
Actor Services

Modular Verification of Message Passing Programs

Alexander J. Summers and Peter Müller

Department of Computer Science, ETH Zurich, Switzerland
alexander.summers@inf.ethz.ch, peter.mueller@inf.ethz.ch

Abstract. We present actor services: a novel program logic for defin-
ing and verifying response and functional properties of programs which
communicate via asynchronous messaging. Actor services can specify
how parts of a program respond to messages, both in terms of guar-
anteed future messages, and relations between the program states in
which messages are received and responses sent. These specifications can
be composed, so that end-to-end behaviours of parts of a system can be
summarised and reasoned about modularly. We provide inference rules
for guaranteeing these properties about future execution states without
introducing explicit traces or temporal logics.
Actor services are ultimately derived from local actor services, which
express behaviours of single message handlers. We provide a proof sys-
tem for verifying local services against an implementation, using a novel
notion of obligations to encode the appropriate liveness requirements.
Our proof technique ensures that, under weak assumptions about the
underlying system (messages may be reordered, but are never lost), as
well as termination of individual message handlers, actor services will
guarantee suitable liveness properties about a program, which can be
augmented by rich functional properties. Our approach supports reason-
ing about both state kept local to an actor (as in a pure actor model),
and shared state passed between actors, using a flexible combination of
permissions, immutability and two-state invariants.

1 Introduction

The actor model [19] is a popular programming paradigm, which structures a
program execution into independent units (actors) that communicate via asyn-
chronous messaging. This programming style was initially adopted for distributed
systems [40], but has been increasingly used to develop concurrent programs,
even those intended to run on a single machine. Although some actor languages
support blocking (waiting) for messages, others handle message receive implic-
itly via built-in event loops; programming purely in this latter style eliminates
the possibility of deadlocks.

Modular specification and verification of actor programs is difficult for several
reasons. (1) The intended functionality is often provided by a collaboration of
several communicating actors, such that the result of a computation might not

be sent by the same actor to which the request was sent. This makes it difficult
to relate the two messages, for instance, to express the result in terms of the
request’s arguments. (2) The behaviour of an actor system depends on the state
of the individual actors (their call stack, e.g. [40], or the heap, e.g. [27]). However,
since this state is local to an actor, it cannot be directly used to specify the
behaviour for clients. (3) The local state of an actor changes dynamically in
reaction to the messages it receives, for instance, to set up collaborations between
actors. (4) The termination of each message handler does not ensure that senders
of a message eventually receive the expected result since handlers might not send
any response or send messages in circles. Therefore, actor verification requires
reasoning about liveness properties.

We present (to the best of our knowledge) the first technique for actor spec-
ification and verification which solves all of these problems while supporting
modular reasoning. Existing works typically either rely on a notion of whole
program execution or traces, or do not handle the liveness properties needed to
guarantee responsiveness; we provide specific comparisons in Sec. 5. By modular-
ity, we mean that guaranteed behaviours of parts of a program can be proved and
summarised without knowledge of the whole program, and that these summaries
(specifications) can be further composed in order to derive different specifications
at other levels of abstraction in the software. Support for compositional reason-
ing of this kind is crucial for scalability and for the reuse of verified components.
We make the following main contributions. Our technique:

1. allows one to prove both response and functional properties modularly. The
key idea is to introduce actor services, a novel state-based assertion whose
validity in a state expresses that in all future states each message sent to
an actor will trigger a specified response. We present a program logic that
can prove these assertions modularly, without resorting to trace-based or
whole-program reasoning.

2. allows one to verify actor programs at the level of the source code, rather
than an abstraction to e.g. message protocols. This is enabled by a Hoare
logic whose assertion language includes actor services. The logic supports a
notion of obligations to express which messages must eventually be sent.

3. supports the composition of actor services to summarise behaviours of col-
laborating actors, without exposing these actors’ existence or role in the
collaboration. These summarised behaviours can be further composed.

4. allows one to specify and verify code that dynamically creates and connects
actors. The behaviour of the resulting actor configuration can be specified
via nested actor services.

5. supports local and shared immutable state, and permits (but does not rely
on) transfer of ownership of state between actors. A permission system tracks
ownership and immutability. Relational (two-state) assertions allow one to
express rich functional properties on state, including both response proper-
ties and invariants on the evolution of actor-local state.

We illustrate our technique on an example from the literature, which has been
the subject of previous substantial verification efforts in industry [2].

2

2 Programming Language and Running Example

We present our work for a simple Java-like language, in which actors are in-
stances of special classes labelled with the actor keyword. These actor classes
may declare fields, but, for simplicity, neither methods nor constructors. Instead,
actor classes may declare message handlers prefixed with the handler keyword).

Actors communicate via messages. A message identifies a message handler
to be invoked by its name and supplies arguments. Sending a message is an
asynchronous (non-blocking) operation that enters the sent message into the
recipient’s message queue. After its creation, an actor enters an implicit loop.
In each iteration, it receives a message, removing one message from its message
queue and executing the corresponding message handler (or blocks if there are
no queued messages). We assume that a type system ensures there is a handler
for each sent message with appropriately-typed arguments. We do not assume
that messages arrive in order, but require that message receive is weakly fair:
if an actor continues to receive messages then each message will eventually be
received. We assume that messages neither get lost nor duplicated in transit.

The local state of an actor can include heap data structures. Our technique
allows multiple actors to execute in the same or in different address spaces. Our
techniques are formalised such that all persistent state belongs to a (single) heap.
However, we can model disjoint memories by enforcing that actors own disjoint
regions of this heap, and that ownership is never transferred. Note that even in a
functional language such as Erlang, the response behaviours of an actor depend
on actor-local state, in terms of the actor’s call stack and current stack-frame
values.

2.1 The Mnesia distributed database query manager

Our running example is a protocol from a distributed database query manager
called Mnesia, by Ericsson [26]. Our implementation (Fig. 1) closely follows the
Erlang code [2], but actor-local data is stored in the fields of an actor.

The query protocol works as follows. When a user sends a query to the
database manager (via query_setup), the query is broken down into several sub-
queries to be processed on different physical machines. The manager creates a
worker actor for each subquery. The manager and worker actors are set up in a
ring structure: each actor points to its successor via its next field. Once the ring
of workers is set up, the manager sends a ready message to the user.

When the user receives the ready message, it (or another actor) can send a
req message to the manager, which specifies the number of solutions that the
user requires. This message triggers query processing by sending a sols message
to the first worker in the ring. Each worker performs some local computation
and then sends partial results on to the next actor, which combines them with
their local computation and continues. To limit the volume of data being sent
over the network, the number of results in a message is bounded by a given
packet size. When a worker actor computes more than this number of solutions,
it caches the remainder locally. The query manager at the head of the ring also

3

1 a cto r t r a i t User {
2 h a n d l e r r ea dy (QueryManager m) ;
3 h a n d l e r r e s p o n s e (seq<So l u t i on > s o l u t i o n s) ;
4 }
5

6 a cto r t r a i t c l a s s R i n g P a r t i c i p a n t {
7 seq<So l u t i on > s t o r e ;
8 R i n g P a r t i c i p a n t next ;
9

10 h a n d l e r s o l s (seq<So l u t i on > s o l u t i o n s , i n t p a c k e t S i z e) ;
11 }
12

13 a cto r c l a s s QueryManager extends R i n g P a r t i c i p a n t {
14 User u s e r ;
15 i n t n r S o l u t i o n s ;
16

17 h a n d l e r query_setup (Query query , User u) {
18 R i n g P a r t i c i p a n t nextP i d := t h i s ;
19 seq<Query> s u b q u e r i e s := // break down query − s u b q u e r i e s i s non−empty
20 f o r (i n t i := 0 ; i < | s u b q u e r i e s | ; i := i + 1) {
21 nextP i d := spawn QueryWorker (next := nextPid ,
22 l o c a l Q u e r y := s u b q u e r i e s [i] , s t o r e := []) ;
23 }
24 t h i s . n ex t := nextP i d ;
25 u . r ea dy (t h i s) ;
26 }
27

28 h a n d l e r r eq (User u s e rP i d , i n t needed , i n t p a c k e t S i z e) {
29 t h i s . u s e r := u s e r P i d ;
30 t h i s . n r S o l u t i o n s := needed ;
31 t h i s . n ex t . s o l s ([] , p a c k e t S i z e) ;
32 }
33

34 h a n d l e r s o l s (seq<So l u t i on > s o l u t i o n s , i n t p a c k e t S i z e) {
35 i f (t h i s . n ex t != n u l l && t h i s . u s e r != n u l l) { // a l r e a d y i n i t i a l i s e d
36 seq<So l u t i on > newStore := s o l u t i o n s ++ t h i s . s t o r e ;
37 i f (| s o l u t i o n s | = 0 | | | newStore | >= t h i s . n r S o l u t i o n s) {
38 t h i s . u s e r . r e s p o n s e (newStore) ;
39 } e l s e {
40 t h i s . n ex t . s o l s ([] , p a c k e t S i z e) ;
41 t h i s . s t o r e := newStore ;
42 }
43 }
44 }
45 }
46

