International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-020-00559-y

STTT l‘)

Check for
Special Issue TACAS 2018

updates

Automating deductive verification for weak-memory programs
(extended version)

Alexander J. Summers' - Peter Miiller!

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Writing correct programs for weak-memory models such as the C11 memory model is challenging because of the weak
consistency guarantees these models provide. The first program logics for the verification of such programs have recently
been proposed, but their usage has been limited thus far to manual proofs. Automating proofs in these logics via first-order
solvers is non-trivial, due to features such as higher-order assertions, modalities and rich permission resources. In this paper,
we provide the first encoding of a weak-memory program logic using existing deductive verification tools. Our work enables,
for the first time, the (unbounded) verification of C11 programs at the level of abstraction provided by the program logics; the
only necessary user interaction is in the form of specifications written in the program logic and, in rare cases, ghost operations.
We tackle three recent program logics: Relaxed Separation Logic and two forms of Fenced Separation Logic, and show how
these can be encoded using the Viper verification infrastructure. In doing so, we illustrate several novel encoding techniques
which could be employed for other logics. Our work is implemented, and has been evaluated on examples from existing
papers as well as the Facebook open-source Folly library.

Keywords Relaxed separation logic (RSL) - Fenced separation logic (FSL) - Viper encoding - Weak memory - Program

verification

1 Introduction

Reasoning about programs running on weak memory is
challenging, because weak-memory models admit execu-
tions that are not sequentially consistent, that is, cannot be
explained by a sequential interleaving of concurrent threads.
Moreover, weak-memory programs employ a range of oper-
ations to access memory, which require dedicated reasoning
techniques. These operations include fences as well as read
and write accesses with varying degrees of synchronisation.
The complexity of the underlying memory model and the
non-existence (in general) of a single ordering of events con-
sistent with the observations of all program threads makes

B Peter Miiller
peter.mueller @inf.ethz.ch

Alexander J. Summers
alexander.summers @inf.ethz.ch

Department of Computer Science, ETH Zurich,
Universititstrasse 6, 8092 Zurich, Switzerland

Published online: 06 March 2020

writing and reasoning about code combining these primitives
extremely difficult.!

Some of these challenges are addressed by the first
program logics for weak-memory programs, in particular,
Relaxed Separation Logic (RSL) [43], GPS [41], Fenced
Separation Logic (FSL) [13], and FSL++ [14]. These logics
apply to interesting classes of C11 programs, but their tool
support has been limited to embeddings in Coq. Verification
based on these embeddings requires substantial user interac-
tion, which is an obstacle to applying and evaluating these
logics.

In this paper, we present a novel approach to automat-
ing deductive verification for weak-memory programs. We
encode large fractions of RSL, FSL, and FSL++ (collec-
tively referred to as the RSL logics) into the intermediate
verification language Viper [26], and use the existing Viper
verification backends to reason automatically about the
encoded programs. This encoding reduces all concurrency

! For a general introduction to these reasoning challenges and issues in
defining the model itself, we refer the reader to [43].

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00559-y&domain=pdf

A. J. Summers, P. Miiller

and weak-memory features as well as logical features such
as higher-order assertions and custom modalities to a much
simpler sequential logic.

Defining a verification technique via an encoding into
Viper is much more lightweight than developing a dedi-
cated verifier from scratch, since we can reuse the existing
automation for a variety of advanced program reasoning
features. Compared to an embedding into an interactive
theorem prover such as Coq, our approach leads to a sig-
nificantly higher degree of automation than that typically
achieved through tactics. Moreover, it allows users to inter-
act with the verifier on the abstraction level of source code
and annotations, without exposing the underlying formal-
ism. Verification in Coq can provide foundational guarantees,
whereas in our approach, errors in the encoding or bugs in
the verifier could potentially invalidate verification results.
We mitigate the former risk by a soundness argument for
our encoding and the latter by the use of a mature verifi-
cation system. We are convinced that both approaches are
necessary: foundational verification is ideal for meta-theory
development and application areas such as safety-critical sys-
tems, whereas our approach is well-suited for prototyping
and evaluating logics, for making a verification technique
applicable by a wider user base, and for applying it more
efficiently.

The contributions of this paper are:

1. The first automated deductive verification approach for
weak-memory logics. We demonstrate the effectiveness
of this approach on examples from the literature, which
are available online [28].

2. Anencoding of large fractions of RSL, FSL, and FSL++
into Viper. Various aspects of this encoding (such as the
treatment of higher-order features and modalities, as well
as the overall proof search strategy) are generic and can
be reused to encode other advanced separation logics.

3. A prototype implementation, which is available online
[32,33].

4. A proof sketch for the soundness of our encoding.

This paper is an extended version of our TACAS paper [38].

It provides details of our support for rewriting atomic invari-
ants (Sect. 3.3) and of our encoding of compare and swap
operations (Sect. 5), an extension of our core techniques to
support ghost state as employed in FSL++ (Sect. 4.3), as
well as a proof sketch of soundness and a discussion of com-
pleteness relative to the RSL logics (Sect. 6).

1.1 Related work
The existing weak-memory logics RSL [43], GPS [41],

FSL [13], and FSL++ [14] have been formalised in Coq;
Kaiser et al. [19] also encoded RSL into Iris [21]. These for-

@ Springer

malisations were used to verify small examples. The proofs
were constructed mostly manually, whereas our approach
automates most of the proof steps. As shown in our eval-
uation, our approach reduces the overhead by more than
an order of magnitude. The degree of automation in Coq
could be increased through logic-specific tactics (e.g. [9,35]),
whereas our approach benefits from Viper’s automation
for the intermediate language, which is independent of the
encoded logic.

Jacobs [17] proposes a program logic for the TSO mem-
ory model that has been encoded in VeriFast [18]. Applying
this encoding requires a substantial amount of annota-
tions, whereas our approach provides a higher degree of
automation and handles the more-complex C11 memory
model.

Alglave et al. [3] propose a proof method for par-
allel or distributed programs running on weakly consis-
tent memory, which allows one to prove invariants such
as mutual exclusion of a synchronisation algorithm. The
method relies on a so-called communication semantics
that characterises the permitted inter-process communica-
tions. The proof is then decomposed into showing that the
communication semantics implies the intended invariants,
and that all executions permitted by the weakly consis-
tent memory comply with the communication semantics.
Alglave et al. focus on a theoretical exposition, whereas
our work aims to automate proofs for weak-memory pro-
grams.

Dan et al. [12] combine a static program analysis together
with a program transformation to over-approximate all possi-
ble executions under weak memory into a single sequentially
consistent program execution. The resulting program can
then be verified using standard verification techniques for
sequential consistency. Travkin et al. [40] apply a similar
approach, without using static analysis. Both approaches
reflect all possible executions of a weak-memory program,
for instance, to support subsequent model checking. How-
ever, they do not enable modular reasoning principles for
weak memory such as those provided by the RSL logics that
we automate.

Weak-memory reasoning has been addressed using model
checking (e.g. [1,2,7]), by enumerating thread interleav-
ings and taking into account the reorderings permitted by
weak memory. To improve the scalability of model checking,
Kokologiannakis et al. [20] propose an alternative approach,
which enumerates all consistent execution graphs of a pro-
gram up to a bound. This approach has been implemented
in a stateless model checker for C11. These approaches are
fully automatic, but do not analyse code modularly, which
is e.g. important for verifying libraries independently from
their clients. Deductive verification enables modular proofs
by requiring specifications at function boundaries. Such spec-

Automating deductive verification for weak-memory programs (extended version)

su=1:=allocna() | 1:=2alloc,(Q) | [l]lo =€ | z:=[l]o
| fenceacq | fenceret(A) | z:= CAS,(I,e1,e2)
where p € {acq,RMW}, o == na| T,
7 € {acq, rel, rel_acq, rix}

Fig.1 Syntax for memory accesses. na indicates a non-atomic opera-
tion; T indicates an atomic access mode (as defined in C11), discussed in
later sections. p, and assertions A and invariants Q are program annota-
tions, needed as input for our encoding. Expressions e include boolean
and arithmetic operations, but no heap accesses (as is standard for sep-
aration logics). We assume that source programs are type-checked

ifications can preserve arbitrarily precise information about
the (unbounded?) behaviour of a program’s constituent parts.

Automating logics via encodings into intermediate ver-
ification languages is a proven approach, as witnessed by
the many existing verifiers (e.g. [10,11,23,24]) which target
Boogie [4] or Why3 [5]. Our work is the first that applies
this approach to logics for weak-memory concurrency. Our
encoding benefits from Viper’s native support for separation-
logic-style reasoning and several advanced features such as
quantified permissions and permission introspection [25,26],
which are not available in other intermediate verification lan-
guages.

An overview of verification challenges and techniques for
weak memory, in particular, causally consistent memory, is
provided by Lahav [22].

1.2 Outline

The next four sections present our encoding for the core
features of the C11 memory model: we discuss non-atomic
locations in Sect. 2, release-acquire accesses in Sect. 3, fences
in Sect. 4, and compare and swap in Sect. 5. We discuss
soundness and completeness of our encoding in Sect. 6; this
includes details of the restrictions of our work compared with
general manual proofs based on the original logics. We eval-
uate our approach in Sect. 7 including a comparison with all
available pre-existing examples using the original papers;
Sect. 8 then concludes. Further details of our encoding
and examples are available in our accompanying technical
report [39]. A prototype implementation of our encoding
(with all examples) is available as an artefact [32,33].

2 Non-atomic locations

We present our encoding for a small imperative program-
ming language similar to the languages supported by the RSL
logics. C11 supports non-atomic memory accesses and dif-
ferent forms of atomic accesses. The access operations are
summarised in Fig. 1. We adopt the common simplifying

2 i.e. verifying all program behaviours, without bounding the number

of threads, loop iterations, heap size and so on.

Av=c | I e | AyxAs | e=>A | (e? A Ag)
| Uninit(l) | Acq(l,Q) | Rel(l,Q) | Init(l)
| AA | VA | RMWAcq(l, Q)

Fig. 2 Assertion syntax of the RSL logics. The top row of constructs
are standard for separation logics; those in the second row are specific
to the RSL logics, and explained throughout the paper. Invariants Q are
functions from values to assertions (cf. Sect. 3)

assumption [41,43] that memory locations are partitioned
into those accessed only via non-atomic accesses (non-
atomic locations), and those accessed only via C11 atomics
(atomic locations). Read and write statements are parame-
terised by amode o, which is either na (non-atomic) or one of
the atomic access modes . We focus on non-atomic accesses
in this section and discuss atomics in subsequent sections.

2.1 RSL proof rules

Non-atomic memory accesses come with no synchroni-
sation guarantees; programmers need to ensure that all
accesses to non-atomic locations are data-race free. The RSL
logics enforce this requirement using standard separation
logic [27,31]: programs that race on non-atomic locations
cannot be verified. We show the syntax of assertions in Fig. 2,
which will be explained throughout the paper. A points-to
assertion | +> e denotes a transferrable resource, providing
permission to access the location /, and expressing that / has
been initialised and its current value is e. Here, & is a fraction
0 < k < 1; k = 1 denotes the full (or exclusive) permission
to read and write location /, whereas 0 < k < 1 provides
(non-exclusive) read access [8]. Points-to resources can be
split and recombined, but never duplicated or forged; when
transferring such a resource to another thread it is removed
from the current one, avoiding data races by construction.
The RSL assertion Uninit(/) expresses exclusive access to a
location / that has been allocated, but not yet initialised; /
may be written to but not read from. The main proof rules
for non-atomic locations, adapted from RSL [43], are shown
in Fig. 3. The latter two rules included are the frame rule,
used for locally reasoning about only the relevant logical
resources (and preserving information about the others) in
any given proof step, and the rule for parallel composi-
tion, which allows modular proofs about parallel threads.
Other statement-level rules for e.g. sequential composition
or if-conditions are standard, and their encodings into Viper
straightforward; we refer the reader to [43] for a full set of
these additional proof rules.

