a possible destruc-
tive update to the heap structure).

Fig. 8. The method joinAndModify first attaches the hammock h to the hammock f, creating a larger
hammock, and then calls the method disconnectAll, creating a frame that is non-convex in g. Veri-
fication of the postcondition is challenging, as it requires localizing reachability in the frame, f, of
the call to disconnectAll. Fig. 10 illustrates a typical run of joinAndModify.

HAMMOCKg (h, s, t) ..⇐⇒ s ∈ h ∧ t ∈ h ∧ CLOSED(h) ∧ ACYCLICg (h) ∧ s , t ∧

∀n ∈ h • P(g, s,n) ∧ P(g,n, t)
(13)

ACYCLICg (h) ..⇐⇒ h ⊆ g ∧ ∀x ,y ∈ h • ¬E(g,x ,y) ∨ ¬P(g,y,x) (14)

We start reasoning about joinAndModify in state 0, with the footprint being comprised of two

(disjoint) hammocks, f and h, where s1 and s2 are their sources and t1 and t2 are their sinks, resp.
The first two operations are field updates, resulting in state 1. They join the two hammocks into

one by creating exactly two edges: (s1, s2) and (t2, t1). Hence, there must exist at least two distinct

paths from s1 to t1 in state 1: one path through the nested hammock, h, and one inside f. Note that

this makes the subheap f non-convex in g, even though h is still relatively convex in g. The last

operation in joinAndModify is a method call with a (relatively convex) footprint, h, which results in

state 2. The callee method, disconnectAll, destroys all heap paths inside its footprint (first conjunct
of the postcondition), while preserving all of its exit points (second conjunct of the postcondition).

We omit the callee’s implementation because the problem that we are about to explain occurs

exclusively at the call site.

The postcondition of joinAndModify says that there still exists a g-local path s1 . . . t1 in state 2.

Intuitively, this claim should hold, as these two nodes were, before the call to disconnectAll,

reachable via at least one f-local path that could not have been destroyed as a result of the method

call (because f is the frame of that call). However, our path-partitioning formulas (9) do not capture

that such a frame-local path definitely existed; we learn from cases (iv)–(v) of (9) only the disjunction
describing that at least one of the two paths from s1 to t1, labeled “iv” and “v” in Fig. 5, must have

existed before the call, but we do not know which. Since the call is known to destroy the paths

corresponding to one disjunct, we cannot deduce P2(g, s1, t1) after the call unless we can precisely

derive frame-local reachability.

Localizing reachability in the frame of a relatively convex footprint. Fig. 9 demonstrates the general

problem of localizing reachability information in the frame of a method call. Consider a method

call with a relatively convex footprint h and the frame f; the client’s footprint g is their disjoint

union g = f ⊎ h. Our path partitioning formulas (9) allow us to precisely define h-local reachability
based solely on g-local reachability. As demonstrated by our joinAndModify example of Fig. 8, we
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frame (f)footprint (h)

Fig. 9. Paths starting and ending in the frame of a relatively convex footprint may either be local
to the frame or go through the footprint. Relative convexity of the footprint guarantees that there
must be at most one entry and one exit point per path. Note that x and σ , as well as τ and y may
possibly alias each other, but x , y and σ , τ are guaranteed.

additionally need a complementary formula that would precisely define f-local reachability (again,

based solely on g-local reachability). In other words, we are looking for a first-order formula over

the relation P (with the first parameter fixed to g) that, for a given pair of nodes x ,y ∈ f, precisely

defines the existence of an f-local path x . . .y. Fortunately, such an in-frame reachability localization
formula exists if f is a frame of a relatively convex footprint h (even if f itself is non-convex in g):

∀x ,y ∈ f •
(∀z ∈ h • ¬P(g,x , z) ∨ ¬P(g, z,y)

)
=⇒

(
P(f,x ,y) ⇔ P(g,x ,y)

)
∀x ,y ∈ f •

(∃z ∈ h • P(g,x , z) ∧ P(g, z,y)
)
=⇒

(
P(f,x ,y) ⇔ ∃σ ,τ ∈ f •

P(g,x ,σ ) ∧ E(g,σ ,τ ) ∧ P(g,τ ,y)∧(∃z1 ∈ h. P(g,σ , z1)) ∧ ¬
(∃z2 ∈ h. P(g,τ , z2)) )

(15)

We explain and justify (15) using the diagram of Fig. 9. Generally, since g = f ⊎ h, we can case

split on whether there exists a path x . . .y that goes through h, allowing us to obtain the required

f-local reachability formula. The first formula above covers the case in which such a path does
not exist; thus, the following must hold: ∀z ∈ h. ¬P(g,x , z) ∨ ¬P(g, z,y) (which trivially holds

for all x ,y ∈ f in the special case when f is convex in g). The second formula above says that, if

there exists a path through h (the upper kind of path in Fig. 9), it must pass through some node

z ∈ h; hence, the following condition must hold: ∃z ∈ h. P(g,x , z) ∧ P(g, z,y). Under this condition,
we must define the existence of an f-local path that also connects x . . .y. The key idea that we

exploit to justify the second formula in (15) is to use our relative convexity assumption to justify a

three-way split of the (hypothetical) f-local path x . . .y into three segments: a path P(f,x ,σ ), an
edge E(f,σ ,τ ), and a path P(f,τ ,y) (the lower kind of path in Fig. 9). Furthermore, we choose (σ ,τ )
such that σ is the last node that reaches h (∃z1 ∈ h. P(g,σ , z1)) and τ is the first node that does not
reach h (¬∃z2 ∈ h. P(g,τ , z2)). Under our assumptions about x and y, this requirement can always

be satisfied because the footprint of the callee, h, is reachable from (at least) the node x and is

unreachable from (at least) the node y.
We summarize the conditions under which the predicates defining the three-way split of our

hypothetical path x . . . (σ ,τ ) . . .y can be rewritten with g instead of f, without losing precision:

• The footprint of the call, h, is convex in the client’s footprint, g.