47 a cto r c l a s s QueryWorker extends R i n g P a r t i c i p a n t {
48 Query l o c a l Q u e r y ;
49

50 h a n d l e r s o l s (seq<So l u t i on > s o l u t i o n s , i n t p a c k e t S i z e) {
51 i f (| t h i s . s t o r e | >= p a c k e t S i z e) {
52 t h i s . n ex t . s o l s (ta ke (pa cketS i z e , t h i s . s t o r e) , p a c k e t S i z e) ;
53 t h i s . s t o r e := drop (pa cketS i z e , t h i s . s t o r e) ++
54 f i l t e r (s o l u t i o n s , t h i s . l o c a l Q u e r y) ;
55 } e l s e {
56 seq<So l u t i on > newStore := t h i s . s t o r e ++
57 f i l t e r (s o l u t i o n s , t h i s . l o c a l Q u e r y) ;
58 t h i s . n ex t . s o l s (ta ke (pa cketS i z e , newStore) , p a c k e t S i z e) ;
59 t h i s . s t o r e := drop (pa cketS i z e , newStore) ;
60 }
61 }
62 }

Fig. 1. The running example. We assume a built-in value type seq for sequences with
the usual operations. The spawn statement creates a new actor and initialises its fields.
The filter operation applies the worker’s local subquery to the previous worker’s
results; we elide the details of this database computation.

4

maintains a store of solutions. When it receives a sols message, it adds the
received solutions to the stored solutions. If it has enough solutions to satisfy
the user’s request or if the sols message does not contain any solutions, the
manager returns its solutions to the user (via a response message). Otherwise, it
requests more solutions by sending a further sols message around the ring.

Arts and Dam [2] applied a combination of custom automated techniques
and substantial manual proof effort to verify the property that: when a query is
made, the user will eventually receive some response. In the remainder of this
paper, we will introduce our reasoning techniques for verifying such properties.

3 Reasoning with Actor Services

An actor service is a novel kind of assertion that describes the consequences of a
message sent to a given actor, both in terms of consequent messages that will be
sent, and functional properties that will be guaranteed. An actor service consists
of a left-hand side message, called the trigger message, and a right-hand side re-
sponse pattern, describing possible response messages and additional guarantees.
For example, x.m() ; y.n() is an actor service (and therefore an assertion in
our program logic), in which x.m() is the trigger message, and y.n() makes up
the response pattern. The meaning of this actor service is that, from the current
program state, all future m messages received by the actor x are guaranteed
to result in an n message being sent to the actor y. An actor service expresses
a stylised form of temporal property (a response property), without explicitly
requiring temporal connectives in the assertion logic: this liveness property is
formally guaranteed provided that all message handlers terminate (see Sec. 4.5).
Proving termination of such code is orthogonal; actor services guarantee that a
message handler cannot terminate without sending a message leading (directly
or via a sequence of further messages) to a prescribed response message, and
that such a sequence of messages is guaranteed to be finite.

3.1 Actor service instantiation and composition

The essential building blocks for our actor service reasoning, are local services.
These are actor services which can be proved against the implementation of a sin-
gle message handler; in particular, the response message of such an actor service
must be guaranteed to be sent during execution of the message handler for the
trigger message. In Sec. 4 we will describe the details of our proof technique for
verifying local services against the implementation of a message handler; for the
moment, we will describe the justification of local services informally. Consider
the query_setup message from the actor class QueryManager in Fig. 1. A simple
example of a local service which can be proved against this implementation, is:

M.query_setup(Q, U) ; U.ready(M) (QM1)

As a notational shorthand, we use underlined, capitalised variable names to
implicitly indicate universal quantification across the actor service. This local

5

service therefore represents that whenever any query_setup message is received
by any QueryManager instance M (with any parameters Q and U), the code of
the corresponding message handler will ensure that a ready message is sent to the
User actor U . This property can be readily checked against the implementation
of query_setup in Fig. 1.

All local services are quantified over the receiving actor and parameters;
their meaning concerns all possible invocations of the message handler, and
is independent of the program state. On the other hand, we can instantiate
the local service (QM1) with respect to specific actors. Suppose, for example,
that at a particular program point, program variable m is known to refer to a
QueryManager actor, while u is known to refer to a User actor. We can instantiate
(QM1) to derive the actor service m.query_setup(Q, u) ; u.ready(m). Note that
this actor service describes a property specific to these two actors, and its truth
depends on the program state.

A crucial aspect of our actor service reasoning is that we can compose actor
services to derive new ones. Suppose that the User instance u is programmed
to respond to ready messages by sending some req message to the correspond-
ing QueryManager. In the case of m, we can express this fact via the following
actor service (we use _ to denote arguments whose values are not relevant):
u.ready(m) ; m.req(_, _, _) This actor service can now be combined with that
above, to derive: m.query_setup(Q, u) ; m.req(_, _, _). Intuitively, this deriva-
tion “chains together” the two response properties, summarising their overall
guaranteed behaviour. The derived actor service still describes a response prop-
erty specific to these two actors; it might not be true when User actors other
than u are passed in a query_setup message.

3.2 Heap dependent expressions

Actor service composition is simple in situations such as that described above, in
which all relevant expressions are (program or quantified) variables. However, to
allow actor services to describe properties dependent on an actor’s state (and the
program heap in general), we also allow actor services to include heap dependent
expressions, such as field dereferences. Consider the message handler for sols in
the QueryWorker actor class. In terms of guaranteed messaging behaviour, it is
clear that every sols message received will result in a further sols message being
passed to the this .next actor. Indeed, we can derive the following local service
because both branches of QueryWorker’s sols handler send the required response:

W . sols (S, P) ; W.next. sols (_, P) (QW)

Heap dependent expressions in response patterns, such as W.next in this exam-
ple, refer to the program heap when the response message is sent. This allows
actor services to describe behaviours in terms of fields whose values might be
appropriately set in response to the trigger message of the actor service (for
example, when actors are initialised via messages). However, this interpretation
means that actor service composition becomes more subtle to handle soundly.

6

For example, suppose that at some program point we have two QueryWorker

instances x and y in scope, and we know that x.next = y. Instantiating the local
service (QW) above for x and y, we obtain the actor services:

x. sols (S, P) ; x.next. sols (_, P) and y. sols (S′, P ′) ; y.next. sols (_, P ′)

It seems that we should be able to compose these actor services, in a similar
way to in the previous subsection. But we must be careful: the first actor service
guarantees that, as a consequence of receiving a sols message, the actor x will
send a further sols message to the actor referred to by x.next at that time. Based
on these actor services alone, we do not have enough information to deduce
whether composing the two would be sound; the equality x.next = y might not
hold at the relevant future points in the program execution.

Examining the code more carefully, it becomes apparent that the fields of
QueryWorker actors are not, in fact, mutable state. They are never modified by
the code, and are only set when the actors are first spawned. Immutability is
a commonly-used feature in such concurrent settings, and we build in native
support for immutability and other invariants of actors, as described in the
following subsections. Immutability ensures soundness of the above composition.

3.3 Permissions, immutability and future states

We organise reasoning about the program heap around the notions of ownership
and immutability. We model these notions formally using a permission-based
logic, in the style of implicit dynamic frames [35]. The resulting reasoning about
ownership of heap locations is closely related to verification in separation logics
[28, 31], and has been used in other concurrency paradigms [24]. We employ two
types of permission in our work. The standard exclusive permission, denoted by
an assertion acc(e.f), represents exclusive ownership of the heap location e.f

and permits read and write access. We also employ a notion of immutable per-
missions immut(e.f), which permit read access only and guarantee that e.f will
never be modified. Immutable permissions are different from fractional permis-
sions [5] because they guarantee that a location will remain immutable for the
rest of the program execution. Since concurrent accesses to immutable state need
not be restricted, immutable permissions may be freely duplicated, in contrast
to exclusive permissions. Neither kind of permission subsumes the other. How-
ever, our logic permits exchanging an exclusive permission for a corresponding
immutable permission, effectively freezing that location’s value and making it
safe for actors to concurrently access it in future. Note that permissions are a
verification-only concept; they do not need to be represented at runtime.