2.2 Encoding

The Viper intermediate verification language [26] supports
an assertion syntax based on that of Implicit Dynamic

@ Springer

A. J. Summers, P. Miiller

{true} | := allocna() {Uninit(l)}

{15 v Uninit(D)} [[]oa == e {I = €}

(IS e}z =l {z=cxl>e}

(l»i>e * lge')(:)(e:e/*lklit,e)

{A1} s {42}
(A1 + A} s {Azx A'}
{A1} s1 {A2} {As} s2 {A4}
{A1 % Az} s1]|s2 {A2 x As}

Fig. 3 Adapted RSL rules for non-atomics, along with the frame and
parallel composition rules. Read access requires a non-zero permission.
Write access requires either write permission or that the location is
uninitialised. The underscore _ stands for an arbitrary value. Here and
throughout the paper, permission amounts k are strictly positive: 0 <
k<1

Frames [36], a program logic related to separation logic [29],
but which separates permissions from value information.
Viper is object-based; the only memory locations are field
locations e. f (in which e is a reference, and f a field name).
Permissions to access these heap locations are described
by accessibility predicates of the form ace (e. f, k),
where k is a fraction as for points-to predicates above (k
defaults to 1). Assertions that do not contain accessibility
predicates are called pure. Unlike in separation logics, heap
locations may be read in pure assertions.

We model C-like memory locations / using a field
val of a Viper reference /. Consequently, a separa-

tion logic assertion [K e (denoting k permission to
the location [storing value e) is represented in Viper as
acc(l.val, k) && [.val == e. We assume
that memory locations have type int, but a generalisation
is trivial. Viper’s conjunction && treats permissions like a
separating conjunction, requiring the sum of the permissions
in each conjunct, and acts as logical conjunction for pure
assertions (just as * in separation logic).

Viper provides two main statements for encoding proof
rules: inhale A adds the permissions denoted by the
assertion A to the current state, and assumes pure asser-
tions in A. This can be used to model gaining new
resources, e.g. acquiring alock in the source program. Dually,
exhale A checks thatthe current state satisfies A (other-
wise a verification error occurs), and removes the permissions
that A denotes; the values of any locations to which no per-
mission remains are havoced (assigned arbitrary values).
For example, when forking a new thread, its precondition
is exhaled to transfer the necessary resources from the fork-
ing thread. Inhale and exhale statements can be seen as the
permission-aware analogues of the assume and assert state-

@ Springer

field val: Int
field init: Bool

| Uninit(1)]| ~ acc(l.val) && acc(l.init) & !l.init
|15 e]| ~ acc(l.val, k) & acc(l.init, k) &&
l.val == “_eJJ && l.init

[[l = allocna()]] ~+ 1 := new(); inhale [LUninit(l)JJ
[[:E = [l]na]] ~» assert l.init; x := l.val
[[[l]na = e]] ~» l.val := [LeJJ; 1.init := true

Fig. 4 Viper encoding of the RSL assertions and the rules for non-
atomic memory accesses from Fig. 3

ments of first-order verification languages [24]. Viper also
provides an assert statement; analogous to exhale,
assert A checks that the current state satisfies A, but
does not remove any permissions.

The encoding of the rules for non-atomics from Fig. 3
is presented in Fig. 4. [A] ~- ... denotes the encoding of
an RSL assertion A as a Viper assertion, and analogously
[[sT ~~ ... for source-level statements s.

The first two lines introduce two fields, val and init.
Since Viper does not have a built-in notion of initialisation,
we use the boolean init field to reflect whether a mem-
ory location has been initialised. The assertion encodings use
both fields and the corresponding permissions. Allocation is
modelled by obtaining a fresh reference (via new ()) and
inhaling permissions to its val and init fields; assum-
ing ! 1. ini t reflects that the location is not yet initialised.
Viper implicitly checks the necessary permissions for field
accesses (verification fails otherwise). Hence, the translation
of a non-atomic read needs to check explicitly only that the
read location is initialised before obtaining its value. Analo-
gously, the translation of a non-atomic write only stores the
value and records that the location is now initialised.

Note that Viper’s implicit permission checks are both nec-
essary and sufficient to encode the RSL rules in Fig. 3. In

particular, the assertions [N _ and Uninit(/) both pro-
vide the permissions to write to location /. By including
acc (1.val) in the encoding of both assertions,® we
avoid the disjunction of the RSL rule.

Like the RSL logics, our approach requires programmers
to annotate their code with access modes for locations (as
part of the alloc statement), and specifications such as
pre and post-conditions for methods and threads (as well as
loop invariants and, in rare cases, ghost statements). Given

these inputs, Viper constructs the proof automatically. In par-

3 By convention, we use math-font variables for meta/logical variables
and those from source programs (e.g. in Uninit(/); we use correspond-
ing code-font variables for the Viper variables corresponding to these
source-level variables (e.g.in acc (1.val)).

Automating deductive verification for weak-memory programs (extended version)

Fig.5 An example illustrating
“message passing” of

non-atomic ownership, using
release-acquire atomics

(inspired by an example from

[13]). Annotations are shown in
blue. This example

corresponds to
RelAcgDblMsgPassSplit
in our evaluation (Sect. 7)

Q1 =

{Acq(l, Q1) * Init(l)}
while([l]acg == 0);
x = [a]na
[a]lna =2+ 1

{true % a > 43}

ticular, it automatically proves entailments, and splits and
combines fractional permissions (hence, the equivalence in
Fig. 3 need not be encoded). Automation can be increased
further by inferring some of the required assertions, but this
is orthogonal to the encoding presented in this paper.

3 Release-acquire atomics

The simplest form of C11 atomic memory accesses are
release write and acquire read operations. They can be used
to synchronise the transfer of ownership of (and information
about) other, non-atomic locations, using a message pass-
ing idiom, illustrated by the example in Fig. 5. This program
allocates two non-atomic locations a and b, and an atomic
location / (initialised to 0), which is used to synchronise the
three threads that are spawned afterwards. The middle thread
makes changes to the non-atomics a and b, and then signals
completion via a release write of 1 to /; in the separation
logic sense of reasoning about this program, the thread gives
up ownership of the non-atomic locations via this signal. The
other threads loop attempting to acquire read a non-zero value
from /. Once they do, they each gain ownership of one non-
atomic location via the acquire read of 1 and access that loca-
tion. The release write and acquire reads of value 1 enforce
ordering constraints on the non-atomic accesses, preventing
the left and right threads from racing with the middle one.

3.1 RSL proof rules

The RSL logics capture message-passing idioms by associ-
ating a location invariant Q with each atomic location. Such
an invariant is a function from values to assertions; we repre-
sent such functions as assertions with a distinguished variable
symbol V as parameter. Location invariants prescribe the
intended ownership that a thread obtains when performing
an acquire read of value V from the location, and that must
correspondingly be given up by a thread performing a release
write. The main proof rules [43] are shown in Fig. 6.

When allocating an atomic location for release/acquire
accesses (first proof rule), a location invariant Q must be
chosen (as an annotation on the allocation). The assertions

(V#0=a+rs42)

{true x Init(l)}

Q= V#0=>b7)
{true}

a = allocna(); b := allocna(); | := alloCacq(Q1%92); [{Jrer :== 0
{Uninit(a) * Uninit(b) * Rel(l, Q1%Q2)}

{Acq(l, Q2) = Init(l)}

[a]na := 42 while([lJacg == 0);
[Bloa := 7 y = [b]na
[”rel =1 [b}na =Y+ 1

{true = b > 8}
{true x a V> 43 % b > 8 * Init(1)}

{true} [:= allocaq(Q) {Rel(l, Q) * Acq(l, Q)}

{Q(e) * Rel(l, Q)} [I]rer := e {Init(l) x Rel(l, Q)}

{Init(l) * Acq(l, @)} @ := [lJace {Qz/V] * Aca(l, (V # z = Q))}

Init(l) < Init(l) * Init(l) Rel(l,Q) < Rel(l, Q) * Rel(l, Q)

Acq(l, Q1 x Q2) < Acq(l, Q1) * Acq(l, Q2)

Qi Q = Acq(l, Q1) = Acq(l, Q)

Fig.6 Adapted RSL rules for release-acquire atomics. Location invari-
ants Q are parameterised by the value read from or written to the
location. This value is represented by the free variable V in location
invariants. Q(e) denotes Q with e substituted for VV

Rel(l, Q) and Acq(l, Q) record the invariant to be used with
subsequent release writes and acquire reads. To perform a
release write of value e (second rule), a thread must hold
the Rel(, Q) assertion and give up the assertion Q[e/V]. For
example, the line [/]ye1 := 1 in Fig. 5 causes the middle
thread to give up ownership of both non-atomic locations a
and b. The assertion Init(/) represents that atomic location /
is initialised; both Init(/) and Rel(/, Q) are duplicable asser-
tions: once obtained, they can be passed to multiple threads.

Multiple acquire reads might read the value written by a
single release write operation; RSL prevents ownership of
the transferred resources from being obtained (unsoundly)
by multiple readers in two ways. First, Acq(l, Q) assertions
cannot be duplicated, only split by partitioning the invariant
Q into disjoint parts. For example, in Fig. 5, Acq(/, Q) is
given to the left thread, and Acq(l, Q) to the right. Second,
the rule for acquire reads adjusts the invariant in the Acq
assertion such that subsequent reads of the same value will
not obtain any ownership.

3.2 Encoding

A key challenge for encoding the above proof rules is that Rel
and Acq are parameterised by the invariant Q; higher-order
assertions are not directly supported in Viper. However, for
a given program, only finitely many such parameterisations

@ Springer

A. J. Summers, P. Miiller

will be required, which allows us to apply defunctionalisa-
tion [30], as follows. Given an annotated program, we assign
a unique index to each syntactically-occurring invariant Q
(in particular, in allocation statements, and as parameters
to Rel and Acq assertions in specifications). This allows us
to parameterise Viper-level assertions with indices rather
than other assertions and, thus, avoids higher-order asser-
tions. Furthermore, we assign unique indices to all immediate
conjuncts of these invariants, which allows us to refer to indi-
vidual conjunctions when an Acq assertion is split according
to the penultimate line of Fig. 6. We write indices for the set
of indices used in the current example. For each i in indices,
we write invi for the invariant which i indexes. For an invari-
ant Q, we write (Q) for its index, and {(Q) for the set of
indices assigned to its immediate conjuncts.

Our encoding of the RSL rules from Fig. 6 is summarised
in Fig. 7. In contrast to non-atomic locations, RSL uses
an Init(/), but no Uninit(/) assertion for atomic locations
[; that is, it tracks only positive initialisation information.
We represent the fact that a location is initialised by the
presence of some permission to the init field; the value
of this field is irrelevant. To encode duplicable assertions
such as Init(/), we use fractional permissions. We represent
Init(/) with some non-zero permissionto/ . ini t. Since the
concrete fraction is irrelevant, we use Viper’s wildcard per-
missions [26], which represent unknown positive permission
amounts. When exhaled, these amounts are chosen such that
the amount exhaled will be strictly smaller than the amount
held (verification fails if no permission is held) [16]. So after
inhaling an Init(/) assertion (thatis,a wildcard permis-
sion), it is possible to exhale two wildcard permissions,
corresponding to two Init(/) assertions.

We represent a Rel(/, Q) assertion using an additional
Viper field rel: Permission to this field represents the Rel
assertion for some invariant, while rel’s value indicates
the index of the specific invariant Q. Since Rel is dupli-
cable, we employ again a wildcard permission in the
SomeRel (1) macro.* The encoding of a release write
uses this macro to assert that some Rel assertion is held,
according to Fig. 6. It subsequently branches on the value
of the rel field to exhale the appropriate invariant.