• Both nodes x and y are in the frame of the call, f.

• We picked σ that reaches h and τ that does not reach h s.t. (σ ,τ ) is on the path x . . .y.

For the first predicate, we need to argue by contradiction: suppose that P(g,x ,σ ) were the case, but
P(f,x ,σ ) were not (the opposite implication is direct, since f ⊆ g). Then, the path from x to σ must

visit the callee’s footprint, h. However, by construction, σ is known to have a path to some node
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s2 t2

s1
s1.right

t1

frame (f)

footprint (h)

Fig. 10. An example scenario of running the method joinAndModify. In state 0, only the solid edges
exist. In state 1, the client has created two new edges: (s1, s2) and (t2, t1). In state 2, the callee has
destroyed all solid-red edges, but there still exists a path s1 . . . t1 via solid-blue edges. However, we
cannot deduce the existence of this path using just the path partitioning formulas alone due to the
disjunction in case (iv)–(v) of (9) that does not allow us to distinguish whether all paths between
s1 and t1 were passing through the footprint in state 1. Therefore, recovering this bit after the call
to disconnectAll requires precise localization of reachability information in the frame (15).

in the callee’s footprint, and this violates the assumption that this footprint is relatively convex.

Hence, we get P(f,x ,σ ) = P(g,x ,σ ). The second predicate is easiest: a single edge between two

nodes in the frame (f) can only depend on the frame itself; therefore, we get E(f,σ ,τ ) = E(g,σ ,τ ).
The third predicate expresses the existence of a path τ . . .y; since we have picked τ s.t. it does

not reach the footprint, such a path exists in this case exactly when it exists in the frame, giving

P(f,τ ,y) = P(g,τ ,y). Thus, our construction of σ and τ , along with our relative convexity property

for method footprints, allows us to justify the formulation in (15). These formulas now provide the

missing ingredient for our technique that complements our path-partitioning formulas of (9). □

Revisiting the problematic scenario. We return to our joinAndModify method, and show that we can

now verify the last conjunct of its postcondition. Previously, we were unable to verify P2(g, s1, t1)
after the call to disconnectAll, while intuitively, a g-local path s1 . . . t1 exists in state 2, because the

method call could not have destroyed the existing frame-local path s1 . . . t1 that existed in state 1

(Fig. 10). Thus, if we could deduce P1(f, s1, t1) (before the call to disconnectAll), we would obtain

our proof goal. This is now possible using the second equation from (15): instantiating s1 for x and

t1 for y, we deduce the hypothesis of the implication, since before the call to disconnectAll we can

deduce that paths from s1 to t1 exist passing through the footprint. To deduce P1(f, s1, t1) from our

formula, we need to obtain the following property (recall that g = f ⊎ h):

∃σ ,τ ∈ f. P(g, s1,σ ) ∧ E(g,σ ,τ ) ∧ P(g,τ , t1) ∧
(∃z1 ∈ h. P(g,σ , z1)) ∧ ¬

(∃z2 ∈ h. P(g,τ , z2))
The existentially-quantified pair (σ ,τ ) can be witnessed by (s1, s1.right). From this, and our

hammock properties (13), all conditions above follow directly, allowing us to deduce our inter-

mediate proof goals, P1,2(f, s1, t1), and use the last case of (9) to deduce the ultimate proof goal,

P2(g, s1, t1). □
Together with (15), the ingredients of our technique presented in Fig. 4 empower completely

general, precise reasoning about reachability in the presence of method calls with relatively convex

footprints. Note that, in examples where stronger properties are known about a method’s footprint,

our formulas from (15) reduce to much simpler criteria. In particular, if a method operates on a

closed data structure (no paths leave the footprint), we can always apply the first of our formulas;

the full expressiveness of our conditions is required only in the presence of potential paths crossing

the callee’s footprint (e.g., Fig. 10). Our technique is complete, provided that callee postconditions

specify sufficient information about reachability within their footprint. However, even in examples
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where this information is incomplete, our technique is applicable and provides useful information

at the call site, for instance, by deducing which frame-local paths will be preserved across a method

call. It is the restriction to method calls with relatively convex footprints which enables us to

express appropriate formulas to preserve this information; without this restriction, we would not

be able to precisely define the existence of frame-local paths exclusively via coarser reachability

information. Finally, we note on the efficiency of formulas (15): in our encoding (demonstrated

in Fig. 7 and validated in Sec. 5), we supply appropriate triggers for the universal quantifiers and

Skolemize the existential quantifiers.

This completes our treatment of acyclic graphs and method calls; the latter is the most complex

part of our technique, and applies equally to the cyclic case, which we tackle in the next section.

4 REACHABILITY IN CYCLIC STRUCTURES
In the previous section, we presented our technique for enabling modular reasoning about heap

reachability in combination with first-order separation logic. The presented technique operates

under two key restrictions: (1) that method footprints are always relatively convex in their client’s

footprint and (2) that all footprints used contain acyclic graphs. These are two independent criteria,
which our technique checks where necessary. Restriction (1) alone enables our handling of method

calls. In this section, we show that we can adapt our technique to a particular setting in which

restriction (2) is dropped: that of general 0–1-path graphs. A graph is called a 0–1-path graph

(hereafter, ZOPG) if there exists at most one (non-trivial) path (modulo cycles) between all pairs of

nodes in the graph; for instance, {(a,b), (b, c), (c,a), (c,d)} is a ZOPG, but {(a,b), (b,a), (a, c), (c,a)}
is not since there are two distinct (non-trivial) paths from a to itself [Dong and Su 1995]. Although

this notion does not permit arbitrary cyclic graphs, the technique presented in this section allows us

to adapt our work to reason about reachability in the presence of potentially-cyclic lists in the heap

or more-complex data structures consisting of these, including, for example: trees where the children

of each node are stored in a cyclic list (e.g., using Java LinkedList), generalized tree-like structures in

which some nodes consist of rings, and the ring representation of heap-ordered trees [Fredman et al.