Incorporating immutability into our reasoning about actor services is ex-
tremely powerful. In particular, any properties known to hold in the current
program state which depend only on heap locations which are known to be im-
mutable, may be automatically assumed to hold in all future states. We reflect
this formally in our approach via a future states relation, written ≺, which reflects
the semantics of immutable permissions: for any locations to which immutable

7

permission is held now, immutable permission may be assumed to be held in the
future, and the corresponding heap value may not have changed. Additionally,
our semantics for actor services guarantees that once an actor service is true, it
is also true in all future states. This design decision comes with restrictions (we
do not handle explicit deallocation of actors in this paper), but allows for actor
service composition without precise knowledge about program traces.

3.4 Actor invariants and message preconditions

Exclusive permissions can be used to define the parts of the heap are owned
by an actor. We represent this formally using an actor invariant. Similar to
the classical notion of object invariant [25, 14], an actor invariant is a property
which must hold in between the actor’s execution of each message handler. In
particular, the actor’s invariant may be assumed to hold at the beginning of
executing the message handler, and must be shown to be re-established by the
end of this execution. Both exclusive and immutable permissions may be included
in an actor invariant; in the former case, this prescribes that the actor currently
owns this data; in the latter, the data is immutable and may be safely shared
among actors. For example, the store field of a QueryManager actor is mutated
on receipt of sols messages: this can be permitted by including the exclusive
permission to this field location in the actor’s invariant. On the other hand,
based on the observation that the next fields of QueryWorker instances are never
modified, we can include immut(this.next) in the actor invariant.

Actor invariants may also include two-state assertions, describing constraints
on the data to which permission is held. These two-state assertions can express
constraints over the pairs of heaps when a message handler begins executing
and when it terminates. For example, we can express in our running example
that the store field of the QueryManager actor never decreases in size, using a
two-state assertion old(|this. store |) ≤ |this. store |. We use the “old” keyword to
wrap expressions which are to be evaluated in the earlier heap.

Actor invariants must be self-framing (written |=frm A), meaning that they
depend only on heap locations to which they also require permission. For an
actor invariant to include the two-state assertion above we must also include
acc(this. store) ∗ old(acc(this. store)). Here, the conjunction ∗ requires the per-
missions in both conjuncts [28]. Self-framedness guarantees that the invariants
cannot be violated by other actors; all relevant heap locations are either im-
mutable or currently owned by the actor. Actor invariants must also be transitive
as two-state predicates: the combination of these two restrictions means that a
correct actor invariant can be soundly assumed to hold across execution points
spanning any number of complete message handler executions by the actor.

Our technique allows ownership of heap data to be transferred between ac-
tors. We prescribe that ownership of a heap location is transferred with a mes-
sage, by including exclusive permission to the heap location in the precondition
of the message handler. The sender may not access such a location after sending
the message. As is standard, message preconditions (which must be self-framing)
are assumed when proving properties of the message handler implementations.

8

3.5 Unbounded composition: summarising the ring

We can now turn to the first serious step in the proof of our running example.
Let us consider the code which sets up the ring of workers, in lines 20–24 of
Fig. 1. In particular, we aim to prove an actor service describing the behaviour
of the actor ring, using the local service (QW) as an actor service assumption
in our proof. In the semantics of our logic, we parameterise judgements by an
actor service environment Λ: the set of assumed actor services. For one-state
assertions in our logic, our semantic judgement has the form Λ, Σ, σ |= a, in
which a is a one-state assertion, Λ is an actor service environment, Σ is a heap-
state, consisting of a heap plus sets of exclusive and immutable permissions, and
σ is a mapping from variables to values. Despite representing properties about
future executions, actor services are one-state assertions in our logic: whether an
actor service is true or not now is a well-defined property regarding the behaviour
of the system from now onwards1. The future states relation Σ1≺Σ2 (Sec. 3.3)
holds iff for all heap locations to which Σ1 has immutable permission, Σ2 also
has immutable permission, and the values of the heap location are the same in
the two heap-states; the values of other heap locations are unconstrained.

To prove the behaviour of a loop, we require an invariant; in our technique
this can include actor services. The following assertion suffices for our example:

nextPid 6= null ∧ 0 ≤ i ≤ |subqueries| ∧ (i = 0 ⇒ nextPid = this) ∧
(i > 0 ⇒ (nextPid. sols (S, P) ; (this. sols (_, P)))

This actor service expresses that the part of the ring built so far guarantees that
sending a sols message to the last actor created will cause a corresponding sols

message to be eventually sent to the this actor. Intuitively, this is because each
actor in the ring promises—via the local service (QW)—to send such a message
to the next actor in the ring, and these next fields reach this.

Establishing this loop invariant before the loop is uninteresting, as no actor
services are required. We focus on how to justify that the loop invariant is
preserved, in particular, how we derive the required actor service at the end
of the loop body. Let us begin with the (simpler) case in which i is initially 0
before executing the loop body. We can instantiate the assumed actor service
(QW) with nextPid as the receiver of the trigger message, to obtain the actor
service nextPid. sols (S, P) ; nextPid.next. sols (_, P). We now consider the rule
for rewriting the response patterns of actor services; the following is a simplified
version of the full rule:

Λ, Σ, σ |= T ; e.m(ei)
∀Σ1. Σ≺Σ1 ⇒ Λ, Σ1, σ |= e = e′ ∗ (∗ ei = e′

i)
(rewrite-simple)

Λ, Σ, σ |= T ; e′.m(e′

i)

1 Our analogous judgement for two-state assertions takes a second heap-state, and is
written Λ, Σ1, Σ2, σ |= A. We also employ a judgement Σ, σ |=frm e (e is framed in
the state), meaning that the expression e depends only on heap locations to which
permission is held, and Σ, σ |=immut e to express the same restricted to immutable
locations (e is immutable in this state).

9

We use the metavariable T to range over trigger messages (i.e., the left-hand-sides
of actor services). The conjunction ∗ used in our formalisation is equivalent to
standard logical conjunction (∧) when applied to assertions without permissions,
such as these. We use the notation (∗ ei = e′

i) to represent iterated conjunction
over each ei = e′

i assertion. This rule expresses that we can rewrite the expres-
sions used in the response pattern of an actor service via equalities which can
be shown to hold in all future states (according to the ≺ relation introduced in
Sec. 3.3). In practice, this premise can be satisfied only if the equalities are either
trivial (on identical expressions), or are known to hold in the current state, and
which depend only on immutable heap locations2.

When we create a new QueryWorker instance (on line 20), we obtain exclu-
sive permission to the fields of the new actor. By choosing to logically freeze
(i.e., exchange the exclusive permission for immutable permission) the location
nextPid.next at the point of spawning the actor, not only are we able to es-
tablish immutable permission for the actor’s invariant, but we can deduce that
the equality nextPid.next = this will indeed hold in all future states. Using the
(rewrite-simple) rule above, we can therefore obtain the actor service required
in the loop invariant.

Now let us turn to the case in which i is greater than 0 before executing the
loop body. In this case, we can apply similar reasoning to obtain an actor service
describing the behaviour of the newly-spawned actor; in order to establish the
loop invariant we need to compose this actor service with the one from the loop
invariant assumed initially. We can now present (again, a simplified form of) the
rule for composing two actor services:

Λ, Σ, σ |= T ; e.m(ei)
∀Σ1. Σ≺Σ1 ⇒ Λ, Σ1, σ |= e.m(ei) ; R

(compose-simple)
Λ, Σ, σ |= T ; R

We use the metavariable R to range over response patterns (i.e., the right-hand-
sides of actor services). The second premise requires that the specified actor
service will hold in any future state. Based on the technique introduced so far,
there are two ways to establish this. Firstly, some actor services can be derived
from the assumed actor services in Λ. Secondly, actor services known to hold in
the current state can also be assumed to hold in all future states (as described
by ≺), provided the expressions used in their trigger messages are immutable.

Returning to our example, the loop invariant provides us with the actor
service nextPid0. sols (S, P) ; this. sols (_, P) at the start of the loop iteration
(we write nextPid0 for the value of nextPid at this point). By similar reasoning
to in the i= 0 case, we are able to obtain the actor service nextPid. sols (S, P) ;
nextPid0. sols (_, P). We can then compose these two actor services, to obtain3

the desired actor service nextPid. sols (S, P) ; this. sols (_, P).

2 The general form of this rule, however, allows for more involved cases; see Sec. 3.9.
3 We elide the handling of the quantified variables here, but they are instantiated and

generalised in a standard way, as formalised later in Fig. 2.

10

This simple case of composition essentially matches one response message in
one actor service with the trigger message with another, and allows us to deduce
a service in which this intermediate message is hidden, summarising the end-
to-end behaviour of the actors. After the loop (at line 24), the loop invariant,
the negation of the loop guard, and the fact that subqueries is non-empty imply
nextPid. sols (S, P) ; this. sols (_, P). After the assignment this .next := nextPid

on line 24, which completes the ring of actors, we can deduce this actor service
with this .next as the receiver of the trigger message instead of nextPid:

this .next. sols (S, P) ; this. sols (_, P) (1)

This actor service represents a responsiveness property that is justified by the
whole ring of actors created, but without revealing their number or underlying
structure. In the rest of this section, we will show how our general reasoning
technique allows us to further combine actor services with this one, to obtain
actor services to describe the example as a whole.