Analogously to Rel, we represent an Acq assertion via
an additional Viper field acqg. However, to support split-
ting, we represent the invariant in a more fine-grained way,
by recording individual conjuncts separately. Each con-
junct i of the invariant is modelled as a predicate instance
AcgConjunct (I, i), which can be inhaled and exhaled
individually. A predicate instance represents a resource (just
like a field permission), but can be parameterised by multi-
ple parameters (here, the location and the invariant index).

4 Viper macros can be defined for assertions or statements, and are
syntactically expanded (and their arguments substituted) on use.

@ Springer

field rel: Int

field acq: Bool

predicate AcqConjunct(l: Ref, idx: Int)
function valsRead(l: Ref, i: Int): Set[Int]
requires AcqConjunct(l, i)

define SomeRel(1)
define SomeAcq(l)

acc(l.rel, wildcard)
acc(l.acqg, wildcard) &&
l.acq == true

”_Init(l)JJ ~s acc(l.init, wildcard)
|[Rel(1, Q) || ~ SomeRel(l) && l.rel == (Q)
[LAcq(l,Q)JJ ~s SomeAcq(l) &&
(foreach i in {(Q):
AcqgConjunct(l, %) & valsRead(l, 7) == Set();
end)

[[l = allocacq(Q)ﬂ ~> 1 := new();
inhate |Rel(l,Q)] && ||Acq(l, Q)]

[[[l]re1 = e]] ~+ assert SomeRel(1l);
foreach i in indices do
if (i == L.rel) { exhale |inv(i)[e/V]] };
end
inhate | Init(l) |

[z := [acq] ~ assert |Init(l)| && SomeAcq(l);
x := havoc(); // unknown Int
foreach i in indices do
if (perm(AcqConjunct(l, 7)) == 1 &&
I(x in valsRead(l, 7)))
{
inhate | inv(i)[x/V]]
tmpSet := valsRead(l, %)
exhale AcqConjunct(l, %)
inhale AcqConjunct(l,) &&
valsRead(l,7) == tmpSet union Set(x)
}

end

Fig. 7 Viper encoding of the RSL rules for release-acquire atomics
from Fig. 6. The operations in italics (e.g. foreach) are expanded
statically in our encoding into conjunctions or statement sequences.
The value of the acq field will be explained in Sect. 5

AcgConjunct is an abstract predicate, that is, has no
definition; this reflects that the predicate serves merely as a
resource to track and prescribe which invariants are inhaled
during a subsequent acquire read.

Representing an invariant viamultiple AcgConjunct
instances handles the common case that invariants are split
along top-level conjuncts, as in Fig. 5. More complex
splits can be supported through additional annotations, as
explained in Sect. 3.3. To enable splitting, we encode the Acq
assertion for some invariant using a wildcard permis-
sion (the SomeA cqg macro), analogously to Rel. However,
since Acq is not duplicable for any given invariant, we use

Automating deductive verification for weak-memory programs (extended version)

full permissions to the AcgConjunc t predicates repre-
senting the invariant conjuncts.

Allocation of an atomic location obtains a fresh reference
and inhales the Rel and Acq() predicates for the chosen loca-
tion invariant Q.

A release write is encoded by checking that some Rel asser-
tion is held, and then exhaling the associated invariant for the
value written. The foreach statement is unrolled statically;
together with the if-statement, it determines the invariant to
be exhaled by comparing all possible invariant indices to the
index stored in the re 1 field of the updated location. More-
over, the encoding records that the location is initialised.

The RSL rule for acquire reads adjusts the Acq invari-
ant by obliterating the assertion for the value read. Instead
of directly representing the adjusted invariant (which would
complicate our numbering scheme), we track the set of values
read as state in our encoding. For each AcgConjunct (/,
i) predicate, we record the values that have been read from /
and for which the invariant with index i was already claimed.
To avoid mutable maps in our encoding, we complement
each AcgConjunct predicate instance with an (unin-
terpreted) Viper function valsRead (I, i), returning
a set of values, and update information about this function
explicitly when a value is read.

An acquire read checks that the location is initialised and
that we have some Acq assertion for the location. It assigns an
unknown value to the lhs variable x, which is subsequently
constrained by the invariant associated with the Acq assertion
as follows: We check for each index whether we both cur-
rently hold an AcgConjunc t predicate for that index,’
and if so, have not previously read the value x from that
conjunct of our invariant. If these checks succeed, we inhale
the indexed invariant for x, and then include x in the val-
ues read. Viper’s heap-dependent functions are mathematical
functions of their parameters and the resources stated in their
preconditions (here, AcgConjunct ([, i)). Consequently,
exhaling and re-inhaling the function’s precondition removes
all prior information about the function value, which is then
constrained to be the union of its previous value (stored in
variable tmp Se t) and the newly read value x.

3.3 Rewriting invariants

The encoding described so far supports automatically split-
ting and conjoining the invariants of Acq assertions according
to the penultimate line of Fig. 6. Beyond that, it is sometimes
necessary to rewrite these invariants using general entailment
reasoning according to the final line of Fig. 6, for instance,
when two programmer-annotated assertions are equivalent,
but not syntactically identical.

3> A perm expression yields the permission fraction held for a field or
predicate instance.

We support rewriting invariants by providing a ghost
statementrewrite Acq(l, Q) as Acq(l, Q") which pro-
grammers can manually insert to express that invariant Q
should be rewritten to Q’. This statement gives rise to a proof
obligation that checks the entailment between the original
invariant Q and the new invariant @', for all values of V and
in all states.

In RSL, rewriting invariants is a side condition of a
standard rule of consequence step (cf. Fig. 6). Such side con-
ditions can be encoded in Viper via a conditional statement,
where one branch checks the side condition and the other ver-
ifies the implementation under the assumption that the side
condition holds. Since the verifier explores both branches, it
will verify the code and prove the side condition. The encod-
ing in Fig. 8 uses a non-deterministic i £ statement for this
purpose. To encode the side condition, that is, the entailment
check, for all values of V' and all states, the t hen-branch
removes all permissions from the current state, obliterating
all information that the verifier had about any heap locations,
and havoc an integer variable, representing the arbitrary
value of V. We inhale the original invariant Q (using
our indexing as usual), and exhale the new invariant Q’.
If the exhale succeeds then the entailment holds. Since
the then-branch encodes a side condition, we kill it by adding
an assume false toensure that only the other branch
(in which no changes were made) will be considered for fur-
ther verification. Lastly, we perform the rewriting itself by
discarding all of the original AcgConjunct instances,
and replacing them with the new ones. Verification can then
proceed as usual.

3.4 Multiple copies of invariant conjuncts

The encoding of Acq(/, Q) assertions in Fig. 7 expresses
that no value has been read for the conjuncts of invariant Q
(valsRead (1,i)==Set ()). Thisis unsoundif a program
inhales an Acq(/, Q) conjunct, then performs an acquire read,
and then inhales another Acq(l, Q) conjunct, for instance,
due to joining a thread. In that case, the second inhale
re-constrains valsRead (1, i) to be the empty set, even
though values have been written. We avoid this unsoundness
simply by inhaling valsRead (1,i) ==Set () only if the
newly acquired conjunct was not already held. This is easy
to check using Viper’s pexrm expressions analogously to
Fig. 8.

The encoding presented so far allows us to automati-
cally verify annotated C11 programs using release writes and
acquire reads (e.g. the program of Fig. 5) without any cus-
tom proof strategies [28]. In particular, we can support the
higher-order Acq and Rel assertions through defunctionalisa-
tion and enable the splitting of invariants through a suitable
representation.

@ Springer

A. J. Summers, P. Miiller

[rewrite Acq(l, Q) as Acq(l, Q)] ~
assert SomeAcq(l)
var tmpBool : Bool
tmpBool := havoc()

if (tmpBool) { // check rewriting is justified

// remove all permissions from current state
exhale forall r: Ref :: r != null ==>
acc(r.init, perm(r.init))
exhale forall r: Ref :: r != null ==>
acc(r.val, perm(r.val))
exhale forall r: Ref :: r != null ==>
acc(r.rel, perm(r.rel))
exhale forall r: Ref :: r != null ==>
acc(r.acq, perm(r.acq))
// analogously for other fields and predicates
// in the generated Viper program

var v :Int
v := havoc() // perform check for arbitrary v

// inhale original invariant
foreach 1 in indices do
if(i in (Q)) |

inhate | inv(i)[v/V]]
}

end

// exhale new invariant
foreach i in indices do
if(i in (Q')) {

exhale | inv(i)[v/V]]
}

end

assume false // kill this branch -
// the rewriting is justified

}

// update the conjuncts held
exhale (foreach i in {(Q):

AcqConjunct(l, i) & valsRead(l, i) == Set() end)
inhale (foreach i in <<Q/>>=
AcqConjunct(l, i) & valsRead(l, i) == Set() end)

Fig.8 Viper encoding of a source-level rewrite statement. For sim-
plicity, we focus on the case of rewriting invariants for which no values
have been read (valsRead is empty)

4 Relaxed memory accesses and fences

In contrast to release-acquire accesses, C11’s relaxed atomic
accesses provide no synchronisation: threads may observe
reorderings of relaxed accesses and other memory opera-
tions. Correspondingly, RSL’s proof rules for relaxed atomics
provide weak guarantees, and do not support ownership
transfer. Memory fence instructions can eliminate this prob-
lem. Intuitively, a release fence together with a subsequent

@ Springer

{A} fenceret {AA} {V A} fenceaq {A}

{AO(e) % Rel(l, Q)} [l]rx := e {Init(l) * Rel(l, Q)}

{Init(l) x Acq(l, Q)} = := [l]rx {VQ[z/V] * Acq(l,V # z = Q)}

(Al = AQ) = (AAl = AAQ) = (VAl = VAQ)

V(A; * Az) = (VA1) * (VAg)

and analogously for A\ and other binary connectives

VA=A=AA
if A references only ghost heap locations

Fig.9 Adapted FSL rules for relaxed atomics and fences

relaxed write allows a thread to transfer away ownership of
resources, similarly to a release write. Dually, an acquire
fence together with a prior relaxed read allows a thread to
obtain ownership of resources, similarly to an acquire read.
This reasoning is justified by the ordering guarantees of the
C11 model [13].

4.1 FSL proof rules

FSL and FSL++ provide proof rules for fences (see Fig. 9).
They use modalities A (“up”) and V (“down”) to represent
resources that are transferred through relaxed accesses and
fences. An assertion A A represents a resource A which has
been prepared, via a release fence, to be transferred by a
relaxed write operation; dually, V A represents resources A
obtained via a relaxed read, which may not be made use
of until an acquire fence is encountered. The proof rule for
relaxed write is identical to that for a release write (cf. Fig. 6),
except that the assertion to be transferred away must be
under the A modality; this can be achieved by the rule for
release fences. The rule for a relaxed read is the same as
that for acquire reads, except that the gained assertion is
under the V modality. The modality can be removed by a
subsequent acquire fence. As shown in the last lines of the
Figure, assertions may be rewritten under modalities, and
both modalities distribute over all other logical connectives.
Finally, FSL+4+ allows additional non-atomic heap locations
to be added to the programs as ghost locations. These are typ-
ically employed in proofs to facilitate additional transfer of
information between the atomic invariants and threads inter-
acting with them. In particular, as the last line of the Figure
shows, assertions depending only on ghost locations can be
freely moved in and out of the modalities.