1986]. Therefore, the ZOPG class is an important generalization of (potentially-cyclic) singly-linked

lists, which is the class handled in the closest prior work [Itzhaky et al. 2014].

Extending our technique to ZOPGs requires a new way of handling direct field updates (Sec. 4.1);

our handling in Sec. 3 depended on acyclicity, and a way to retain that certain graphs in the program

are ZOPGs; modifying a ZOPG by adding an edge could violate the ZOPG invariant (Sec. 4.2). Note

that our requirement of relatively convex footprints (Def. 1) is again crucial, enabling an efficient

solution of the latter problem.

4.1 Field Updates in ZOPGs
To support direct field updates, we adapt prior work [Dong and Su 1995] that shows how to precisely

update a more-refined reachability relation called DEP for ZOPGs. There are few changes in our

adaptation: our DEP relation is compatible with the reflexive reachability relation (P), whereas
Dong and Su work with irreflexive reachability, and we parameterize our DEP relation with two

extra parameters, F and g, supporting separation-logic reasoning, as we did for P in Sec. 2.2. The

predicate DEPF (g,x ,y,u,v) expresses the existence of a (non-trivial) path of field references from x
to y such that all objects on the path (except possibly y) are in g, all fields are in F , and the path

depends on the edge (u,v). Intuitively, this means that removing (u,v) from the graph will destroy

the path x . . .y (which is the unique path from x to y in a ZOPG). We will omit the parameter F
when it is clear from the context. Note that DEP(g,x ,y,u,v) ⇒ u , v since an edge (v,v) cannot
be a dependency of any path: deleting such an edge would not affect reachability. Note also that

DEP(g,x ,y,u,v) ⇒ x , y since a trivial path x . . . x does not depend on any edges.
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Although precisely updating the classical reachability relation P in potentially-cyclic graphs after

destructive heap operations is beyond first-order logic (and cannot be efficiently automated), the

information about the DEP relation can be updated precisely and efficiently after such destructive

operations [Dong and Su 1995]. For example, if the edge (s, t) is deleted by executing the statement

s.adj := null in a method with footprint g, then the new relation, DEP, can be simply expressed

via the old relation DEP0 as follows:

∀x ,y,u,v • DEPF (g,x ,y,u,v) ⇐⇒ DEPF
0
(g,x ,y,u,v) ∧ ¬DEPF

0
(g,x ,y, s, t) (16)

For fixed F and g, the intuition for (16) is this: (x ,y,u,v) is in the new relation iff it was in the old

relation and the deleted edge (s, t) was not a dependency of the path x . . .y before the update.

Precisely updating DEP after an operation that only creates an edge (e.g., by executing the

statement s.adj := t) is also possible, provided one additionally checks that the newly-created

edge does not violate the ZOPG invariant; we describe how this check is enforced in Sec. 4.2. As

before, a general field update entails removing and then adding an edge (see [Ter-Gabrielyan et al.

2019a, App. B]). Our treatment of the DEP relation is similar to the treatment of the P relation

described in Sec. 3.2: since the mathematical definitions of these relations are beyond first-order

logic, we provide the verifier with a partial axiomatization (see [Ter-Gabrielyan et al. 2019a, App. C]).

We rewrite each field update with a call to an internal updateZOPG method with the same footprint

g as for the current method; the postconditions of updateZOPG make the DEP update formulas

(e.g., (16)) available to the SMT solver.

A technical difference between our reachability relation P and the DEP relation is that the latter

carries richer information (in particular, knowledge of every edge on which each path depends).

Conversely, it seems unlikely that having to enumerate all edge facts in a graph would be suitable

for a method specification; the abstraction provided by P is typically desirable. Thus, we do not

provide DEP as a primitive in our specifications, and instead provide a means of converting between

information in one relation and the other, while losing as little information as possible. Our

conversion rules are based on the following main axiom:

∀h,x ,y • PF (h,x ,y) ∧ x , y ⇐⇒ ∃u,v • DEPF (h,x ,y,u,v) (17)

Unlike the update formulas that are emitted for concrete method footprints, our conversion axioms

(e.g., (17)) quantify over the footprint (h); as before, we carefully select the triggers for these axioms

to guide the SMT solver’s quantifier instantiation procedure.

In general, formula (17) does not capture full information in principle expressible with the DEP
relation; intuitively, this is because a single path x . . .y (described by the LHS) may depend on

multiple edges, all of which match the RHS existential quantifier. To partially mitigate this fact, we

augment our axiomatization with a number of additional properties. For instance, one can easily

prove the following formula (an axiom in our technique) about ZOPGs, providing (for fixed F and

g) some quadruples which do not belong to the DEP relation:

∀h,u,v,w • ¬DEPF (h,v,w,u,v) (18)

Note that if v = w , ¬DEP(h,v,v,u,v) holds because a trivial path v . . .v does not depend on any

edges. Assume v , w . There can be at most one (cycle-free) path from v tow in a ZOPG. If there

are no paths from v to w , then we get ¬DEP(h,v,w,u,v) from (17). Otherwise, the edge (u,v) is
not part of the (cycle-free) path v . . .w and cannot be one of its dependencies. □
Our ZOPG axiomatization is based on a set of formulas like (18) that, together with (17), help

reasoning about the DEP relation (we provide the full axiomatization in [Ter-Gabrielyan et al.