3.6 General actor services

As well as specifying response properties in terms of guaranteed messages, it
is important to specify and verify functional properties associated with these
responses. For example, in the case of the req message in the QueryManager

class, the this.user field will be set by the message handler, and never modified
(we can consider the location immutable, from this point onwards). This fact is
relevant for later reasoning about the response message eventually sent to this
User actor.

It is also important for our response properties to be able to describe multiple
alternative responses, as well as conditions under which they may be known to be
individually guaranteed. For example, the behaviour of the sols message handler
in QueryManager cannot be simply summarised by a single response message.

We achieve these goals with two complementary features: response patterns
with multiple alternatives, and where-clauses, which describe additional proper-
ties guaranteed when response messages are sent.

Definition 1 (Actor Services). An actor service is an assertion of the form
∀Xj .(T ; R), where T is a trigger message, and R a response pattern4.
A trigger message T , is a term e.m(ei), where m is a message name, and e, ei

are one-state expressions (i.e. do not mention old).
Response patterns (ranged over by R), are finite sets of responses; we notate
response patterns in examples as (r1 | r2 | . . . | rn).
A response r is a response message or empty response.
A response message has the form (e.m(ei) where A), in which A is a two-state
assertion (i.e., may include old), called the where-clause.
An empty response has the form (ǫ where old(a)), for a one-state assertion a.
In both cases, where-clauses may not mention exclusive (acc) permissions, and
an omitted where-clause is the same as writing where true.

4 In examples, we omit the explicit quantifiers, and use (as previously) the X notation.

11

The meaning of an actor service with response pattern R, is that, for all trigger
messages in the future, at least one of the cases described by the response pattern
is guaranteed to eventually happen, and its where-clause will be guaranteed to
hold at that point. An empty response permits that no message will be sent; this
can be used to handle special cases in the actor’s behaviour, or simply to weaken
the meaning of an actor service. In all cases, the “old” heap in a where-clause
refers to the heap when the trigger message was received; the two-state where-
clauses can thus relate this state with the state in which response messages
are sent (in the case of an empty response, there is no such state, hence the
restriction to the “old” state). We show examples in the following subsections.

3.7 Where-clauses and composition

Where-clauses allow actor services to express functional properties, beyond those
guaranteed by message preconditions. For example, the following local service5

expresses the relevant behaviour of the req message handler:

M.req(U, N, P) ; M.next. sols (_, P) where immut(M.user) ∗ M.user = U

(QM2)

As with all heap-dependent expressions in our logic, where-clauses may describe
properties of heap locations only when appropriate permissions are held. In
the case of a where-clause, these can either be immutable permissions included
in the where-clause itself, or permissions guaranteed by the preconditions of
the corresponding trigger message (in the “old” state of the where-clause) and
response message. Such where-clauses can include additional information about
the state passed around with messages, which may be true for the guaranteed
response messages but not all messages of this kind.

Since where-clauses can only constrain state which is framed by permissions
associated with the corresponding messages, their meaning is stable whether
considered with respect to when those messages were sent or when they begin
being handled. This allows us to extend actor service composition to “chain
together” where-clauses into two-state assertions summarising their transitive
guarantees:

Definition 2 (Three state composition). We define that A3 is a three-state
combination of assertions A1 and A2 with respect to a current state, via the
predicate (Λ, Σ, σ).futureCombines(A1, A2, A3), which holds iff:
∀Σ1, Σ2, Σ3. Σ≺Σ1≺Σ2≺Σ3 ⇒

(Λ, Σ1, Σ2, σ |= A1 and Λ, Σ2, Σ3, σ |= A2 ⇒ Λ, Σ1, Σ3, σ |= A3)
We generalise this notion to a predicate on a single two-state assertion and

two response patterns, written (Λ, Σ, σ).futureCombines(A, R, R′), which holds
if R′ is the same response pattern as R except that each where-clause in R′ is a
three-state combination of A and the corresponding where-clause in R.

5 Recall that a local actor service is one provable with respect to the code of the
corresponding message handler, and which is true in all states.

12

(T ; R) ∈ Λ
(axiom)

Λ, Σ, σ |= T ; R

Λ, Σ, σ |= T ; ((e.m(ei) where A) ∪ R)
(Λ, Σ, σ).futureEntails(A, e.m(ei) ; R′)

(Λ, Σ, σ).futureCombines(A, R′, R′′)
(compose)

Λ, Σ, σ |= T ; (R′′ ∪ R)

Λ, Σ, σ |= e.m(ei) ; ((e′.m′(e′

j) where A′) ∪ R)
X, Xi 6∈ dom(σ) σ′ = σ[X 7→⌊⌊e⌋⌋Σ,σ][Xi 7→ ⌊⌊ei⌋⌋Σ,σ]
Am = old(pre(m, X, Xi)) A = Am ∗ pre(m′, e′, e′

j)
(Λ, Σ, σ′).futureEntails(A ∗ A′, A ∗ A′′ ∗ e′=e′′ ∗ (∗ e′

j=e′′

j))
(rewrite)

Λ, Σ, σ |= e.m(ei) ; ((e′′.m′(e′′

j) where A′′) ∪ R)

Λ, Σ, σ |= T ; ((e1.m1(e′

1) where false) ∪ R)
(elimFalse)

Λ, Σ, σ |= T ; R

Λ, Σ, σ |= e.m(ei) ; ((e.m(e′

i) where A1) ∪ R) Σ, σ |=immut e
(Λ, Σ, σ).futureEntails(A1, localVariant(e))

(localVariant)
Λ, Σ, σ |= e.m(ei) ; R

Λ, Σ, σ |= ∀x.(T ; R) Σ, σ |=frm e x ∈ FV(R) ⇒ Σ, σ |=immut e
(∀E)

Λ, Σ, σ |= (T ; R)[e/x]

X 6∈ dom(σ) ∀v. (Λ, Σ, σ[X 7→ v] |= (T ; R)[X/x])
(∀I)

Λ, Σ, σ |= ∀x.(T ; R)

Fig. 2. Semantics for actor services. pre denotes a message precondition instantiated
with receiver and parameters. ⌊⌊e⌋⌋Σ,σ denotes evaluation of the expression e in Σ, σ.

Equipped with this definition, we can now explain the general rule for composing
actor services, a simplified version of which was shown in Sec. 3.5. Fig. 2 shows
the full rules for deriving actor services; we consider here the rule (compose) (the
others will be explained in the remainder of this section). Compared with the
simplified version (compose-simple) a number of generalisations have been made.
The first premise now handles the possibility of alternative response patterns R

in the original actor service. The third premise prescribes that the new where-
clauses in the resulting composed actor service are defined in terms of three-
state combinations of A and the where-clauses in R′ (the response pattern of
the second actor service composed). The second premise has also been changed;
the predicate (Λ, Σ, σ).futureEntails(A1, A2) checks entailment between A1 and
A2 in all pairs Σ1, Σ2 of states such that Σ≺Σ1 and Σ1≺Σ2. Thus, rather than
requiring that the actor service in the second premise holds in all future states,
we can use information from the where-clause A to help justify this premise.

13

Returning to the actor service (1), derived at line 24 in our example, if we
now consider (QM2) an assumed actor service, we can instantiate it6 and use
the rule (combine) to derive the following actor service at this program point:

this.req(U, N, P) ; this. sols (_, P) where immut(this.user) ∗ this.user = U

(2)
This assertion expresses the response property that a subsequent call to req on
this actor will eventually cause a sols message to be received by the same actor
(the first response from the ring of QueryWorker actors). We explain next how
to reason about the subsequent behaviour of the ring, on receiving this message.

3.8 Local variants: reasoning about callback loops

Just as for reasoning about recursion in a sequential setting, we need extra
machinery to reason about situations in which a message might result in the
same message type being sent to the same actor. Assuming this behaviour is
not intended to go on forever, we need a means of justifying its eventual termi-
nation. This is, however, challenging to achieve modularly, since the reason for
termination may depend on state which is local to the actors involved.

We illustrate our solution with respect to the sols implementation in the
QueryManager class, for which we require alternative responses. The most-general
actor service which we prove against the implementation (i.e., it is a local ser-
vice), is the following:

M. sols (S, P) ; (M.user.response(_))
| (M.next. sols (_, P) where localVariant(M)) (QM3)
| (ǫ where old(M.next = null ∨ M.user = null))

This actor service specifies that there are three possibilities: the user (as read
from the actor’s user field) will receive a response message, the next actor (i.e.,
the head of the ring) will receive a sols message, asking for more solutions, or,
in the case where the actor was not yet properly initialised, no response message
is guaranteed.