Figure 10 shows an example program, which is a variant
of the message-passing example from Fig. 5. Comparing the
left-hand one of the three parallel threads, a relaxed read is
used in the spin loop; after the loop, this thread will hold the

Automating deductive verification for weak-memory programs (extended version)

Q1 = V#0=ar42)

Q= VA0=b57)

{true}
a := allocna(); b := allocna();l := alloCacq(Q1%92); [l]rer := 0

{Acq(l, Q1) * Init(1)}

{Uninit(a) * Uninit(b) * Rel(xz, Q1%Q2)}

{Acq(l, Qz) * Init(l)}

while([{]nx == 0); [a]na := 42; while([{]nx == 0);
fenceacq; [b]na :== T fenceacq;

z = [a]na fencerei(a Hs 42 % b s 7); y = [blna;

(alna := 2+ 1 s = 15 Bloo =y + 1

{true % a > 43} {true « Init({)}

{true % b > 8}

{true s a — 43 % b+ 8}

Fig. 10 A variant of the message-passing example of Fig. 5, combining relaxed memory accesses and fences to achieve ownership transfer. The
example is also a variant of Fig. 2 of the FSL paper [13], which is included in our evaluation (FencesDblMsgPass) in Sect. 7

assertion Va > 42. The subsequent fence,cq statement
allows the modality to be removed, allowing the non-atomic
location a to be accessed. Dually, the middle thread employs
a fenceye; statement to place the ownership of the non-
atomic locations under the A modality, in preparation for the
relaxed write to [.

4.2 Encoding

The main challenge in encoding the FSL rules for fences is
how to represent the two new modalities. Since these modal-
ities guard assertions that cannot be currently used and/or
combined with modality-free assertions, we model them
using two additional heaps to represent the assertions under
each modality. That is, the assertions A, VA, and A A are all
encoded like assertion A, but refer to a “real” heap, a “down”
heap, and an “up” heap, respectively. The program heap
(along with associated permissions) is a built-in notion in
Viper, and so we cannot directly employ three heaps. There-
fore, we construct the additional “up” and “down” heaps,
representing each source location through three references
in Viper’s heap (rather than one reference in three heaps).
For this purpose, we axiomatise bijective mappings up and
down between a real program reference and its counterparts
in these heaps. Assertions A A are then represented by replac-
ing all reference-typed variables r in the encoded assertion
A with their counterpart up(r). We write [A]*’ for the
transformation which performs this replacement. For exam-
ple,[acc (x.val) && x.val 47%P is trans-
formedtoace (up (x) .val) && up(x).val
Analogously, we write [A]%"" for the corresponding trans-
formation for the down function.

The extension of our encoding is shown in Fig. 11. We
employ a Viper domain to introduce and axiomatise the
mathematical functions for our up and down mappings. A
Viper domain represents a mathematical theory, consisting of
uninterpreted functions and axioms over them. By axioma-
tising inverses for these mappings, we guarantee bijectivity.
Bijectivity allows Viper to conclude that (dis)equalities and
other information is preserved under these mappings. Con-

domain threeHeaps {
function up(x: Ref) : Ref;
function up_inv(x: Ref) : Ref;
function down(x: Ref) : Ref;
function down_inv(x: Ref) : Ref;
function heap(x: Ref) : Int;
// identifies which heap a Ref is from
axiom { forall r:Ref :: up_inv(up(r)) ==
(heap(r) == 0 ==> heap(up(r)) == 1}
axiom { forall r:Ref :: up(up_inv(r)) == r &&
(heap(r) == 1 ==> heap(up_inv(r)) == 0 }
axiom { forall r:Ref :: down_inv(down(r))
(heap(r) == 0 ==> heap(down(r)) == -1 }
axiom { forall r:Ref :: down(down_inv(r))
(heap(r) == -1 ==> heap(down_inv(r)) == 0 }

}
LAl ~rllalre VAl ~ LA™

[[[l]ﬂx = e]] ~ ...encoded as for release writes

(Fig. 7) except using [inv(i)]* in place of inv(i)
[[x = [l]rlx]] ~~ ...encoded as for acquire reads

(Fig. 7) except using [inv(i)]%“" in place of inv(i)

r &

r &

r &

[[fencerel(A)]] ~ exhale [LAJJ; inhale (U_AJH“”

ﬂfenceamﬂ ~» var rs : Set[Ref];
rs := havoc() // unknown set of Refs
assume forall r: Ref :: r in rs <==>
perm(down(r).val) > none
inhale forall r: Ref :: r in rs ==>
acc(r.val, perm(down(r).val))
assume forall r: Ref ::
r.val == down(r).val
exhale forall r: Ref ::
acc(down(r).val, perm(down(r).val))
//and analogously for each other field and
//predicate (in place of val)

r in rs ==>

r in rs ==>

Fig. 11 Viper encoding of the FSL rules for relaxed atomics and mem-
ory fences from Fig. 9. We omit triggers for the quantifiers for simplicity,
but see [28]

sequently, we do not have to explicitly encode the last two
rules of Fig. 9; they are reduced to standard assertion manip-
ulations in our encoding. An additional heap function labels
references with an integer identifying the heap to which they

@ Springer

A. J. Summers, P. Miiller

{true} | := allocam(Q) {Rel(l, Q) *x RMWAcq(l, Q)}

z ¢ FV(P) P = P if 7 € {rel,rel_acq}
x ¢ FV(e) ~ | AP otherwise
Qle/VIEAxT A= A if T € {acq, rel_acq}
PxT = Qe /V) —) VA otherwise

{ Init(l) = Rel(l, Q)= } { Init(l) = Rel(l, Q)+ }
RMWACcq(l, Q)% p = := CAS-(l,e,e’) { RMWAcq(l, Q)*
P’ (x=e? A :P)

RMWAcq(l,Q) < RMWAcq(l, Q) * RMWAcq(l, Q)

Fig. 12 Adapted FSL++ rules for compare and swap operations. FV
yields the free variables of an assertion

belong (0 forreal references, -1 and 1 for their “down” and
“up” counterparts); this labelling provides the verifiers with
the (important) information that these notional heaps are dis-
joint. For all reference-typed variables and expressions in the
source program, we add the assumption that the references
they store (if non-null) belong to heap 0.

Our handling of relaxed reads and writes is almost iden-
tical to that of acquire reads and release writes in Fig. 7; this
similarity comes from the proof rules, which only require that
the modalities be inserted for the invariant. Our encoding for
release fences requires an annotation in the source program
to indicate which assertion to prepare for release by placing
it under the A modality.

Our encoding for acquire fences does not require any
annotations. Any assertion under the V modality can (and
should) be converted to its corresponding version without
the modality, because V A is strictly less-useful than A itself.
To encode this conversion, we find all permissions currently
held in the down heap, and transfer these permissions and
the values of the corresponding locations over to the real
heap. These steps are encoded for each field and predicate
separately; Fig. 11 shows the steps for the val field. We
first define a set rs to be precisely the set of all references
r to which some permission to down (r) . val is cur-
rently held, i.e., perm (down (r) . val) > none.
For each such reference, we inhale exactly the same
amount of permission to the corresponding r . val loca-
tion, equate the heap values, and then remove the permission
to the locations in the “down” heap.

With our encoding based on multiple heaps, reasoning
about assertions under modalities inherits all of Viper’s native
automation for permission and heap reasoning. We will reuse
this idea for a different purpose in the following section.

4.3 Ghost locations

Ghost locations are handled analogously to regular locations,
but the encoding needs to be adapted to reflect the equivalence

@ Springer

in the last line of Fig. 9. The adapted encoding is given in
Fig. 13.

Firstly, we add an uninterpreted boolean function
is_ghost on references, to identify whether or not
a location is ghost. For each reference-typed parameter
employed in the encoding of a source program, we add
assumptions defined by the macros normalRef (x)°
or ghostRef (x); these both constrain that the refer-
ence’s value is on the “real” heap in the sense of Sect. 4.2,
and thenaddthe is_ghost or ! is_ghost assump-
tion, depending on whether the parameter was declared ghost
in the source program.

To obtain the equivalence in the last line of Fig. 9, we adapt
our multiple-heaps encoding for ghost locations. Concretely,
we replace the domain threeHeaps from Fig. 11 with
the version from Fig. 13. This version requires the up and
down mappings to act as the identity for ghost locations (cor-
respondingly, the result of heap is no longer constrained
to be different after applying these mappings to a ghost
reference). This immediately gives us that, for assertions
depending only on ghost locations in the heap, AA, A and
V A are handled equivalently; they will be encoded as prov-
ably equivalent assertions.

Finally, we add an assumption of normalRef (r)
to our existing statements for allocating references, and add
a new ghost allocation statement, for which the analogous
ghostRef (r) assumption is added. These details are
summarised in Fig. 13.

5 Compare and swap

C11 includes atomic read-modify-write operations, which
are commonly used to implement high-level synchronisation
primitives such as locks. FSL++ [14] provides proof rules
for compare and swap (CAS) operations. An atomic compare
and swap CAS; (I, e, ¢') reads and returns the value of loca-
tion /; if the value read is equal to e, it also writes the value
¢’ to location [(otherwise we say that the CAS fails). The
annotation 7 indicates an atomic access mode, see Fig. 1.

6 For historical reasons, in our artefact examples, the normalRef
macro is actually called realRe f; we renamed this subsequently
due to potential confusion with the notion of the “real heap” employed
in Sect. 4.2.

7 Inthe RSL logics, extended CAS proof rules are also supported (e.g. in
the “Appendix” of FSL++ [14]) allowing the specification of a different
access mode for when a CAS operation fails; we omit this for simplicity,
and use the same access mode for both cases. An extension would be
straightforward, but this flexibility has not yet appeared necessary for
any examples.

Automating deductive verification for weak-memory programs (extended version)

5.1 FSL++ proof rules

FSL++ does not support general combinations of atomic
reads and CAS operations on the same location; the way of
reading must be chosen at allocation via the annotation p
on the allocation statement (see Fig. 1). FSL++ provides an
assertion RMWAcq(l, Q), which is similar to Acq(/, Q), but
is used for CAS operations instead of acquire reads (that is,
when p = RMW). In contrast to the Acq assertions used for
atomic reads, RMWAcq assertions can be freely duplicated
and their invariants need not be adjusted for a successful
CAS: when using only CAS operations, each value read from
alocation corresponds to a different write. A successful CAS
both obtains ownership of an assertion via its read operation
and gives up ownership of an assertion via its write operation.

Our presentation of the relevant proof rules is shown in
Fig. 12. Allocating a location with annotation RMW provides
a Rel and a RMWAC(q assertion, such that the location can be
used for release writes and CAS operations.

For the CAS operation, we present a single, general proof
rule instead of four rules for the different combinations of
access modes in FSL++4-. The rule requires that/ is initialised
(since its value is read), Rel and RMWACq assertions, and an
assertion P’ that provides the resources needed for a success-
ful CAS. If the CAS fails (that is, x # e), its precondition is
preserved.

If the CAS succeeds, it has read value e and written value
¢’. Assuming for now that the access mode t permits own-
ership transfer, the thread has acquired Q[e/V] and released
Qle'/V]. Asillustrated in Fig. 141, these assertions may over-
lap. Let T denote the assertion characterising the overlap;
then assertion A denotes Q[e/V] without the overlap, and P
denotes Q[¢’/V] without the overlap. The net effect of a suc-
cessful CAS is then to acquire A and to release P, while T
remains with the location invariant across the CAS. Automat-
ing the choice of T, A, and P is one of the main challenges
of encoding this rule. Finally, if the access mode T does not
permit ownership transfer (that is, fences are needed to per-
form the transfer), A and P are put under the appropriate
modalities.