2019a, App. C]). Equipped with this conversion between relations P and DEP, precise reachability
information is preserved in all cases that we have observed. This is interesting because the DEP
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relation carries more information than the transitive relation P, so (for fixed F and g) not all

quadruples (x ,y,u,v) in DEP can be extracted precisely from P, even if all pairs (x ,y) in P are

known. Intuitively, these missing quadruples appear not to be needed in practice because the

overall proof goals are phrased in terms of just P (and not DEP).
We illustrate how reachability information is preserved throughout the transformations between

P and DEP with a concrete example. Consider the following Hoare triple that describes a heap

update in a ZOPG with footprint g and a single reference field next:{
x, y ∈ g ∧ x.next = y ∧
∀n,m ∈ g • P0(g,n,m)

}
x.next := null

{ ∀m ∈ g • P(g, y,m)
}

We can justify the postcondition assertion as follows. Consider an arbitrary nodem ∈ g. Ifm = y,
then we trivially get P(g, y, y). Otherwise, we assumem , y, and the remaining proof obligation is

P(g, y,m); to justify this, we need to exploit information from the pre-state. Since by (17), we can

reduce the current proof obligation to DEP(g, y,m, y, y.next), we can instantiate the DEP update

formula (16), obtaining two pre-state conditions: DEP0(g, y,m, y, y.next) and ¬DEP0(g, y,m, x, y).
The former is justified by the precondition quantifier (providing P0(g, y,m)) and the main conversion

axiom (17), whereas the latter can be obtained directly from the additional conversion axiom (18).

This example, as well as our evaluation (Sec. 5), show that necessary reachability information

can be fully recovered after the following steps: first, conversion from P to DEP, second, application
of update formulas for the DEP relation, and third, conversion from DEP to P. We plan to investigate

as future work the extent to which this approach is always precise for preserving reachability

information of this kind.

4.2 Preservation of the ZOPG Invariant
To justify the handling of field updates from the previous subsection, we require knowledge that the

graph being updated is a ZOPG. Since this fact can be violated by changes to the heap, an important

question is how we can know if the ZOPG invariant holds. It can be expressed in first-order logic

with the combination of edge and path predicates as follows:

ZOPG(h) ..⇐⇒
(∀x1,x2,a,b ∈ h,y • (x1 , x2 ∨ a , b) ∧ P(h,x1,x2) ∧ P(h,x2,x1) ∧

E(h,x1,a) ∧ ¬P(h,a,x1) ∧

E(h,x2,b) ∧ ¬P(h,b,x2) =⇒ ¬P(h,a,y) ∨ ¬P(h,b,y)
)
∧

∀x ,a,b ∈ h • a , x ∧ b , x ∧ E(h,x ,a) ∧ P(h,a,x) ∧

E(h,x ,b) ∧ P(h,b,x) =⇒ a = b

(19)

The first conjunct of the formula expresses a situation in which two (potentially aliasing) nodes x1
and x2 are on the same strongly-connected component (SCC), and two edges (starting in x1 and x2)
that are different—at least by source or target—end in nodes a and b, resp., outside of the SCC (a and

b may alias unless x1 = x2). In such a case, it is forbidden that any node y is reachable from both a
and b (this would form two different paths from the SCC to y). The second conjunct restricts the

structure of SCCs themselves: no two different edges may start in x and stay within the same SCC.

Intuitively, formula (19) is hard to automate because it uses a non-trivial combination of edge

and reachability predicates. Establishing ZOPG(h) would require, for example, the information

about all path splits in h, i.e., all nodes x ∈ h s.t. ∃a,b ∈ h • a , b ∧ E(h,x ,a) ∧ E(h,x ,b). Such
details ultimately require specifications to enumerate edges in the graph, which is impractical, and

breaks the abstraction that reachability specifications grant. Even if the full information about the

edge relation were present, establishing ZOPG(h) would require an induction proof that is beyond

the power of modern SMT solvers. Instead of checking this invariant from scratch, we design a

mechanism for checking that the ZOPG invariant is preserved across changes to the heap.
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method testZopgObligations(g: Zopg, R: Graph, r: Node, u: Node)

requires {u} ⊎ R ⊆ g ∧ CLOSED({u}) ∧ RINGg (R) ∧ r ∈ R ∧

∀x ∈ g,y • P(g,x ,y) ∧ P(g,x ,u) =⇒ ¬P(g, r ,y)

{

var h: Zopg := {u} ⊎ R

ringInsert(h, R, r, u)

}

method ringInsert(g: Zopg, R: Graph, r: Node, u: Node)

requires g = {u} ⊎ R ∧ CLOSED({u}) ∧ RINGg (R) ∧ r ∈ R

ensures RINGg (g) ∧
(∀n < g • P(g,u,n) ⇔ P0(g, r ,n)

)
∧

∀x ∈ g,y • x , u ∧ y , u =⇒
(
P(g,x ,y) ⇔ P0(g,x ,y)

)
{

u.next := r.next

r.next := u

}

// (Pre)

Fig. 11. An example client with a ZOPG footprint. For simplicity, the method testZopgObligations

has no postconditions. In order to verify it, one must nonetheless prove that the ZOPG invariant
is maintained after the call to ringInsert. The definition of RING is given in (20). Note the different
meaning of footprint parameters written in subscripts vs. those written in parentheses (e.g., g and
h, resp., in the definition of SCCg (h)): the former are used as arguments for the E and P predicates,
whereas the latter are used for restricting the domain of quantification.

RINGg (h) ..⇐⇒ FUNCTIONAL(h) ∧ UNSHARED(h) ∧ SCCg (h)

SCCg (h) ..⇐⇒ ∀x ,y ∈ h • P(g,x ,y)

FUNCTIONAL(h) ..⇐⇒ ∀a,b, c ∈ h • E(h,a,b) ∧ E(h,a, c) =⇒ b = c

UNSHARED(h) ..⇐⇒ ∀a,b, c ∈ h • E(h,a, c) ∧ E(h,b, c) =⇒ a = b

(20)

Extending the specification language for potentially-cyclic footprints. As a first step, we introduce an
additional annotation in our specification language, so that we can label certain method footprints as