The assertion localVariant(M) has not yet been introduced; this is an asser-
tion which can only occur in where-clauses, and we will explain its meaning and
usage in this subsection. Let us consider first composing (an instantiation of)
the local service (QM3) above (in particular, its second response message) with
the actor service (1) derived at line 24. This allows us to derive the actor service:

this. sols (S, P) ; (this.user.response(_))
| (this. sols (_, P) where localVariant(this))
| (ǫ where old(this.next = null ∨ this.user = null))

(3)

6 The last premise of the (∀E) rule guards against the possibility of instantiating heap-
dependent expressions into contexts in which they would be interpreted with respect
to other (future) heaps, unless they are known to be immutable (trivially true for
variables such as this which do not depend on the heap).

14

Considering the second case of this response pattern, the actor service describes
a looping behaviour; one possibility for the response to receiving a sols message
is that the actor will eventually be sent a further sols message. This correctly
describes a behaviour of the protocol, but we wish to show that this second al-
ternative will not be taken indefinitely. By manual inspection of the code (lines
37–42), we can see that this will indeed not be the case: every time the sols mes-
sage handler chooses to send a further sols message to the next actor, the number
of remaining required solutions will have decreased. Note that this amount can
be precisely expressed only in terms of state local to the actor: by the expression
this. nrSolutions − |this. store |.

Our localVariant assertions solve this problem; notionally, they prescribe the
existence of a variant expression (in the standard sense for termination checking)
in terms of the actor-local state, which is guaranteed to satisfy the following
property with respect to the old state (i.e., the state in which the handler for
trigger message of the actor service began executing): for all subsequent message
handlers executed by the actor, this expression will have a smaller value than
it did in the old state. In the semantics of our logic, we do not define this
intended meaning for localVariant assertions, which would depend on knowing
future traces of the program. Instead, we treat localVariant assertions formally
as uninterpreted predicates over the current states. The only property assumed
for these assertions, is that once true they will be true for all future states, i.e.:
Λ, Σ0, Σ1, σ |= localVariant(x) and Σ1 ≺ Σ2 ⇒ Λ, Σ0, Σ2, σ |= localVariant(x)
Note that this property was necessary for deducing actor service (3), above.

Discharging the correct proof obligations to show that a local variant indeed
exists for a particular implementation is non-trivial, but we handle this problem
in Sec. 4. From the perspective of our actor service semantics here, the rule
(localVariant) of Fig. 2 allows us to make use of the existence of a local variant,
as a justification for removing the corresponding response message from the
alternatives. This allows us to derive a stronger actor service, reflecting that at
least one of the other alternatives will happen eventually:

this. sols (S, P) ; (this.user.response(_))
| (ǫ where old(this.next = null ∨ this.user = null))

(4)

3.9 Rewriting and eliminating alternatives

Equipped with the full rules for deriving actor services, we show now how, at the
same program point in our example (line 24, after the ring has been initialised),
we can derive an actor service describing the overall function of the ring. We
consider first the actor service (2), and observe that the this.user field is guar-
anteed immutable and non-null, by a combination of the where-clause and the
precondition of the trigger message req. We can make this explicit, by applying
the general form of the (rewrite) rule from Fig. 2 to (2). The extra complexity
in this rule allows the where-clause A′ to be rewritten into a new form A′′ using
facts from the corresponding message preconditions: in this case, the “old” pre-
condition Am guarantees the property that the passed user parameter will be

15

non-null. In addition, the use of futureEntails in this premise allows us to make
use of immutable facts known at this particular program point; in particular, we
can use the fact that this.next is non-null and immutable in the current state
(after executing line 24), to rewrite the where condition further:

this.req(U, N, P) ; this. sols (_, P) where immut(this.user) ∗
this.user = U ∗ U 6= null ∗ immut(this.next) ∗ this.next 6= null

(5)

We now compose the actor services (5) and (4); the facts about immutable
data in the where condition of (5) can, where desired, be preserved in the re-
sulting where-clause. In particular, these facts contradict the where-clause of the
empty response in (4); we can derive the following actor service:

this.req(U, N, P) ;
(this.user.response(_) where immut(this.user) ∗ this.user = U)

| (ǫ where false)
(6)

Finally, we can use the rule (rewrite) to replace the expression this.user with U in
the first alternative and then drop the where-clause, and the rule (elimFalse) to
eliminate the second alternative (its where condition shows it to be an unfeasible
response in this state), to derive the desired response property expressed by an
actor service: this.req(U, N, P) ; U.response(_).

3.10 Nested actor services and formal semantics

With respect to our running example, we have shown how to deduce an im-
portant response property at an intermediate program point in the code of the
query_setup message handler. Several of the inference steps above depended on
specific properties known to hold at this program point. However, we would like
to present a specification to a client of the database protocol, which will not
require knowledge of this program code. We can achieve this in a natural way:
we support actor services in the where-clauses of other actor services. We can
then improve upon the very first actor service mentioned in this section (QM1),
using a where-clause to describe the guaranteed functionality:

M.query_setup(Q, U ′) ; U ′.ready(M) where M.req(U, N, P) ; U.response(_)
(QM)

This precisely summarises the specification of the database manager from the
client’s perspective: after calling the query_setup message, the passed user is
guaranteed a ready message in response, by which time the QueryManager will
promise to respond to a subsequent req message with an eventual response mes-
sage. Note that this specification exposes no details about the complexities of
the implementation and messaging protocol; a simpler (but less efficient) imple-
mentation could satisfy the same specification.

The rules of Fig. 2 in fact define our formal semantics for actor service as-
sertions. That is, we interpret a judgement Λ, Σ, σ |= T ; R according to the

16

least fixpoint interpretation of these rules; equivalently, an actor service is true
under actor service assumptions Λ in a state Σ, σ if there is a finite derivation of
this fact, according to these rules7. Nested actor services can be simply handled
with the same rules; in particular, it is possible to rewrite an actor service in a
where-clause via the (rewrite) rule, just like any other assertion.

Throughout this section, we have required actor services as assumptions,
which we have claimed to be local services: those which can be proved against
the implementation of a particular message handler. In the next section, we will
present our techniques for justifying these local services formally.

4 Proving Local Services

In this section, we define a proof system in the style of Hoare Logic, for proving
properties about message handler implementations. The main goal is the proof
of local services against such code; recall that a local service is an actor service
whose meaning doesn’t depend on a particular program state, and whose re-
sponse messages must be sent directly by the code of the handler for the trigger
message. Thus, one of the requirements on our design is that we can express
proof obligations that require all executions of the message handler to eventu-
ally reach a point in which the requirements of a response pattern are satisfied.
We achieve this with the novel notion of obligation assertions. These assertions
are not to be used in specifications, and may not occur in actor services; they
are used only during proofs in our Hoare Logic. They can, however, be used to
encode the requirements that a (local) actor service imposes on a message han-
dler implementation, as we will show. Judgements in our Hoare Logic (hereafter,
Hoare triples) are of the form Λ ⊢ {A1} s {A2}, where Λ is an actor service envi-
ronment, A1 is a self-framing two-state assertion, called the precondition, s is a
statement, and A2 is a self-framing two-state assertion, called the postcondition.
As well as describing properties of the usual states (before/after execution of the
statement), our two-state assertions can include facts about and relationships
with a fixed “old” state, used in practice to denote the pre-state of execution
of the entire message handler. This support for two-state assertions allows us,
for example, to handle proof obligations about actor invariants: we can simply
require the invariant of the actor in the postcondition of a judgement, to enforce
the obligation that the invariant is re-established. The restriction to self-framing
assertions in Hoare triples [37] guarantees that facts concerning heap values can
only be preserved while appropriate permissions are known to be held. We define
our Hoare Logic with respect to the following language:

7 Nested actor services require care to ensure that this semantics is well-defined. The
definition of futureEntails is not a simple entailment check in the case of actor service
assertions. We employ a construction to guarantee that a guaranteed actor service
can be added as an additional assumption in deriving the “entailed” formula, avoid-
ing negative occurrences of actor services. This makes the derivation rules monotonic
with respect to actor service assertions; the fixpoint is guaranteed to exist.