5.2 Encoding

Our encoding of CAS operations reuses several of our ideas
and techniques presented in earlier sections. The details of
this encoding are shown in Fig. 15. We represent RMWAcq
assertions analogously to our encoding of Acq assertions (see
Sect. 3), but set the acq field to false in order to differen-
tiate holding one from the other.® Since RMWACcq assertions

8 Instead of distinguishing the two cases via the value of the acq
field, it would also be possible to introduce another field to represent
RMWACcq assertions.

define normalRef(x) !is_ghost(x) && heap(x) ==
define ghostRef(x) is_ghost(x) && heap(x) == 0

domain threeHeaps {

function up(x: Ref) : Ref
function down(x: Ref) : Ref
function up_inv(x: Ref) : Ref

function down_inv(x: Ref) : Ref

function temp(x: Ref) : Ref
function temp_inv(x: Ref) : Ref

function heap(x: Ref) : Int
function is_ghost(x:Ref) : Bool

axiom { forall r:Ref ::
up_inv(up(r)) == r &&
(is_ghost(r) ? up(r) == r :
heap(r)==0 ==> heap(up(r)) == 1) }
axiom { forall r:Ref ::
up(up_inv(r)) == r &&
(is_ghost(r) ? up_inv(r) == r :
heap(r)==1 ==> heap(up_inv(r)) == 0) }
axiom { forall r:Ref ::
down_inv(down(r)) == r &&
(is_ghost(r) ? down(r) == r
heap(r)==0 ==> heap(down(r)) == -1) }
axiom { forall r:Ref ::
down(down_inv(r)) == r &&
(is_ghost(r) ? down_inv(r) == r
heap(r)==-1 ==> heap(down_inv(r)) == 0) }

axiom { forall r:Ref ::

temp_inv(temp(r)) == r &&
(is_ghost(r) ? temp(r) == r :
heap(r)==0 ==> heap(temp(r)) == -3) }
axiom { forall r:Ref ::
temp(temp_inv(r)) == r &&
(is_ghost(r) ? temp_inv(r) == r :
heap(r)==-3 ==> heap(temp_inv(r)) == 0) }

}

[[l = allocghast()]] ~s
X := new(); assume ghostRef(x); // ghost location
inhale |LUninit(:E)JJ // ghosts are non-atomic

Fig. 13 A revision of the threeHeaps domain from Fig. 11, to
handle ghost locations. The function temp and temp__inwv,as well
as the corresponding axioms will be explained in Sect. 5

are duplicable (cf. Fig. 12), we employ wildcard
permissions for the corresponding AcgConjunct pred-
icates; this allows the RMWACcq assertions, along with their
full invariants to be freely duplicated, in contrast to Acq asser-
tions (whose invariants must be split when the Acq assertion
is split).

The encoding of allocation is straightforward; it inhales
the Rel and RMWACq predicates; the latter includes the infor-
mation that the new location is accessed via compare and
swaps (by setting its acq field to false.

@ Springer

A. J. Summers, P. Miiller

Qle/V]

A%
(1) Qle’/V]
, /;[;/17]\\ _____________ r /’dam_/r—eﬁ\\
A
/tmp - (V)A /
| A~ \\ \\\ //
| S R
R /J\
| T
et NS //
- p/real ~ . =z
, —
% P

(\\ (A)P_/n
(i) ~ -7 9le’/V]

Fig. 14 An illustration of (i) the proof rule for CAS operations and
(ii) our Viper encoding; the dashed regions denote the relevant heaps
employed in the encoding

The proof rule for CAS operations from Fig. 12 is com-
plex to encode. We initially check that we indeed hold the
required Init, RMWAcq and Rel assertions for the location,
according to the precondition of the rule. In case the CAS
fails, nothing else needs to be done. Otherwise, in the case
of a successful CAS operation, the key challenge is how to
select an appropriate assertion 7' to satisfy the premises of
the rule, while retaining maximal information for future proof
steps. Maximising the overlap represented by 7 is desirable
in practice since this reduces the resources to be transferred,
which must interact in some cases (when the access mode
is not rel_acq) with the modalities. Our Viper encoding
indirectly computes this largest-possible T as follows.

Reusing the notion of multiple heaps employed in Sect. 4,
we introduce yet another heap (“tmp”) in which we inhale
the invariant Q[e/V] for the value read; the functions and
axioms for the “tmp” heap are shown in Fig. 13. We proceed
in three steps (see Fig. 14ii for a high-level illustration).

Firstly, we inhale the newly gained resources (correspond-
ing to Q[e/V]) into the tmp heap.

Secondly, we attempt to exhale the assertion Q[e’/V] for
the value written, but adapt the assertions as follows: for each
permission in the invariant, we take the maximum possible
amount from our “tmp” heap; these permissions correspond
to 7. Any remainder is taken from the current heap (either
the real or the “up” heap, depending on 7); these correspond
to P. This adaptation of the assertion (which splits the taken
permission amounts across the two heaps) is denoted by the
[.]fmp/real and T.1%"P/*P mappings; if the values of heap loca-

@ Springer

define SomeRMWAcq(1l)
acc(l.acq, wildcard) & l.acq == false

[RMWACq(1, Q)| ~+ SomeRMWAcq(1l) &&
(foreach i in <<Q>>
acc(AcqConjunct(l, ¢),wildcard)
end)

[[l = allOCme(Q)ﬂ ~>
X := new();
assume normalRef(x); // not a ghost location
inhale ||Rel(l, Q)| && |[RMWACcq(, Q)|

[z := cas (I e,e)] ~
assert || Init(l)]| && SomeRMWAcq(l) && SomeRel(l);
X := havoc();
// inhale into tmp heap
if(x == Ueﬂ) { // CAS succeeds
foreach i in indices do
if (perm(AcqConjunct(l, z)) > 0) {
inhate || [inv(i)]"[z/V]]|
}
end
// exhale from tmp, real/up heaps (depends on T)
foreach i in indices do
if (¢ == l.rel) { // write synchronises
if (7 € {rel,rel_acq}) {
exhale || [inv(i)]™ || /V]]
} else {
exhale || [inv(i)]™"“*[| €| /V]]
}
}
end
// move tmp to real/down heap (depends on T)
var rs : Set[Ref];
rs := havoc() // unknown set of Refs
assume forall r: Ref :: r in rs <==>
perm(tmp(r).val) > none;
if(7 € {acq, rel_acq}) {
inhale forall r: Ref :: r in rs ==>
acc(r.val, perm(tmp(r).val));
assume forall r: Ref :: r in rs ==>
r.val == tmp(r).val;
} else {
inhale forall r: Ref :: r in rs ==>
acc(down(r).val, perm(tmp(r).val));
assume forall r: Ref :: r in rs ==>
down(r).val == tmp(r).val;
}
exhale forall r: Ref ::
acc(tmp(r).val, perm(tmp(r).val));
// analogously for each other field,
// predicate (in place of val)

rin rs ==>

Fig. 15 Viper encoding of the RSL rules for compare and swap opera-
tions

tions are also mentioned in the parameter assertions, these
heap dereferences must also be rewritten to a dereference in
the corresponding heap (e.g. x.val == 4 might become

Automating deductive verification for weak-memory programs (extended version)

[Lempﬂ ~~> true
[el ~ acc(l.val, k) & acc(l.init, k) &
L.val==|le| & l.init
uAl *A2JJ ~ |_LA1JJ&&|_LA2JJ
[b= Al ~ [b] = [A]
167 A+ A2)] (Lo 7 [Avl + LAs])
| Uninit()]| ~
acc(l.val) && acc(l.init) && !l.init
[Aca(t, @) ~
acc(l.acq, wildcard) && l.acq==true &&
(foreach i in <<Q>>: AcqConjunct(l, i) &&
valsRead(1l, i)==Set() end)
|[Rel(l, Q)| ~+ acc(l.rel, wildcard) & 1.rel==(Q)
[[nit(D)]] ~ acc(l.init, wildcard)
[AA] — [[A]*
[va] — [[a]]%
[RMWAcq(l, Q) || ~
acc(l.acq, wildcard) && l.acg==false &&
(foreach i in {Q): acc(AcqConjunct(l, 4), wildcard) end)

Fig. 16 Summary of our encoding of source-level assertions. Our
technique is agnostic as to the precise language of pure expressions;
we assume a suitable encoding of pure expressions into Viper, which
can typically be the identity mapping. Note that for examples which
potentially employ multiple copies of the same conjunct in an Acq()
predicate’s invariant, some additional care needs to be taken about when

exactly to make the valsRead (1, i) == Ser() assumption, see
Sect. 3.4
tmpx.val == 4).Incasepermission tothe corresponding

location is taken partly from both heaps, the extra assumption
that the two values are the same is explicitly added by these
mappings.

Finally, any permissions remaining in the “tmp’ heap after
this exhale correspond to the assertion A and are moved (in a
way similar to our fence,.q encoding in Fig. 11) to either
the real or “down” heap (depending on 7).

This combination of techniques results in an automatic
support for the proof rule for CAS statements. This com-
pletes the core of our Viper encoding, which now handles
the complete set of memory access constructs from Fig. 1.
We summarise the encoding of the general source language
of assertions in Fig. 16.

6 Soundness and completeness
In this section, we give soundness arguments (as an outlined

proof sketch) for our encoding, and also discuss complete-
ness compared with a manual proof effort.

6.1 Soundness overview

Soundness means that if the Viper encoding of a program
and its specification verifies, then there exists a proof of the

program and specification using the RSL logics. We outline
the soundness of our encoding via three key ingredients.

Firstly (Sect. 6.3), we identify invariants on the states of
the Viper programs which are in the image of our encoding.
They encode fairly basic properties, such as the fact that the
amounts of permission held to the val and init fields
of a non-atomic location are always the same. We can show
straightforwardly that these invariants are preserved by the
Viper programs generated by our encoding.

Secondly (Sect. 6.4), for Viper states satisfying these
invariants, we define a mapping from the state to an asser-
tion of the RSL logics. Conceptually, this mapping can be
thought of as capturing where we are in the construction of
a Hoare Logic proof in the original formalism. This is con-
nected to our soundness argument by then showing that, if
one compares the initial and final states of the encoding of
any source-level statement, and applies our mapping to each,
the assertions represent a Hoare triple derivable in the orig-
inal logics provided that the Viper-encoded program has no
verification errors. Thus, we connect verification at the Viper
level with proof construction at the Hoare logic level.

Finally (Sect. 6.5), we explain how we can be sure that
Viper does not, e.g. deduce inconsistency at points in a proof
where this would not be justified in the original logic. In gen-
eral, we need to know that any entailments between assertions
in a single state which Viper can justify automatically, reflect
entailments which were justified in the original logic.

Putting these three ingredients together, we know that the
verification of an encoded Viper program will imply the exis-
tence of a Hoare Logic derivation in the original logics; in
other words, our technique will only verify (encoded) proper-
ties for which a proof exists in the RSL logics; our technique
is sound.

6.2 Viper states and semantics

The states of a Viper program are triples (H, P, o) of a heap
H (mapping pairs of references and field names to values), a
permission map P (mapping such pairs, as well as predicate
instances to permission amounts, which can be considered
non-negative rational values; for field locations, these cannot
exceed 1), and an environment o, mapping variable names
to values. We write H[r, f]and P[r, f]for lookups in these
maps; for looking up e.g. predicate instances p(r) in the
permission map, we write P[p(r)].

The semantics of Viper’s core logic follows Parkinson and
Summers [29]; in particular, the semantics of heap-dependent
expressions such as heap dereferences x. f comes with a well-
definedness condition; such heap dereferences are allowed
only in states in which non-zero permission is held (i.e.
Plx, f]1 > 0). The treatment of functions and predicates
in the logic follows Summers and Drossopoulou [37].

@ Springer

A. J. Summers, P. Miiller

Verification of a Viper program amounts to: (1) Sym-
bolically tracking knowledge of changes to the Viper state
elements (heap values, permissions held, variable values).
For example, an inhale operation can add permissions
to the permission map P. (2) Checking that all assert
and exhale statements describe provable assertions (both
are sources of verification failures; the difference is that any
permissions or predicates in the assertion of an exhale
statement are removed from the current state). (3) Checking
that all expressions employed in the program are well-
defined: for heap dereferences this means checking that some
permission to the corresponding location is held; for appli-
cations of specification functions (such as valsRead in
our encoding), this means checking that their preconditions
hold where they are applied. Some assertions are defined via
specifications: for example, a method post-condition must be
shown to hold at the end of the method body.