ZOPGs. In addition to general graphs (whose structure is only constrained by other specifications),

such as h: Graph, we allow the footprints of somemethods to be more specifically marked as ZOPGs,

using the syntax g: Zopg. For method footprints declared this way, we will explain the additional

proof obligations necessary to check that we maintain the ZOPG invariant. In particular, a method

with footprint g: Zopg can be translated to a method with footprint g: Graph with additional ZOPG
proof obligations.
We illustrate the generation of ZOPG proof obligations based on the example in Fig. 11. The

client, testZopgObligations, operates on a ZOPG g that includes two disjoint parts: a ring R and

a (closed) singleton graph consisting of just one node, u. The extra node r denotes an arbitrary

node of the ring. The only operation performed by the client is a call to ringInsert. To verify that

g remains a ZOPG by the end of testZopgObligations, we need to check that the callee does not

create alternative paths—not just in its footprint, h (which is guaranteed to remain a ZOPG, as the

methods with footprints marked by Zopg are locally checked to preserve this property), but also

in the larger subheap, g. The callee ringInsert, operates on a ZOPG that equals the union of two
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r

u frame (f)

footprint (h)

Fig. 12. A typical scenario of running testZopgObligations. r is an arbitrary node of the ring, and u
is added to the ring after the call to ringInsert. The diagram demonstrates a data structure with
nodes that can have two reference fields (for simplicity, the implementation of ringInsert shows a
single field, next). The second conjunct in the client’s precondition says that no (non-trivial) paths
may originate fromu (there may be paths ending inu). The footprint may have both entry and exit
points, but (as required by the last conjunct in the client’s precondition) each connected compo-
nent of the frame may have at most one entry or exit point into the footprint; otherwise, the ZOPG
invariant would be violated by the call.

disjoint parts: a closed singleton graphu and a ring R (these two parts must be mutually-unreachable

in the pre-state). The callee attaches u to the ring R, resulting in a larger ring, u ⊎ R. The callee’s
postcondition says that (in the post-state) its entire footprint is a ring (thus, all pairs of footprint

nodes are mutually reachable), and precisely defines its local reachability. Local paths that end

outside of the callee’s footprint (i.e., outgoing paths) are defined by the last two conjuncts: the

former says that all exit points reachable from the ring in the pre-state are exactly the exit points

reachable from u in the post-state, whereas the latter preserves all outgoing paths of the initial

ring, i.e., all exit points of the footprint in the pre-state where {u} was closed. Fig. 12 illustrates the
client’s footprint in a state after ringInsert has executed.

Maintaining the ZOPG invariant after a field update. The knowledge that a subheap was a ZOPG

in the pre-state of an operation helps checking that that subheap is still a ZOPG in the post-state,

as we show next. We translate a general field update u.next := v in a method with the footprint

g: Zopg to u.next := null; u.next := v, where (assuming v is not null) the first update deletes

an edge and the second one creates a new edge. Deleting edges does not alter the graph class

of g. However, a newly added edge may create an alternative path between some nodes of the

graph. Concretely, new paths will be created between all pairs of nodes (x ,y) s.t. there exist two
paths: x . . . u and v . . .y. Therefore, we get the following soundness criterion (emitted as a proof

obligation before the second update) for a field update in a ZOPG:

u , v =⇒ ∀x ∈ g,y • P(g,x , u) ∧ P(g, v,y) =⇒ ¬P(g,x ,y) (21)

Note that y may be outside of the current method’s footprint because a g-local path may leave g

(iff its last edge leaves that subheap). The formula (21) is much simpler than, e.g., (19) because it

is (a) an incremental condition (we used the knowledge that the subheap was a ZOPG before the

update; otherwise, we would need to consider alternative paths other than those introduced by the

new creation) and (b) the operation is a field update (hence, only one edge has been added to the

graph). Keeping track of graph classes in the presence of method calls is more involved, but the

idea (a) is again helpful for tackling this problem.

Maintaining the ZOPG invariant after a method call. A method call may violate the ZOPG invariant

at call site even if the footprint of the call remains a ZOPG (a condition which is checked locally

for the callee). The condition that a method call does not violate the ZOPG invariant at call site is
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(β)

x a b y
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(γ )
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d
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Fig. 13. The four configurations that violate the ZOPG invariant after a method call with a rela-
tively convex ZOPG footprint (in red) and a ZOPG frame (in blue).

generally as hard to check as the formula (19) itself. Fortunately, this condition can be drastically

simplified if the footprints or the callee and the client are relatively convex.
We proceed as follows. First, we enumerate the ways in which a method call that preserves the

ZOPG invariant on its own footprint, could potentially violate that invariant for its client’s footprint.
In particular, this must be by the creation of at least one new path. A call to a method with a convex
footprint may result in one of the four bad heap configurations (violating the ZOPG invariant)

depicted in Fig. 13. Second, we conjoin the negated formulas (22), (23), (24), (25) characterizing

these four bad configurations, comprising an efficient criterion for preserving the ZOPG invariant.

Checking this criterion can be easily automated: unlike formula (19), our criterion requires no

information about the edge relation whatsoever. Our technique encodes this criterion as a proof

obligation for the client. Finally, we sketch a proof of completeness for the four cases in Fig. 13.

The bad configuration in Fig. 13 (α ) corresponds to a scenario in which the method call has

created an alternative path from x to y, where the former node does not belong to the callee’s

footprint. We can describe this configuration via the following formula:

∃x ∈ f,a,b ∈ h,y < f • a , b ∧ P0(f,x ,a) ∧ P0(f,x ,b)

∧ P(h,a,y) ∧ ¬P0(h,a,y) ∧ P(h,b,y)
(22)

The symbols P0 and P denote the reachability relation before and after the method call; h is the

callee’s footprint; f is the frame of the call. We evaluate the first two reachability predicates in the

old state because frame-local reachability is not affected by the call. The information about the last

three predicates comes from the postcondition of the callee
3
. We assume w.l.o.g. that a . . .y has

been newly created by the call (whereas b . . .y may have existed before the call). Both paths could

not have existed before the call, as that would contradict our assumption that g was a ZOPG.