17

A1 |=Λ A′

1 A′

2 |=Λ A2 Λ ⊢ {A′

1} s {A′

2}
(cons)

Λ ⊢ {A1} s {A2}

freeze(A1, A′

1) freeze(A′

2, A2) Λ ⊢ {A′

1} s {A′

2}
(freeze)

Λ ⊢ {A1} s {A2}

FV(A3) ∩ mods(s) = ∅ |=frm A3 Λ ⊢ {A1} s {A2}
(frame)

Λ ⊢ {A1 ∗ A3} s {A2 ∗ A3}

(skip)
Λ ⊢ {A} skip {A}

x /∈ otherStateFV(A) A[e/x] |=frm e
(varAss)

Λ ⊢ {A[e/x]} x:=e {A}

(fldAss)
Λ ⊢ {acc(x.f)} x.f :=y {acc(x.f) ∗ x.f=y}

x /∈ FV(A) fields(C) = fi A |=frm ei freeze((∗ acc(x.fi)), A′)
|=frm a A ∗ A′ ∗ (∗ x.fi = ei) |=Λ A′′ ∗ a

∀Σ1, σ. (Σ1, σ |= a ⇒ ∃Σ0. Σ0, Σ1, σ |= Inv(C)[x/this])
(spawn)

Λ ⊢ {A} x:= spawn C(fi:=ei) {A′′}

a = pre(m, e, ei) a ∗ A′ |=frm e a ∗ A′ |=frm ei
(messageNoObl)

Λ ⊢ {a ∗ A′} e.m(ei) {A′}

a = pre(m, e, ei) A |=Λ a ∗ A′ (e′.m(e′

i) where A1) ∈ R

A |=frm e = e′ ∧ (∧ ei = e′

i) A |=Λ e = e′ ∧ (∧ ei = e′

i) A |=frm A1

(A2, B2) = splitLocalVariant(A1) A |=Λ A2 A ∗ B2 |=Λ A ∗ B3

(messageObl)
Λ ⊢ {A ∗ obl(R)} e.m(e′) {A′ ∗ (B3 ⇒ obl(localVariant(this)))}

(ǫ where old(a)) ∈ R A |=Λ
old(a) Λ ⊢ {A} s {A′}

(emptyObl)
Λ ⊢ {A ∗ obl(R)} s {A′}

C = cls(this) A ∗ B |=Λ a |=immut a a ∗ Inv(C) |=frm e ≤ old(e)
a ∗ Inv(C) |=Λ e ≤ old(e) A ∗ B |=Λ old(e) ≥ 0 ∧ e < old(e)

(localVarObl)
Λ ⊢ {A ∗ (B ⇒ obl(localVariant(this)))} end {A}

Fig. 3. Hoare Logic for Proving Message Handler Properties. Inv(C) denotes the (two-
state) actor invariant for class C.

Definition 3 (Program Syntax). Statements s are defined by the grammar:
s ::= skip | x:=e | x.f :=y | x:= spawn C(fi:=ei) | (s1; s2)

| (if b then s1 else s2) | (while b do s1) | e.m(ei) | end

Message handler bodies have the form (s; end), where s does not contain end.

We use end as a syntactic marker for the end of a message handler body; this is
useful for formalising requirements which can be checked only at this point.

18

4.1 Hoare Logic derivations and valid programs

The rules of our Hoare Logic are given in Fig. 3. The rules for if-conditions,
while loops and sequential composition are standard, and we omit them. The
first premise of the (varAss) rule requires that x occurs neither under old nor
in the response patterns of actor services in the assertion A; this avoids the
possibility of a heap dependent e being substituted into a position in which it
would be evaluated in the wrong heap.

The (freeze) rule is similar in nature to the rule of consequence, but allows
us to rewrite assertions to replace acc permissions with immut permissions.
The predicate freeze(A1, A2) holds if A2 is syntactically identical to A1 except
possibly for some acc(e.f) subformulas of A1 being replaced by corresponding
immut(e.f) formulas. The actual rule of consequence (cons) makes use of an
entailment operator (|=Λ) which is standard except that the actor service en-
vironment Λ is used when checking the entailment. This notion of entailment
supports arbitrary reasoning within our overall logic: in particular, it can be used
to derive new actor service assertions, according to their semantics in Fig. 28.

The (spawn) rule is relatively complex, but the various premises essentially
capture the following ideas. Firstly, when an actor is spawned, exclusive permis-
sion to all of its fields (denoted by the assertion (∗ acc(x.fi))) is newly made
available, and we can assume that all fields have been initialised to the specified
ei expressions. The actor’s invariant might require some of these exclusive per-
missions (in which case they must be given up in the current scope); it might also
require immutable permission to some of these fields. To handle this possibility,
the freeze operator can be used to obtain necessary immutable permissions in
A′. The (one-state) assertion a must be strong enough to guarantee a weak form
of the actor’s invariant, in which all that needs to be justified about the old state
is that its existence is not inconsistent. To satisfy this premise, the assertion a

needs to include the permissions which the actor invariant requires, which forces
them not to also occur in A′′, unless they are immutable permissions.

Even without obligations (described in the next subsection), we can now de-
fine what it means for a message implementation to be valid. This judgement
is independent of any actor service reasoning: it guarantees that the first four
properties described in our list above are all true for a particular message imple-
mentation, and define the baseline verification condition for a given program.

Definition 4 (Valid message handler). A handler for message m in class
C is valid, written C, m ⊢OK, iff (where apre is the precondition of m and sbody

is the body of message m) there exist a one-state assertion a and expressions ei

such that:

∀Σ, σ. (∃Σ0. Σ0, Σ, σ |= Inv(C)) ⇒ Σ, σ |= a) and apre ∗ a |=frm ei and
∅ ⊢ {apre ∗ a ∗ old(apre ∗ a) ∗ (∗ ei = old(ei))} sbody {Inv(C)}

A program is valid if all of the message handlers of all actor classes are valid.

8 Note that none of the Hoare Logic rules change this environment; the actor services
included in Λ can be seen as hypotheses across the whole Hoare Logic proof.

19

The assertion a in the judgement above allows us information from the actor in-
variant which pertains to the current state. For example, permissions belonging
to the actor invariant can be retained in a. Both this assertion and the message
precondition are “duplicated” in the current and old states; our assertion seman-
tics models these as independent states, but at the start of executing a message
handler they should be known to be the same. The expressions ei allow us to
connect these two states with additional equalities, where relevant. The post-
condition of the judgement requires that we can show that the actor invariant
will hold across the entire message handler execution.

4.2 Obligation assertions

We allow our syntax of assertions used in Hoare triple pre- and postconditions
to include obligation assertions of the form obl(o); intuitively these represent
the requirement that we reach some program point at which a condition de-
scribed by o is met. Here, o is either a non-empty response set R or the assertion
localVariant(this). In the former case, we require that the only variables men-
tioned in R are the parameters (including this) of the message handler being
checked, and that localVariant assertions used in the where conditions of R are
of the form localVariant(this) (these relate to the local state of the actor; when
proving a local service, we only have access to the local state of this).

We must define semantics for these novel assertions, including extending
the standard notion of state to reflect obligations. The essential idea of our
obligation semantics can be best understood by comparing with the semantics
of permission assertions such as acc(e.f). In the case of permissions, such an
assertion is true if it under-approximates the permissions actually held; we must
hold at least the permissions required by the assertion. Obligation assertions have
a dual semantics, they are true in a state if they over-approximate the actual
obligations. This intuitively means that in a Hoare Logic proof it is allowed
for permissions to be leaked but never fabricated (acc(e.f) |=Λ true but the
reverse does not hold); for obligations, the opposite is the case, and in particular,
A |=Λ true does not hold in general, when A contains obligation assertions. Note
that the assertion semantics does not reflect directly what the intended meaning
of these obligations is; apart from forcing that they cannot be simply removed,
they are treated as unknown assertions in the assertion semantics. Instead, their
intended meaning is reflected in the Hoare Logic rules.

This design has an important outcome: obligation assertions included in the
precondition of a Hoare triple cannot be removed using the rule of consequence.
Instead, these can be removed only by the last three rules of Fig. 3, which
specifically model the discharge of obligations. We can now show how to use
obligation assertions to check local services against an implementation.

Definition 5 (Checking local services). A handler for message m in class
C provides the local service ∀this, Xi .(this.m(Xi) ; R) under actor service
environment Λ, written Λ, C, m ⊢ ∀this, Xi .(this.m(Xi) ; R), iff (where apre =
pre(m, this, Xi), and sbody is the body of the message handler for m in class C

20

with formal parameters renamed to Xi) there exist a one-state assertion a and
expressions ei such that:

∀Σ, σ. (∃Σ0. Σ0, Σ, σ |= Inv(C, this)) ⇒ Σ, σ |= a) and apre ∗ a |=frm ei

and Λ ⊢ {apre ∗ a ∗ old(apre ∗ a) ∗ (∗ ei = old(ei)) ∗ obl(R)} sbody {true}

This definition is similar to Def. 4: we remove the requirement to check the actor
invariant (we could keep this, but all message handlers must be checked to be
valid in any case), allow for the possibility of a non-empty actor service environ-
ment, and, importantly, add the obligation assertion obl(R) to the precondition.
The fact that no obligation assertions occur in the postcondition forces the mes-
sage handler implementation to discharge these obligations before terminating.