6.3 Encoding invariants

Our encoding maintains invariants on the states of Viper
programs, which hold before and after (but not necessar-
ily during) the code-fragments generated by the encoding of
a single source-level statement. In particular, our argument
depends on the following invariant on states (H, P, o), guar-
anteed to hold at the start and end of each block of Viper code
representing the encoding of a single source-level statement
(assuming we reach the end of the block without verification
errors):

For non-atomic locations [-
P[l,val] = P[l, init] A
(P[l,val]l > OA H[l, init] = false = P[l,val]l=1)

This states that we always hold the same amount of permis-
sion to the val and init fields of an encoded non-atomic
location, and if we hold such permissions and the correspond-
ing init field is false, then the only possibility is that we
hold the full permissions. This corresponds to the fact that the
Uninit(/) assertion in the RSL logics is not splittable, whereas
once a non-atomic location is initialised, its ownership can
be shared.

In explaining our soundness argument we make use
implicitly of the fact (also assumed at the source level, and
in the RSL logics themselves) that locations are known to
be either non-atomic or atomic locations; this is indirectly
reflected at the Viper level in terms of which permissions or
predicates are held for the locations, but is only explicitly
relevant for constructing the soundness argument itself.

Itis straightforward to show that the above invariant is pre-
served by our statement encodings, i.e. if we assume it in the
Viper state prior to the translation of a source-level statement,
we can show that (barring verification errors, or reaching an

@ Springer

inconsistent state) it will be still be true in the state after the
Viper statements generated by the source-level statement’s
encoding. This can be checked per statement encoded; here
we summarise the overall argument applicable to all cases.
Consider first the first conjunct of the invariant. Alloca-
tion of a non-atomic location provides full permission to
both val and init fields. These permissions can be subse-
quently modified as a result of program statements which
add or remove RSL logic assertions A, e.g. forking and
joining threads. Each of these results in a corresponding
exhale |A] orinhale | A] operationin the encoded
Viper program. The definition of | A || (cf. Fig. 16) only con-

cerns these permission amounts in two cases: ||/ s e] and
[LUninit(?) | ; in both cases, the permissions to the two fields
come together in identical amounts.

We now consider preservation of the second conjunct of
the invariant; that is, we show preservation of (P[l, val] >
0 A H[l,init] = false = P[l,val] = 1). We use the
fact discussed above: that permissions to the two fields are
only ever added or removed in sync with each other. We also
observe that no encoding of a statement results in assigning
false to any init field; the only way of adding knowledge
that an init field is false is via the . We now consider two
cases on properties of the prior Viper state (H, P, 0):

(Case P[Il,val] = 0): Then either the encoding of the
statement doesn’t change this fact (the invariant conjunct
remains trivially true), or it adds non-zero permissions
to the field locations /.val and /.init. This can only
be done by an inhale of |[Uninit(/)] or of (perhaps

several times) |/ S e]l for some e, k (cf. Fig. 4). In
the former case, the invariant conjunct is true, since
P[l,val] = 1 is guaranteed after inhaling | Uninit(/)]|.
In the latter case, the invariant conjunct holds vacuously,
since H[/, init] = true after such an inhale.

(Case PJ[l,val] > 0): Then we have P[/,init] > O.
If this permission is fully removed from the Viper state
as a result of the encoded statement in question, we
can subsequently argue according to the previous case.
If it is never removed, the value of H[/, init] must
remain stable across the translation of the statement,
except if that translation directly modifies it. Now, if
P[l,val] = P[/,init] < 1 then, since we assumed
the invariant conjunct true in the prior state, we must have
HJl, init] = true, and this will remain the case, since
we never assign false to such a field. This leaves us to con-
sider the remaining case (P[l, val] = P[l, init] = 1):
we are left to consider the possibility that we modify the
value of H[/, init] directly in the Viper code corre-
sponding to the translated statement. This happens only
in the case of encoding a non-atomic write: [/],5 = e
(cf. Fig. 4). In this case, it is guaranteed that the final

Automating deductive verification for weak-memory programs (extended version)

state will satisfy H[/, init] = true, and so the invari-
ant conjunct in question holds vacuously.

We require similar “sanity” invariants on Viper states for
the encodings of atomic locations. In particular:

For atomic locations [:
Pll,rel] > 0 = HJ[l, rel] € indices A
Vi. P[AcgConjunct(l,i)] > 0 = i € indices

This states that a readable rel field always stored the index
of one of the atomic invariants from the current example
being encoded, and analogously for the index parameters
of AcgConjunct predicate instances held. Showing these
invariants to be preserved is also straightforward; we omit
the details here, for brevity.

Having established these basic invariants over the Viper
states corresponding to the beginning and end of each
encoded statement, we turn to how to map what Viper checks
back to the existence of a proof in the RSL logics.

6.4 Mapping and Hoare triples

We next define the mapping (/) p , from a reference /
in a Viper state (H, P, o) (which is assumed to satisfy the
invariants in Sect. 6.3) to assertions from the RSL logics;
the corresponding mapping for the entire Viper state is then
the iterated separating conjunction [31] over the assertion for
each reference to which at least some permission is held.

We deal concretely with the simplified case of the logics
without the A and V modalities, and then explain how to
extend the definitions.

For non-atomic locations /, the mapping is defined as fol-
lows:

Uninit(/) if H[l, init] = false

OFFERY v otherwise, where v = H[l, val]

and k = P[l,val]
For atomic locations /, the mapping is more involved:

(g po = (Pll,init] = 0?7 true : Init(/))
* (P[l,rel] =0 ?true : Rel(l, invH|[L, rell))
¥ (P[l,acq]l =07?true: (H[l, acq] = true ?

ACq >l<i|P[Z—\chonjunct:(l,i)]zl .
((/\je(valsRead(l,i))H,p.a V 7&]) = inv(i))

RMWACq(*i|P[Achonjunct(1,i)]zl inv(i))))

Here, we rewrite (valsRead(l,i))y, p o for the seman-
tics of this function application in the given state; i.e. the set
of integer values it represents.

The above mapping reconstructs appropriate Init(), Rel(),
and either Acq() or RMWACcq() assertions for the correspond-
ing location, according to the permissions (and predicates)

held in the state. By conjoining these assertions per loca-
tion together with separating conjunctions (skipping those
for which true is the result), we obtain an assertion from the
RSL logics corresponding to the logical resources held at this
particular point in a corresponding proof in the RSL logics.

The mappings above can be generalised to the full log-
ics with modalities by reflecting on the heap numbering of
the reference in question (cf. Sect. 4); where heap(l) = 0,
the above definitions apply, while for 1 or —1 the result-
ing assertion must be placed under the A or V modalities,
respectively.

For each source language statement, one can now show
that if the encoded Viper statements verify, the beginning
and end states of the Viper program describe (when mapped
to RSL assertions according to these definitions) a provable
Hoare triple in the original logic. For example, consider the
encoding of a release write statement [/],c1 := e from the
middle of Fig. 7, following [[[{]re1 := e]] ~~. Due to the ini-
tial assert statement, this code will only verify if the
current state has at least some permission to the location’s
rel field;i.e.if P[l, rel] > 0. Based on the invariants from
the previous subsection, we then know that H[/, rel] will
be the value of a valid index i in indices. Suppose Q = invi
is the corresponding invariant for this index, as defined in the
original program. Correspondingly, one of the i £ conditions
will evaluate to true, forcing an exhale of [invi[e/V]].
In particular, this will also cause a verification failure, unless
the Viper state also satisfies this assertion. In this case, the
relevant permissions and predicate instances will be removed
by the exhale. Finally, | Init(/)] will be inhaled, correspond-
ing to adding Init(/) in the post-state of this operation.

Combining this analysis with our (/) ; p , definition, we
know we must have (/)5 p, = Rel(/, Q) * A for some
A (whose definition depends on whether e.g. Init(/) asser-
tions are also held for the same location). More generally,
the assertion obtained by pointwise conjoining (/) p , for
all location’s I must be equivalent to Q[e/V]*Rel(l, Q) * A’
for some assertion A’, for the analysed Viper code to be free of
verification errors; the resulting Viper state will be analogous
except that the assertions corresponding to invi[e/V] will
have been removed, and those corresponding to Init(l) will
have been added. If no verification errors occur, the following
analogous derivation therefore exists in the RSL logics:

{Q(e)xRel(l, Q)} [l1re1 := e {Init())*Rel(l, Q)}
{Q(e)*Rel(l, Q) x A’} [[]ye1 := e {Init())*Rel(l, Q) x A’}

6.5 Entailment correspondence

In addition to the encoding of individual statements, it is
important to consider which entailments Viper can automat-

@ Springer

A. J. Summers, P. Miiller

ically prove about the encoded assertions from the original
logics. For the assertions describing non-atomic locations,
Viper’s built-in field permissions are used in a standard
manner; the relationship between the handling of these per-
missions in such a logic and a typical concurrent separation
logic presentation is well-understood to give an isomorphism
[29]. In particular, Viper imposes the same assumptions for
field permissions (that no more than 1 permission can be
held) as in a standard separation logic.

For the encoding of atomic locations, the Viper representa-
tion is largely in terms of duplicable (wildcard) permissions,
and abstract predicates. Wildcard permissions, as discussed
in Sect. 3, model a duplicable resource exactly as desired.
Abstract predicates, on the other hand, are treated as unknown
resources in Viper; these are counted in and out when inhaled
and exhaled, but no additional facts will be deduced from
holding them in a particular state. Our modelling of atomic
invariants with AcqgConjunct predicates can, in some
cases, provide entailments between the encodings of differ-
ent Acq() predicates, but these are always instances of the
general rules of the logic. However, not all entailments valid
in the logic are available automatically to the Viper verifiers
according to our encoding: for rewriting atomic invariants,
we require an explicit annotation (cf.Sect. 3.3); in the next
subsection we discuss other potential sources of incomplete-
ness.

6.6 Completeness

Completeness means that all programs provable in the RSL
logics can be verified via their encoding into Viper. As part of
the design of our work, we intentionally chose not to support
certain features of the RSL logics; each of these is techni-
cally a source of incompleteness, although in most cases our
decision was based on the fact that the expressiveness lost is
not actually useful in practical examples.