Returning to our example of Fig. 11, we observe that the precondition of testZopgObligations is

strong enough to prevent the bad configuration (α ) after the call to ringInsert; we prove this by

contradiction. Assume that, while preserving its local ZOPG invariant, the call results in the bad

configuration (α ) for some x ∈ f,a,b ∈ h,y < f; thus, we learn the conjuncts (say, #1 to #6) from

the body of (22). Note that a and b must be distinct (due to #1) and cannot both be in R (due to #4

and #6; otherwise, there would be alternative paths, violating the ZOPG invariant of the callee’s

footprint in the post-state). We draw the contradiction by instantiating the last conjunct, (Pre), of

the precondition of testZopgObligations: ∀x ∈ g,y. P(g,x ,y) ∧ P(g,x ,u) ⇒ ¬P(g, r ,y). With our

path partitioning formulas (9), #2 and #3 imply P0(g,x ,a) and P0(g,x ,b), resp. Together, #4 and #5

express that a . . .y is a newly created path; hence either a = u or y = u (see Fig. 12). If a = u, y , u,
then b ∈ R; we draw the contradiction by instantiating (Pre) with x ,b for x ,y. Otherwise, a , u,
y = u = b, then a ∈ R; we draw the contradiction by instantiating (Pre) with x ,a for x ,y. □

3
It is also possible to get the information about the old reachability relation from amodified version of (22) where¬P0(h, a, y)
is dropped and all other path predicates are evaluated in the pre-state.
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Similarly, we can describe the bad configuration in Fig. 13 (β) using the following formula:

∃x ∈ h,a,b ∈ f,y < h • a , b ∧ P0(f,a,y) ∧ P0(f,a,y)

∧ P(h,x ,a) ∧ ¬P0(h,x ,a) ∧ P(h,x ,b)
(23)

In this configuration, the source of the alternative paths falls into the callee footprint, and their

end into the frame; this results in alternative paths x . . . a . . .y and x . . .b . . .y. In our example of

Fig. 11, the new outgoing paths that ringInsert creates originate in u; all other outgoing paths

also existed before the call (due to the last postcondition). In order to avoid the bad configuration

(β), testZopgObligations requires that no paths may originate in the attached node u. Thus, any
new outgoing path must pass through R before it reaches the callee’s footprint. Since ringInsert

preserves the paths that start in R and end in the frame (due to its last postcondition), and we

assumed that the callee’s footprint is a ZOPG before and after the call, the last three conjuncts in

(23) cannot be satisfied. Hence, our specification is strong enough to prevent (β). □
The scenario depicted in Fig. 13 (γ ) illustrates that any new path a . . .b created by the method

call, combined with suitable frame paths, may violate the ZOPG invariant:

∃x ,b ∈ f,a ∈ h,y < h • P0(f,x ,y) ∧ P0(f,x ,a) ∧ P0(f,b,y) ∧ P(h,a,b) ∧ ¬P0(h,a,b). (24)

In order to avoid the bad configuration (γ ), we must ensure that an arbitrary frame node x that

reaches the footprint node a does not reach any of the frame nodes (e.g., y) that will be reachable
from a after the call. In our example of Fig. 11, the precondition of testZopgObligations is strong

enough to prevent (γ ) after the call to ringInsert. The nodes x and y in the last conjunct of this

precondition can be thought of as those in (24) and Fig. 13 (γ ); the condition rules out the possibility

that the effect of the call will connect up such alternative path. □
The most subtle bad configuration is Fig. 13 (δ ), where both alternative paths x . . .y go via the

footprint of the method call. This heap configuration can be expressed via the following formula:

∃x , c,d ∈ f,a,b ∈ h,y < h • a , b ∧ c , d ∧ P0(f,x ,a) ∧ P0(f,x ,b) ∧ P0(f, c,y) ∧ P0(f,d,y)

∧ P(h,a, c) ∧ ¬P0(h,a, c) ∧ P(h,b,d).
(25)

This configuration can be realized when a and b are mutually unreachable in both states (otherwise,
the configuration is covered by (α ) and (β)). This configuration cannot occur in the post-state of

our example because after the method call u is attached to the ring. □

Completeness proof sketch. To derive the four cases in Fig. 13, consider a ZOPG subheap g comprised

of the ZOPG frame f and the (relatively convex) ZOPG footprint h of a method call. Assume that

the method call creates at least one new path s.t. the ZOPG invariant of its footprint is maintained

while the ZOPG invariant of the (larger) client’s footprint is violated. Consider as well two nodes x
and y that are connected (in the state after the call) by multiple (at least two) g-local paths x . . .y.
We assume that x and y are both in g; if y is outside g, we first apply (10), providing some node

u ∈ g s.t. P(g,x ,u) ∧ E(g,u,y); we then continue the argument for x . . .u instead of x . . .y.
Multiple paths x . . .y may not be entirely inside just one of the two subheaps f or h because that

would violate our assumption that these are ZOPG subheaps. Therefore, at least one of these paths
must cross the border between f and h. We proceed with a case analysis based on the distribution of

the nodes x and y between (disjoint) subheaps h and f:

• The case x ,y ∈ h cannot be realized because a path starting in x may leave h just once and

may never come back to reach y (otherwise our convexity assumption would be violated).

• If x ∈ h,y ∈ f, then again, the paths starting in x may leave h just once and may never come

back due to h ≺ g. Since two different paths starting in x may not merge in h (otherwise,

alternative paths will exist within h, contradicting our assumption that it is a ZOPG), such
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paths must reach two different frame nodes a,b ∈ f, creating alternative paths of the form

x . . . a . . .y and x . . .b . . .y, as covered by case (β) of Fig. 13.
• If x ∈ f,y ∈ h, then no path that starts in the frame node x can enter the footprint more than

once due to h ≺ g. Next, since in this case these paths must end in y, they cannot leave the

(relatively convex) footprint h at all. Finally, these paths may not merge until at least one of
them enters h (otherwise, alternative paths will exist within f, contradicting our assumption

that it is a ZOPG). This gives us two different footprint nodes a,b ∈ h, creating alternative

paths of the form x . . . a . . .y and x . . .b . . .y, as covered by case (α ) of Fig. 13.
• In the most subtle case of x ,y ∈ f, each pair of alternative paths of the form x . . .y is s.t.

either just one or each of the two alternative paths enters and exits the footprint exactly once,

as covered by cases (γ ) and (δ ) of Fig. 13, resp. □

The simplicity of our formulas (22), (23), (24), (25) is due to the fact that, in our technique,

footprints of method calls must be relatively convex, limiting the number of bad configurations

to just four. The bad configurations that we have identified are helpful for deriving weakest

preconditions for method calls that operate over ZOPGs, like in our testZopgObligations example.