4.3 Discharging obligations

Obligation assertions of the form obl(R), can be discharged if one of the al-
ternatives described by the response pattern R can be shown to take place. In
this section, we explain the last three rules of Fig. 3, which handle discharging
obligations. To illustrate the rules, we consider the proof of local service (QM3)
against the sols message handler in the QueryManager class.

In the case that R contains an empty response as an alternative, the rule
(emptyObl) defines the criterion for the obligation to be discharged based on
this alternative. The premises require that we can show that the where condi-
tion holds (recall that where conditions for empty responses may only constrain
the “old” state); in this case, the obl(R) assertion need not be included in the
postcondition. For example, in the (implicit) else branch at line 35, we can apply
this rule, combining the fact ¬(this.next = null ∧ this.user = null) known in this
branch with this.next = old(this.next) ∗ (this.user = old(this.user)), from the
precondition of the judgement (cf. Def. 5), to obtain the required where-clause.

The rule (messageObl) handles the similar (but more complex) case of dis-
charging an obligation via a message send9. Conceptually, the first two lines of
premises check that we have the message precondition, that the message send
in the code matches that in the response pattern (when evaluating the receiver
and parameter expressions in the current state), and that the where condition
A1 is framed by permissions in the current state. Intuitively, we would then just
check that A1 can also be shown to be true in this state. This is correct except
in the case where A1 includes localVariant(this) assertions. Whether a suitable
local variant is established by this message handler cannot be determined at
this program point; this can only be checked across the entire execution of the
message handler. Our solution is to split the checking of A1 into two parts: the
requirements that the assertion makes independently of localVariant assertions
(A2, in the rule, which is then checked to hold), and the condition under which

9 Note that rule (messageNoObl) can be applied instead of rule (messageObl), when
one cannot or need not discharge an obligation via this message send statement.

21

A1 requires a localVariant(this) assertion, which we use to prescribe a new obli-
gation in the postcondition (B2 is this condition)10. The last premise of the rule,
which lets us potentially rewrite B2 into a weaker condition B3 (thus potentially
requiring the resulting obligation more often) is necessary only in the case that
B2 depends on heap locations to which (exclusive) permission is given away (in
a); this may force us to abstract the precise condition to one which can still be
evaluated after the message send.

As an example of applying this rule, at line 40, we can use the (messageObl)
rule; here, the corresponding A1 assertion is simply localVariant(this), and so
A2 and B2 are both true: this results in the assertion obl(localVariant(this))
in the postcondition. Note that at this program point, no suitable local variant
has been established. By the end of the message handler, we will still have this
obligation, but under the condition describing that we took the path through
the message handler which reaches line 40.

By this point in the code (as claimed previously in Sec. 3.8), the expres-
sion this. nrSolutions − |this. store | will have been decreased since the message
handler began executing. We include in the actor invariant for QueryManager

that the value of the store field can never decrease in size, while the nrSolutions

field is immutable (once initialised): we then know that the actor invariant guar-
antees that this expression will never increase in value across the execution of
subsequent message handlers. These conditions make up the premises of the rule
(localVarObl), which can be used to discharge this obligation in the proof of this
message handler.

4.4 Overall proof strategy: iterated derivation of actor services

In order to prove local services which include actor services in their where-
clauses, the rules of Fig. 3 are already sufficient. However, at the point of ap-
plying the rule (messageObl) explained above, it will be necessary to discharge
a premise that shows that the where-clause holds at this point. When actor ser-
vices occur in this where-clause, this will be possible only if the Hoare triple
precondition already includes actor services, or we are able to derive them from
it. In either case, it will be possible to prove any actor services during a Hoare
Logic proof only if the actor service environment Λ is not empty. Including a
non-empty actor service environment Λ makes the justification of a new local
service hypothetical. We must ensure that this yields a well-founded derivation
of the eventual response property; it would not be acceptable to prove a local
service by first assuming it in Λ and then deriving it according to Def. 5.

We can support hierarchical derivation of actor services (new services are
derived using only the results of previous proofs), as follows: firstly, some local
services can be derived with an empty actor service environment. Any actor
service without nested actor services in its where-clauses will (if derivable at all)
not require any assumed actor services. In our running example, the three local

10 This splitting can be achieved syntactically; we abstract its definition here with the
function splitLocalVariant.

22

services (QW), (QM2) and (QM3) fall into this category. Then, by assuming
these local services, we are able to derive e.g. (QM), whose derivation requires
the arguments presented throughout Sec. 3 in order to justify the nested actor
service. If local services are built up in this hierarchical fashion, the justification
of the corresponding response properties is guaranteed to be well-founded.

Definition 6 (Iterative derivation of actor services). An actor service en-
vironment Λ can be iteratively derived (for a given program), if there exists n ≥ 0
and there exist actor service environments Λ′

1, Λ1, Λ′

2, Λ2, . . . , Λ′

n, Λn such that
(taking Λ0 = ∅), we have Λn = Λ and for all 0 ≤ i < n:
(1) Each ∀Xi .(T ; R) ∈ Λ′

i+1 is a local service, and Λi, C, m ⊢ ∀Xi .T ; R

(where C, m are the class and message name of the trigger message T).

(2) For each ∀Xi .(T ; R) ∈ Λi+1, we have true |=Λ′

i+1 ∀Xi .T ; R.

This definition allows us to alternate between deriving new local services (Λ′

i+1)
based on previously derived actor services, or deriving new actor services (Λi+1)
from local services. The latter step can be useful for information hiding reasons:
if we wish to present an actor service environment as a specification for part of
the program, then presenting only local services may not be suitable: because
a local service must always expose a response message which is sent directly
by the message handler for its trigger message, this might expose details (of
intermediate actors, messages and field names) that we do not wish to. Being
able to rewrite these local services into arbitrary actor services allows us to avoid
this (in our running example, this wasn’t necessary, since the local service (QM)
was derivable without exposing internal details).

4.5 Soundness

The proof technique of Def. 6 also lends itself to proving soundness of our actor
service reasoning. While a formal operational semantics and soundness argument
are beyond the scope of this paper, we summarise the essential points here.

Firstly, we consider only well-typed programs which are valid (Def. 4). Op-
erationally, we consider null dereferences and data races as runtime errors. We
define a notion of valid runtime state, which includes the requirement that a
suitable partioning of the heap into owned regions and an immutable region
must exist. As the program executes, this partitioning will change, but locations
in the immutable region will remain so. Note that this notion of ownership is
an artifact of the argument but not a feature of the operational semantics itself
(which does not track permissions). Based on this idea, we can show that a valid
program will never get stuck or encounter runtime errors.

To tackle the soundness of actor services, we need to relate these assertions to
the intended temporal (response) property of runtime traces which they notion-
ally represent. We can show two key results. Firstly, we can show that for any
local service ∀Xi .(T ; R) such that Λ, C, m ⊢ ∀Xi .(T ; R), any execution of
the message handler for m in C will either not terminate, or will eventually reach
a state in which one of the response messages is sent (or none, if an empty re-
sponse pattern is included), and the corresponding where-clause will be derivable

23

at this point, possibly using the actor services assumed in Λ. This result can be
shown in a simplified operational semantics in which we only consider the local
execution of a single actor executing the appropriate message handler. The result
can be made a true liveness property if one chooses to also prove termination of
each message handler, which we regard as an orthogonal problem.

Secondly, we can show tha for any actor service ∀Xi .(T ; R) derivable in
a program state under an actor service environment Λ, if we assume that all
actor services in Λ describe valid response properties of the runtime traces of
the program, then the actor service ∀Xi .(T ; R) will also do so. This requires an
induction over the derivation (according to the rules of Fig. 2) of ∀Xi .(T ; R),
and requires that sent messages are always eventually delivered (not necessarily
in order), selection of a new message to execute is weakly fair, and all actors
continue to respond (i.e., will always eventually receive another message, if any
are waiting); in particular, that no actor executes a message handler forever.

As a corollary of these two results, we obtain that, in a valid program, any
actor service which can be iteratively derived (Def. 6) will describe a response
property true for the runtime traces of the program, under the same assumptions.

5 Related Work

With respect to the case study of Arts and Dam [2], we provide a simple proof of
the same response property, using the actor services, permissions and actor in-
variants provided by our technique. Poetzsch-Heffter et al. [32] argue the need for
actor reasoning techniques supporting compositionality. Kurnia and Poetzsch-
Heffter [22] present such a compositional technique based on trace-based as-
sertions. However, behaviours guaranteed by actors can only be summarised
in a hierarchical fashion, according to a fixed topology [34], and call-backs in
sequences of messages (such as in the ring in our example) are not permitted.