By systematically analysing each rule of the RSL log-
ics, we identify the following sources of incompleteness
of our encoding: (1) It does not allow strengthening the
invariant in a Rel assertion; strengthening the requirement
on writing does not allow more programs to be verified,
and has never been useful in practice [42]. Conceptually,
it amounts to forcing a writer to live up to a more difficult
requirement than the atomic invariant really relies on; e.g.
forcing one to give up more permissions than will ever be
obtainable via subsequent reads of the location. (2) For a
fenceacq, our encoding removes all assertions from under
a V modality. As mentioned when we introduce our encod-
ing of this feature (cf. Sect. 4), the ability to choose not
to remove the modality is not useful in practice; concep-
tually, the modality blocks the usage of resources (such as
ownership of non-atomic locations) underneath it until they
moved out from the modality at a memory fence. Techni-

@ Springer

Q =V>0xg ="

ARC(d,c,g,v) =
dvs vxg¥S % RMWACcq(c, Q) * Rel(c, Q) * Init(c)

«x(V>1=>d 5")

new(v) returns (d,c,g)
requires true

ensures ARC(d, ¢, g,v)

drop(d,c,g)
requires ARC(d,c,g,)
ensures true

{ {
d := allocna(); t := fetch_and_addrei(c, —1);
g = allocghost(); if (t==1){
¢ := allocam(Q); fenceacq;
[d]na == v; free(d);
[C]rel = 17 }
} }

clone(d,c,q)
requires ARC(d, ¢, g,v)
ensures ARC(d, ¢, g,v)*
ARC(d, ¢, g,v)

read(d,c,g) returns (v)
requires ARC(d, c, g,)
ensures ARC(d, ¢, g,v)

{

V= [d]na§

}

{
fetch_and_addacq(c, 1);

}

Fig. 17 Rust reference counting variant with strengthened access
modes (RustARCStronger inourevaluation). Compared to the orig-
inal code [14], we modified the write in new to use a release rather
than relaxed mode, and the update in clone to use acquire rather than
relaxed. As discussed in Sect. 7, the original version of the example
is proved in [14] using features which are not yet supported by our
encoding. We do, however, verify a slightly less-efficient variant of the
original code (which does not require the custom monoid employed in
[14]) here; this example requires our support for CAS operations and
fences. We write rd for a read permission, in the sense of counting per-
missions [6]. In this example, g is a ghost location. We model the free
statement by exhaling the corresponding permissions

cally, an incompleteness could arise for modular proofs if one
uses the V modality in a function precondition (effectively
promising to insert an appropriate fence in the function’s
implementation) but a particular caller has already employed
a memory fence, removing the modality. However, this
modality doesn’t appear to be used or useful across such
modularity boundaries. The fact that libraries exploiting
these weak-memory primitives are written with very precise
synchronisation strategies in mind means that this kind of
division of synchronisation responsibility between caller’s
and callee’s doesn’t arise. (3) For simplicity, our encoding
doesn’t address quantifiers (although these are supported in
Viper; an extension should be straightforward). We also don’t
allow the A and V modalities to be used in atomic invariants
themselves. This restriction is largely inherited from FSL
and FSL++4-[13], but a slightly weaker technical requirement
(called normalisability) is employed there. This difference
doesn’t appear significant for examples in practice. (4) The
ghost state employed in FSL++ can be defined over a custom
permission structure (a partial commutative monoid), which
is not possible in Viper. For examples whose proof relies on a
custom monoid which is not known to be encodable in Viper,

Automating deductive verification for weak-memory programs (extended version)

a proof possible in the RSL logics cannot be obtained via
our techniques (Viper natively supports only fractional per-
missions, although some additional models such as counting
permissions can be encoded). This is the only incomplete-
ness of our encoding arising in practice; we will discuss an
example in Sect. 7.

7 Examples and evaluation

We evaluated our work with a prototype front-end tool [32,
33], and some additional experiments directly at the Viper
level [28]. Our front-end tool accepts a simple input language
for C11 programs, closely modelled on the syntax of the RSL
logics. It supports all features described in this paper, with
the exception of invariant rewriting ((cf. Sect. 3.3 of the TR
[39]) and ghost state (Sect. 4.3 of the TR), which will be
simple extensions. We encoded examples which require these
features, additional theories, or custom permission structures
manually into Viper, to simulate what an extended version of
our prototype will be able to achieve.

Our encoding supports several extra features which we

used in our experiments but mention only briefly here: (1) We
support the FSL++ rules for ghost state: see Sect. 4.3 of the
TR. (2) Our encoding handles common spin loop patterns
without requiring loop invariant annotations. (3) We support
fetch-update instructions (e.g. atomic increments) natively,
modelled as a CAS which never fails.
Examples We took all examples with specifications from
the RSL [43] and FSL [13] papers, along with variants in
which we seeded errors, to check that verification fails as
expected (and in comparable time). We also encoded the
Rust reference-counting (ARC) library [34], which is the
main example from FSL+44- [14]. The proof there employs
a custom permission structure (using the custom ghost state
supported in the FSL++4 paper [14]), which is not yet sup-
ported by Viper; we can only encode this exact example
directly by omitting the corresponding ghost state, without
which its proof fails as expected. However, following the
suggestion of one of the authors [42], we were able to fully
verify two variants of the example, in which some access
modes are strengthened, making the code slightly less effi-
cient but enabling a proof using a simpler permission model.
For these variants, we required counting permissions [6],
which we expressed with additional background definitions
(see [28] for details, and Fig. 17 for the code). Note that we
encode more examples than have been mechanised in the
pre-existing papers: we speculate that not all examples were
mechanised due to the substantial work and time required to
construct the Cog-based proofs.

Finally, we tackled seven core functions of a reader-writer-
spinlock from the Facebook Folly library [15]. We were able
to verify five of them directly. The other two employ code

idioms which are beyond the scope of the RSL logics with-
out employing sophisticated custom ghost state: a similar
situation to that of the unmodified ARC example. Again simi-
larly, for both functions we also wrote and verified alternative
implementations in which some atomic access modes are
strengthened, enabling a slightly less complex proof explain-
able using counting permissions. The Rust and Facebook
examples demonstrate a key advantage of building on top of
Viper; both require support for extra theories (counting per-
missions as well as modulo and bitwise arithmetic), and we
were able to exploit Viper’s features to integrate support for
these additional complementary verification aspects easily.
Performance We measured the verification times on an Intel
Core i17-4770 CPU (3.40 GHz, 16 Gb RAM) running Win-
dows 10 Pro and report the average of 5 runs. A snapshot
of all dependencies and experiments (including all source
examples) is provided online [32,33]. For those examples
supported by our front-end, the times include the generation
of the Viper code. As shown in Table 1, verification times
are reasonable (generally around 10 sec, and always under a
minute).

Automation Each function (and thread) must be annotated
with an appropriate pre and post-condition, as is stan-
dard for modular verification. In addition, some of our
examples require loop invariants and other annotations
(e.g. on allocation statements and, for the hand-crafted
FencesDblMsgPassAcgRewrite example, for rewrit-
ing invariants according to Sect. 3.3). The abstraction level
and annotation overhead can be roughly judged from e.g.
Fig. 10; up to mild syntactic differences this closely follows
the input language of our tool, except that the parallel blocks
show up as explicit fork and join statements in the input
language of our tool.

Critically, the number of required annotations is consis-
tently very low. In particular, our annotation overhead is
between one and two orders of magnitude lower than the
overhead of existing mechanised proofs (using the Coq for-
malisations for [14,43] and a recent encoding [19] of RSL
into Iris [21]). Such ratios are consistent with other recent
Cog-mechanised proofs based on separation logic (e.g. [44]),
which suggests that the strong soundness guarantees pro-
vided by Coq have a high cost when applying the logics. By
contrast, once the specifications are provided, our approach
is almost entirely automatic.

8 Conclusions and future work

We have presented the first encoding of modern program
logics for weak-memory models into an automated deduc-
tive program verifier. The encoding enables programs (with
suitable annotations) to be verified automatically by existing
back-end tools. We have implemented a front-end verifier

@ Springer

A. J. Summers, P. Miiller

Jjoouid ay) 03 9ouarajar e apraoid pue (sired 3sod-a1d 0 uonippe ur) sdays jooid [enuew jo roquunu ay) 31odar om ‘bo) ur payLIdA udeq ey jey) sojdwrexa 10|
POP22U SUOIIBIOUUE IAYI0 AUB SJUNOD “JOUUY IdY)Q,, "pairnbar sjuetreaur doof
I0j spuess T, ‘suonipuod-jsod pue a1d jo sired Aressooou oy 10J spuels . dd,, ..592ds,, 1opu) "sdooj Jo Joquinu pue ‘SpeaIy)/SUoIouny JounsIp Jo JOqUINU ‘9pod JO SQUI[INSLIUW oM ° 9ZIS,, JOpU[)
Jooid yuaroyIp A[Surpuodsaliod & pue sOIWOJe JUIIIYJR-SSI] YIM SPOJ [RUISLIO 9) JO SJUBLIBA OJB IT26UOIIS PIM ISOU) (SIOLD 2)eIouas 0) pajoadxo are xxa™ Julpnjour sojdwexy

e/u € € L 0€'CC €L 9T SOTWOJE PAUAYPISULS "M JOLI ITobuox3SHDOTUTASMIATTOA

B/Uu € C L T8¢ TLYe [s1] Krexqrp A1 II9 Do TUTdSMIAT IO

’/u ré 0 v 09'v1 076 SQOUQJ INOYIIM JUBLIBA DY VISY Iobuoalsoyvasnybov ey

e/u e 0 v 67 €€ 0v o1 SOTWOJE PAUAYISULS "M JOLI IobuoalsDYvISNY

[¥11+59 C 0 14 YL 0¢ 0‘v 01 zpue [s3I [$1] ++71Sd IIST TeUTHTIODYYISNY

B/u 1 0 14 9L°01 0°¢cvl 10119 poppe + 29[y J0Ld II9 suUOT310eIATSY

B/U 1 0 14 8C'T1 0°cvl 6 '3 ‘[ev] 1SU SUOTIDRIATSY

®/u ¢ 0 v 18°G1 V€T uopuIM A[[enuejy o1 TameygbovssedbsHTqassous g

B/U 1 0 14 11°01 [A 10119 poppe + [y IoLld I19 3TTdsssedBsHTqabovTay

e/u 1 0 v 6011 Y 1T 2 S90U9J o/m ojdwrexa Iorg 1T11dsssedbsHTqaboviay

/U T 0 17 19°11 TV ve N JOIIS pappe + J[IoLld Ixs” 3TTdSssedbsHTO@ssouUs g

'/U z 0 ¥ €6°C1 99T » OTWOJE | "M SSBISSIN[QSOUS] 3T1TdSssedbsHTagsaousg

'/U I 0 ¥ SLTI Y LT » JO1ID Pappe + (Y IoLd II9” ssedbswiagssousg

B/U € 0 14 SI'el TYeLT A 731 ‘[¢1] 184 SsedBsSHTAassous g

e/u 4 0 € LL'81 [A 10119 poppe + 29[y IoLid II9 }SS3LSSPONSYD

e/u [4 0 € gs6l Tieee A UM K[[enuey ISSLSSPONSYO

e/u ! 0 € 6L°6 0v°IC A 10119 poppe + [y I0Liq II9 DOTISYITISYH

e/u ! 0 € LS01 0v ‘1t A 01 31 ‘[¢¥] TSY D0TSVYDTISY

e/u 1 0 [€101 1°€°G1 2 JO1I9 pappe + J[IoLld 119" ssedbswboviay

[£¥] 66 ! 0 € 89°01 1°€°Cl A 8 pue G "s3L] ‘[¢] ISA ssedbsHbovTay

e/u 1 0 ¢ 886 1°€°9 2 JO1I9 pappe + J[IoLld 119 UTASONOOTISY

[61]1+8 ! 0 € 7801 1€9 A aroqe woly pardepe {[61] UTdSONMPOTISY

[ev] oTT I I € (4Nt TeL A L Ppue T s3I ‘[¢4] TSY MooTuUTdSTSY
Jouuy Jjouuy 11 dd (s) (sdooy ‘souny y1oddns

bo)p 20 soadg auiry, ‘“307) 971§ adKyojo1g urSuQ weigoig

UOT)ENBAQ INO JO SINSAI YL, | d|qel

pringer

Qs

Automating deductive verification for weak-memory programs (extended version)

and demonstrated that our encoding can be used to verify
weak-memory programs efficiently and with low annotation
overhead. As future work, we plan to tackle other weak-
memory logics such as GPS [41]. Building practical tools
that implement such advanced formalisms will provide feed-
back that inspires further improvements of the logics.

Acknowledgements We are grateful to Viktor Vafeiadis and Marko
Doko for many explanations of the RSL logics and helpful discussions
about our encoding. We thank Christiane Goltz for her work on the
prototype tool, and Malte Schwerhoff for implementing additional fea-
tures. We thank Marco Eilers for his assistance with the online appendix,
and Arshavir Ter-Gabrielyan for automating our artefact assembly for
various operating systems. We also thank Andrei Dan, Lucas Brutschy,
Malte Schwerhoft and the anonymous TACAS 2018 and STTT Special
Issue reviewers for feedback on earlier versions of this work.