In combination with local heap updates (for which (21) is the efficient ZOPG preservation criterion),

we have explained how our technique is generalized for modular reasoning about ZOPGs.

5 EVALUATION
We have evaluated our technique on a variety of challenging example programs taken from the

literature, illustrating our technique for different classes of graphs and data structures (including

the running examples of closely-related work).

5.1 Experimental Setup
We encoded each example by-hand into the Viper verification language [Müller et al. 2016b]: an

intermediate verification language designed for expressing heap-based verification problems, and

Table 1. Experimental results.We indicate example features via✓where and denote examples
with greater-than-one outdegree and with sharing, resp.; ≺ means convex framing.

Example Variant Class ≺ Time Notes

Merge (Fig. 1) Tree DAG ✓ ✓ 16.1 Path-partitioning,

DAG DAG ✓ ✓ ✓ 14.5 Unbounded cut-points

Fail 1 DAG ✓ ✓ ✓ 13.2 Bug in code

Fail 2 DAG ✓ ✓ ✓ 33.9 Bug in spec.

Left-Child- Tree, add sibl. DAG ✓ ✓ 10.5 Encodes n-ary tree as binary

Right-Sibling Tree, add child DAG ✓ ✓ 15.0 — ” —

DAG, add sibl. DAG ✓ ✓ ✓ 10.1 Unbounded cut-points

DAG, add child DAG ✓ ✓ ✓ 17.1 — ” —

Harris List Original DAG ✓ 14.5 From [Krishna et al. 2018]

Acyclic List Reverse DAG 7.9 From [Lev-Ami et al. 2009]

Append DAG 6.9 — ” —

Ring-Insert: Sorted ZOPG ✓ ✓ 87.2 Functional spec.

Impl. Anywhere ZOPG ✓ ✓ 10.1 — ” —

Ring-Insert: Closed {u} ZOPG ✓ ✓ ✓ 11.5 Non-convex frame,

Client (Fig. 11) Open {u} ZOPG ✓ ✓ ✓ 10.8 ZOPG obligations

Fail 1 ZOPG ✓ ✓ ✓ 12.4 Failure due to (β)
Fail 2 ZOPG ✓ ✓ ✓ 10.7 Failure due to (α ), (γ )
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with native support for separation logic reasoning. Although manual, our encoding of each example

was performed methodically, simulating the translation that a front-end verification tool could

perform. Each example consists of a common set of background definitions and axioms, along with a

translation of the code of the example, statement by statement, according to the technique presented

in Sec. 3 and Sec. 4. For instance, a source-level method call is encoded with additional assume and

assert statements before and after the call which enable reachability framing on relatively convex

method footprints, as defined in Sec. 3.4.

The background definitions common to our examples are organized in separately-included library

files, and we make heavy use of Viper’s macros to improve the readability of our encoded examples.

Our examples are verified with Viper’s standard Boogie-based [Leino 2008] verifier, which uses

the Z3 SMT solver [de Moura and Bjørner 2008] for checking verification conditions. We indicate

Viper’s run time for each example in Tab. 1. The experiments were performed on a laptop running

macOS, with a 2.8 GHz Intel Core i7 CPU, with Z3 version 4.8.5 - 64 bit. The Viper files used in our

experiments are available as artifact of this paper [Ter-Gabrielyan et al. 2019b].

An important practical issue arising in the successful use of SMT-based verification tools is

controlling the instantiation of quantifiers; our technique employs a large number of quantified

formulas, and we have carefully selected appropriate triggers [Barrett et al. 2017; de Moura and

Bjørner 2008; Detlefs et al. 2005; Moskal 2009] for these, guided by the intended situations in

which these formulas are relevant; for the rich reachability properties expressed by our technique,

such triggers are essential for performance. Since our source-level specifications can also contain

quantified formulas, we require these to be annotated with appropriate triggers (for simple cases,

Viper can also infer appropriate choices if omitted).

5.2 Experiments
Tab. 1 gives an overview of our experiments. The “Merge” example is our first running example

of Fig. 1, in variants with both tree and DAG structures for the underlying graphs (obtaining the

DAG variant simply requires dropping the tree requirements throughout; no other changes are

necessary). “Left-Child-Right-Sibling” is a technique for encoding trees with arbitrary multiplicities

using only two fields (representing a list of children at each node), as employed in binomial heaps

[Cormen et al. 2009], and recently proposed as a verification challenge [Müller 2018]. We again

show a DAG variant (directly obtained by removing tree requirements), and verify adding sibling

and child structures. As with the running example, these are non-functional graphs with (in the

DAG case) sharing and requiring our convex framing to frame reachability across sub-calls; to our

knowledge, they are beyond reach for all existing automated graph-verification techniques.

The “Fail” variants of Merge are buggy, with the bug being (1) negation of the branch condition in

the body of merge and (2) missing merge’s last precondition. We have observed that the failure time

does not diverge from the time of a successful verification attempt. This is important in practice if

a program’s implementation and specification are developed iteratively, with multiple invocations

of the verifier.

Lev-Ami et al. verify reachability for linked-list reverse and append methods [Lev-Ami et al.

2009]; the recent Flows framework [Krishna et al. 2018] uses the Harris List as running example. In

both cases, we prove the same invariants and reachability specifications, simply encoded in our

language. In the latter case, we use two reachability relations based on different edges.

“Ring-Insert” is a series of six 0–1-path graph examples. We wrote two variants of the Ring-Insert

method. “Sorted” is an implementation that traverses a sorted ring and inserts a newly allocated

node into the right place. We can prove both reachability (the ring remains a ring) and sortedness;

our connection to separation-logic reasoning makes layering additional functional specifications

of this kind straightforward. “Anywhere” is the version discussed in Sec. 4, where the insertion
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happens at an arbitrary point in the ring. We also verified two types of clients of Ring-Insert.

“Closed {u}” is the example of Fig. 11, where the attached node does not have outgoing paths,

whereas “Open {u}” permits the attached node to be both reachable from the frame and have

outgoing paths. The latter requires a more subtle precondition to satisfy the 0–1-path preservation

criteria. In the final two cases, we show that our technique allows us to automatically identify

the type of bad configurations that may violate the 0–1-path invariant in cases where the heap is

under-constraint before a method call Sec. 4.2.

5.3 Results
Our experiments show that reachability properties are amenable to SMT-based verification for a

broad class of heap-manipulating programs. In particular, we have observed that our technique

is well-suited for this task despite heavy usage of quantified formulas. While developing the

specifications, we have experienced that our technique helps the programmer to better understand

the subtle effects of heap operations on data structure invariants. Even with good tool support,

writing consistent preconditions and postconditions requires particular craftsmanship, especially

for recursive methods, like merge. Additionally, SMT-based verification with quantifiers requires

the programmer to annotate the specifications with triggers.

6 RELATEDWORK
Most work on separation logic focuses on data structures with limited sharing, with some notable

exceptions. Iterated separating conjunction has been used to verify the Schorr-Waite graph marking

algorithm [Yang 2001a], but without any tool support or automation. Recent work on Flows [Krishna

et al. 2018] allows one to prove the preservation of a rich variety of graph invariants including

reachability properties, but requires fixpoint computations that are hard to automate. Methods can

operate on a subgraph; under the condition that interfaces [Krishna et al. 2018] of these subgraphs
are preserved, a view on the client’s graph can be reconstructed. They make no convexity restriction,

but the interface preservation conditions rule out the possibility of method calls adding or removing

paths between nodes in subgraph boundaries. By contrast, our reachability framing technique

explicitly enables such side-effectful methods, and the reconstruction of appropriate changes in

the client’s footprint. For instance, in our running example of Fig. 2, new reachability relations are

first established (by creating an edge from link to the root of rdag) and then propagated (by the

enclosing method calls) to the larger context (the entirety of the client’s footprint).

Table 2. Supported data structure categories. “Itz.” denotes [Itzhaky et al. 2014]; “Gr.” denotes
GRASShopper [Piskac et al. 2014]; “Nv.” indicates whether, to our knowledge, our technique en-
ables automated verification of modularly specified reachability properties for the first time.

Data structure Class Itz. Gr. Nv. Author

Arbitrary linked-list structures ZOPG ✓ –

2-opt, 3-opt, etc. ZOPG ✓ Croes [1958]; Lin [1965]

Hierarchical rings ZOPG ✓ Fredman et al. [1986]

The priority inheritance protocol ZOPG ✓ Sha et al. [1990]

Trees encoded via Java’s LinkedList ZOPG ✓ Sun, Oracle

Union-Find ZOPG/DAG ✓ Tarjan [1975]

Trees ZOPG/DAG ✓ –

Binary Decision Diagrams DAG ✓ Akers Jr. [1978]; Lee [1959]

General DAGs (DFG, VCS, etc.) DAG ✓ –
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We adapted the precise transitive-closure update formulas from Dong and Su [1995] to program

heaps and separation logic, rather than mathematical graphs. Their work also inspired our DEP
relation; however, our version of the DEP relation is compatible with the reflexive reachability
relation and is used only in the internal encoding, whereas theirs is exposed to programmers.

Reachability has been integrated into separation logic before (e.g., in GRASShopper [Piskac et al.

2014]), but only in a limited way that supports lists and trees but not heap structures with sharing.

Our work was inspired by Itzhaky et al. [2014, 2013]. Their verification technique allows one

to prove reachability properties in various forms of list data structures. A focus of their work is

to obtain decidable proof obligations. We sacrificed decidability in favor of supporting arbitrary

acyclic graphs (with bounded out-degree) as well as 0–1-path graphs; our evaluation shows that

we nevertheless achieve good automation. In contrast to Itzhaky et al., we integrated our work into

separation logic, which allows us to verify concurrent programs and to reason about reachability

and other properties in a uniformway. Moreover, we do not restrict method footprints in the number

of entry and exit points or the number of SCCs in them. Tab. 2 summarizes the expressiveness of

our technique and compares it with closely-related work.

7 CONCLUSIONS
We presented a specification and verification technique that allows one to reason about heap

reachability properties modularly. The technique is integrated into separation logic and, thus,

benefits immediately from the plurality of techniques and tools in this area. The key challenge of

this integration is to specify reachability locally, within the footprint of a method. We solved this

challenge by specifying reachability relatively to a given heap fragment and introducing a novel

form of reachability framing to extend reachability properties in the footprint of a callee method to

the larger footprint of the client. Even though reasoning about general reachability properties is

difficult to automate, the proof obligations required by our technique are amenable to SMT solvers,

which we demonstrate in our experiments.

As future work, we plan to extend our technique to graphs with unbounded outdegree. This

can be done by using a generalized version of iterated separating conjunction [Müller et al. 2016a]

that can specify permissions to sets of resources. Another direction of future work is to adapt our

technique to separation logic with fractional permissions [Boyland 2003] to distinguish read and

write access, especially in concurrent settings. We also plan to investigate the extent to which our

approach to cyclic graphs is always precise. Finally, we are planning to implement a front-end

verification tool that will simplify the process of writing modular reachability specifications.
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