References

. Abdulla, PA., Atig, M.F,, Jonsson, B., Leonardsson, C.: Stateless

model checking for POWER. In: CAV 2016 Proceedings Part I1, pp.
134-156 (2016). https://doi.org/10.1007/978-3-319-41540-6_8
Abdulla, PA., Atig, M.F., Bouajjani, A., Ngo, T.P.: The benefits of
duality in verifying concurrent programs under TSO. CoRR (2017).
arXiv:1701.08682

Alglave, J., Cousot, P.: Ogre and Pythia: an invariance proof method
for weak consistency models. In: POPL 2017, pp. 3—18. ACM, New
York, NY, USA, POPL (2017). https://doi.org/10.1145/3009837.
3009883

Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.:
Boogie: a modular reusable verifier for object-oriented programs.
In: Proceedings of the 4th International Conference on Formal
Methods for Components and Objects, pp. 364-387. Springer,
Berlin, FMCO’05 (2006). https://doi.org/10.1007/11804192_17
Bobot, F., Filliatre, J.C., Marché, C., Paskevich, A.: Why3:
shepherd your herd of provers. In: Boogie 2011: First
International Workshop on Intermediate Verification Lan-
guages, Wroctaw, Poland, pp. 53-64 (2011). http://proval.lri.fr/
publications/boogiel 1final.pdf

Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission
accounting in separation logic. In: Proceedings of POPL’05, pp.
259-270. ACM, New York, NY, USA (2005). https://doi.org/10.
1145/1040305.1040327

Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforc-
ing robustness against TSO. In: ESOP 2013, pp. 533-553.
Springer, Berlin, ESOP’ 13 (2013). https://doi.org/10.1007/978-3-
642-37036-6_29

Boyland, J.: Checking Interference with Fractional Permissions,
vol. 2694, pp. 55-72. Springer, Berlin (2003)

Chlipala, A.: Mostly-automated verification of low-level programs
in computational separation logic. In: Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 234-245. ACM, New York, NY, USA,
PLDI’'11 (2011). https://doi.org/10.1145/1993498.1993526
Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal,
M., Santen, T., Schulte, W., Tobies, S.: VCC: A Practical System
for Verifying Concurrent C, pp. 23-42. Springer, Berlin (2009).
https://doi.org/10.1007/978-3-642-03359-9_2

. Cuoq, P, Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J.,

Yakobowski, B.: Frama-C. In: SEFM, pp. 233-247. Springer,
Berlin (2012). https://doi.org/10.1007/978-3-642-33826-7_16

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Dan, A., Meshman, Y., Vechev, M., Yahav, E.: Effective abstrac-
tions for verification under relaxed memory models. In: VMCAI
2015, pp. 449-466. Springer, Berlin (2015). https://doi.org/10.
1007/978-3-662-46081-8_25

Doko, M., Vafeiadis, V.: A program logic for C11 memory fences.
VMCAL, Springer, Lecture Notes in Computer Science 9583, 413—
430 (2016)

Doko, M., Vafeiadis, V.: Tackling real-life relaxed concurrency
with FSL++. In: ESOP 2017, pp. 448—-475. Springer, Berlin (2017)
Facebook Folly: Reader—writer spinlock implementation
(2018). https://github.com/facebook/folly/blob/master/folly/
RWSpinLock.h

Heule, S., Leino, K.R.M., Miiller, P., Summers, A.J.: Abstract
read permissions: fractional permissions without the fractions.
VMCAL, Springer, Lecture Notes in Computer Science 7737, 315—
334 (2013)

Jacobs, B.: Verifying TSO programs. CW Reports CW660, Depart-
ment of Computer Science, KU Leuven, (2014). https:/lirias.
kuleuven.be/handle/123456789/452373

Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast
program verifier. APLAS, Springer, LNCS 6461, 304-311 (2010)
Kaiser, J.O., Dang, H.H., Dreyer, D., Lahav, O., Vafeiadis, V.:
Strong logic for weak memory: reasoning about release-acquire
consistency in Iris. In: ECOOP 2017, Schloss Dagstuhl-Leibniz,
LIPIcs, vol. 74, pp. 17:1-17:29, (2017). https://doi.org/10.4230/
LIPIcs.ECOOP.2017.17, http://drops.dagstuhl.de/opus/volltexte/
2017/7275

Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effec-
tive stateless model checking for C/C++ concurrency. In: PACMPL,
vol. 2(POPL), pp. 17:1-17:32 (2018). https://doi.org/10.1145/
3158105, https://doi.org/10.1145/3158105

Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.H., Dreyer, D.,
Birkedal, L.: The essence of higher-order concurrent separation
logic. In: ESOP, pp. 696-723, Springer, New York, Inc., New York,
NY, USA (2017). https://doi.org/10.1007/978-3-662-54434-1_26,
https://doi.org/10.1007/978-3-662-54434-1_26

Lahav, O.: Verification under causally consistent shared mem-
ory. SIGLOG News 6(2), 43-56 (2019). https://doi.org/10.1145/
3326938.3326942

Leino, K.R.M.: Dafny: an automatic program verifier for func-
tional correctness. In: Proceedings of LPAR’10, pp. 348-
370, Springer, Berlin (2010). http://dl.acm.org/citation.cfm?
id=1939141.1939161

Leino, K.R.M., Miiller, P.: A basis for verifying multi-threaded
programs. In: Castagna, G. (ed.) ESOP, Springer-Verlag, LNCS,
vol. 5502, pp. 378-393 (2009)

Miiller, P., Schwerhoff, M., Summers, A.J.: Automatic verification
of iterated separating conjunctions using symbolic execution. CAV,
Springer-Verlag, LNCS 9779, 405-425 (2016)

Miiller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification
infrastructure for permission-based reasoning. In: Jobstmann, B.,
Leino, K.R.M. (eds.) VMCALI, Springer-Verlag, LNCS, vol. 9583,
pp. 41-62 (2016)

O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about
programs that alter data structures. In: Proceedings of CSL’'0O1,
pp- 1-19. Springer, London, UK (2001). http://dl.acm.org/citation.
cfm?id=647851.737404

Online Appendix: Viper-encoded examples (2019). http://viper.
ethz.ch/onlineappendix-rsl-encoding/

Parkinson, M.J., Summers, A.J.: The relationship between sepa-
ration logic and implicit dynamic frames. Log. Methods Comput.
Sci. 8(3:01), 1-54 (2012)

Reynolds, J.C.: Definitional interpreters for higher-order program-
ming languages. In: ACM Annual Conference—Volume 2, pp.
717-740. ACM, ACM’72 (1972)

@ Springer

https://doi.org/10.1007/978-3-319-41540-6_8
http://arxiv.org/abs/1701.08682
https://doi.org/10.1145/3009837.3009883
https://doi.org/10.1145/3009837.3009883
https://doi.org/10.1007/11804192_17
http://proval.lri.fr/publications/boogie11final.pdf
http://proval.lri.fr/publications/boogie11final.pdf
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-662-46081-8_25
https://doi.org/10.1007/978-3-662-46081-8_25
https://github.com/facebook/folly/blob/master/folly/RWSpinLock.h
https://github.com/facebook/folly/blob/master/folly/RWSpinLock.h
https://lirias.kuleuven.be/handle/123456789/452373
https://lirias.kuleuven.be/handle/123456789/452373
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
http://drops.dagstuhl.de/opus/volltexte/2017/7275
http://drops.dagstuhl.de/opus/volltexte/2017/7275
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3326938.3326942
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dl.acm.org/citation.cfm?id=647851.737404
http://dl.acm.org/citation.cfm?id=647851.737404
http://viper.ethz.ch/onlineappendix-rsl-encoding/
http://viper.ethz.ch/onlineappendix-rsl-encoding/

A. J. Summers, P. Miiller

31

32.

33.

34.

35.

36.

37.

38.

39.

Reynolds, J.C.: Separation logic: a logic for shared mutable data
structures. In: LICS, IEEE Computer Society Press (2002)

RSL Front-End: RSL to Viper Front-End; TACAS 2018 Arti-
fact Version (2018). https://figshare.com/articles/RSL_to_Viper_
Front_end/5900233

RSL Front-End Zip Files: RSL to Viper Front-End Zip
Files (updated since TACAS 2018; Windows, Linux, Mac
versions available) (2019). https://www.pm.inf.ethz.ch/research/
viper/prototype-rsl-encoding.html

Rust Library: ARC (Atomic Reference Counting) (2019). https://
doc.rust-lang.org/std/sync/struct.Arc.html

Sergey, 1., Nanevski, A., Banerjee, A.: Mechanized verification
of fine-grained concurrent programs. In: Proceedings of PLDI’15,
pp- 77-87. ACM, New York, NY, USA (2015). https://doi.org/10.
1145/2737924.2737964

Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM
Trans Program Lang Syst 34(1), 2:1-2:58 (2012)

Summers, A.J., Drossopoulou, S.: A formal semantics for isorecur-
sive and equirecursive state abstractions. ECOOP, Springer, LNCS
7920, 129-153 (2013)

Summers, A.J., Miiller, P.: Automating deductive verification for
weak-memory programs. Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), LNCS, pp. 190-209.
Springer, Berlin (2018)

Summers, A.J., Miiller, P.: Automating deductive verification for
weak-memory programs (extended version) (2018)

@ Springer

40.

41.

42.
43.

44,

Travkin, O., Wehrheim, H.: Verification of concurrent programs on
weak memory models. In: Sampaio, A., Wang, F. (eds.) Theoret-
ical Aspects of Computing (ICTAC). Lecture Notes in Computer
Science, vol. 9965, pp. 3-24. Springer, Berlin (2016)

Turon, A., Vafeiadis, V., Dreyer, D.: GPS: navigating weak memory
with ghosts, protocols, and separation. In: OOPSLA, pp. 691-707.
ACM (2014)

Vafeiadis, V.: Personal communication (2016)

Vafeiadis, V., Narayan, C.: Relaxed separation logic: a program
logic for C11 concurrency. In: OOPSLA, pp. 867-884. ACM
(2013)

Xu, F, Fu, M., Feng, X., Zhang, X., Zhang, H., Li, Z.: A prac-
tical verification framework for preemptive OS kernels. In: CAV
Proceedings Part II, Springer International Publishing, Cham, pp.
59-79 (2016). https://doi.org/10.1007/978-3-319-41540-6_4

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://figshare.com/articles/RSL_to_Viper_Front_end/5900233
https://figshare.com/articles/RSL_to_Viper_Front_end/5900233
https://www.pm.inf.ethz.ch/research/viper/prototype-rsl-encoding.html
https://www.pm.inf.ethz.ch/research/viper/prototype-rsl-encoding.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1007/978-3-319-41540-6_4

	Automating deductive verification for weak-memory programs (extended version)
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Outline

	2 Non-atomic locations
	2.1 RSL proof rules
	2.2 Encoding

	3 Release-acquire atomics
	3.1 RSL proof rules
	3.2 Encoding
	3.3 Rewriting invariants
	3.4 Multiple copies of invariant conjuncts

	4 Relaxed memory accesses and fences
	4.1 FSL proof rules
	4.2 Encoding
	4.3 Ghost locations

	5 Compare and swap
	5.1 FSL++ proof rules
	5.2 Encoding

	6 Soundness and completeness
	6.1 Soundness overview
	6.2 Viper states and semantics
	6.3 Encoding invariants
	6.4 Mapping and Hoare triples
	6.5 Entailment correspondence
	6.6 Completeness

	7 Examples and evaluation
	8 Conclusions and future work
	Acknowledgements
	References