A number of other techniques base reasoning around invariants over histo-
ries of message-events (e.g. [13, 1, 12]). These approaches can express intricate
properties over many successive events. The techniques involve one verification
at the level of individual actors (via invariants), followed by a composition phase
to derive a system-wide invariant. These safety properties cannot guarantee that
certain response events will occur (after perhaps unrelated actions by the same
actor). Individual actors can be verified in isolation, but it is not possible to
summarise behaviour of parts of a program such that the summaries can them-
selves be composed later. Feng [16] makes a similar argument for hierarchical
compositionality in the context of reasoning about concurrency and shared data.

Some language designs provide guarantees about actor-like programs by de-
sign, via reduction to model-checking [11, 10], custom support in proof assistants
[33], or via high-level program descriptions from which code can be safely gener-
ated [8]. These works (as well as those based on temporal logics) require reasoning
in terms of the whole program and/or do not handle liveness properties.

Multiple type systems have been proposed for guaranteeing properties such as
copyless messaging (ownership transfer) and immutability in actor-like programs,

24

e.g. [17, 36, 41, 6, 7]. These type annotations could be mapped onto permissions,
to combine these systems with our technique for proving response properties.
Some techniques integrate protocol verification [38, 4, 39, 15], which makes rea-
soning more precise and able to address other safety properties.

Extensive work has been carried out on protocol verification for message-
passing programs, using (multiparty) session types [20, 21, 9, 3]; such work typ-
ically does not address liveness or compositional reasoning. Such protocol rea-
soning could, however, complement our proof technique (see Sec. 6). Padovani
et al. [29] address liveness at the protocol level; this does not guarantee that
the underlying code will continue to produce messages, and does not support
compositionality. Lange and Tuosto [23] show how to synthesise global descrip-
tions of a system from local ones; this is closer in spirit to our compositional
reasoning, but does not support functional specifications or liveness.

The “causal obligations” of Helm et al. [18] are a specification construct
similar to simple local services. No proof system was defined for this construct.

6 Conclusions and Future Work

We have introduced a new modular verification technique for programs which
communicate via asynchronous messaging. Our proof technique is compatible
with permission-based logics; in particular, it is straightforward to adapt the
assertion logic (including the where-clauses of our actor services) to incorporate
standard features of these logics such as abstract predicates [30]. Our semantics
for actor service assertions is largely orthogonal to the particular logic used for
functional specification, provided that two-state properties can be expressed.

A natural extension is to generalise the form of actor services to express
response properties with more than one response message and more than one
trigger message. The former extension is straightforward, but the latter requires
additional book-keeping in the reasoning, in order to represent the case that some
but not all of the trigger messages have been received; we leave this extension
for future work, along with a complete formalisation and soundness proof.

Our current proof technique assumes that actors must, by default, be always
ready to receive any message permitted by their type. It would be interesting to
combine our actor service reasoning with protocol verification techniques (such
as session types and typestate reasoning), in order to make our technique more
expressive and to support explicit de-allocation of actors.

Acknowledgements. We are very grateful to Sophia Drossopoulou, Sylvan Cleb-
sch, Juliana Franco, Tim Wood, Susan Eisenbach, Malte Schwerhoff, Ernie Co-
hen, John Boyland, Arnd Poetzsch-Heffter, Ludovic Henrio, Pietro Ferrara and
Reuben Rowe for important technical discussions and encouragement. We thank
Mariangiola Dezani and Dilian Gurov for pointers to related work, and the ESOP
reviewers for many helpful suggestions which have improved the paper.

25

References

1. W. Ahrendt and M. Dylla. A system for compositional verification of asynchronous
objects. Science of Computer Programming, 77(12):1289–1309, Oct. 2012.

2. T. Arts and M. Dam. Verifying a distributed database lookup manager written in
Erlang. In FM 1999, volume 1708 of LNCS, pages 682–700, 1999.

3. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract
for distributed multiparty interactions. In CONCUR 2010 - Concurrency Theory,
volume 6269 of LNCS, pages 162–176. Springer Berlin Heidelberg, 2010.

4. V. Bono, C. Messa, and L. Padovani. Typing copyless message passing. In
TOPLAS, volume 6602 of LNCS, pages 57–76, 2011.

5. J. Boyland. Checking interference with fractional permissions. In SAS 2003, volume
2694 of LNCS, pages 55–72, 2003.

6. D. Clarke, T. Wrigstad, J. Östlund, and E. B. Johnsen. Minimal ownership for
active objects. In TOPLAS, volume 5356 of LNCS, pages 139–154, 2008.

7. S. Clebsch, S. Drossopoulou, S. Blessing, and A. McNeil. Deny capabilities for safe,
fast actors. In AGERE! 2015, pages 1–12, 2015.

8. M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, and J. Mauro. Dynamic
choreographies. In COORDINATION 2015, volume 9037 of LNCS, pages 67–82,
2015.

9. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. SIGPLAN Not.,
46(1):435–446, Jan. 2011.

10. A. Desai, P. Garg, and P. Madhusudan. Natural proofs for asynchronous programs
using almost-synchronous reductions. In OOPSLA 2014, pages 709–725, 2014.

11. A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey. P: Safe
asynchronous event-driven programming. SIGPLAN Not., 48(6):321–332, June
2013.

12. C. C. Din, J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of dis-
tributed systems: Component reasoning for concurrent objects. The Journal of
Logic and Algebraic Programming, 81(3):227 – 256, 2012. Proc. of NWPT 2010.

13. J. Dovland, E. Johnsen, and O. Owe. Verification of concurrent objects with
asynchronous method calls. In SwSTE 2005, pages 141–150, Feb 2005.

14. S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A unified frame-
work for verification techniques for object invariants. In ECOOP 2008, volume
5142 of LNCS, pages 412–437, 2008.

15. M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and
S. Levi. Language support for fast and reliable message-based communication in
Singularity OS. In In EuroSys, pages 177–190. ACM Press, 2006.

16. X. Feng. Local rely-guarantee reasoning. In POPL 2009, pages 315–327, 2009.
17. P. Haller and M. Odersky. Capabilities for uniqueness and borrowing. In ECOOP

2010, pages 354–378, 2010.
18. R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying behavioral

compositions in object-oriented systems. In OOPSLA/ECOOP 1990, pages 169–
180, 1990.

19. C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for
artificial intelligence. In IJCAI 1973, pages 235–245, 1973.

20. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In ESOP 1998, pages
122–138, 1998.

26

21. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
SIGPLAN Not., 43(1):273–284, Jan. 2008.

22. I. W. Kurnia and A. Poetzsch-Heffter. A relational trace logic for simple hierar-
chical actor-based component systems. In AGERE! 2012, pages 47–58, Oct. 2012.

23. J. Lange and E. Tuosto. Synthesising choreographies from local session types. In
CONCUR 2012, pages 225–239, 2012.

24. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
ESOP 2009, volume 5502 of LNCS, pages 378–393, 2009.

25. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition, 1997.
26. H. Nilsson. Method and apparatus for evaluating a data processing request

performed by distributed processes. Patent Filed 1998, issued August 2003:
http://patents.justia.com/patent/6604122.

27. M. Odersky, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, M. Zenger, and
et al. An overview of the Scala programming language. Technical report, École
Polytechnique Fédérale de Lausanne (EPFL), 2004.

28. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In CSL 2001, pages 1–19, 2001.

29. L. Padovani, V. T. Vasconcelos, and H. T. Vieira. Typing liveness in multiparty
communicating systems. In COORDINATION 2014, volume 8459 of LNCS, pages
147–162, 2014.

30. M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL 2005,
pages 247–258. ACM Press, 2005.

31. M. J. Parkinson and A. J. Summers. The relationship between separation logic
and implicit dynamic frames. Logical Methods in Computer Science, 8(3:01):1–54,
2012.

32. A. Poetzsch-Heffter, I. W. Kurnia, and C. Feller. Verification of actor systems
needs specification techniques for strong causality and hierarchical reasoning. In
FoVeOOS 2011, pages 289–305. Technische Universität Karlsruhe, October 2011.

33. D. Ricketts, V. Robert, D. Jang, Z. Tatlock, and S. Lerner. Automating formal
proofs for reactive systems. SIGPLAN Not., 49(6):452–462, June 2014.

34. J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In ECOOP 2010, LNCS, pages 275–299, June 2010.

35. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In ECOOP 2009, volume 5653 of LNCS, pages 148–
172, July 2009.

36. S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for Java. In ECOOP
2008, volume 5142 of LNCS, pages 104–128, 2008.

37. A. J. Summers and S. Drossopoulou. A formal semantics for isorecursive and
equirecursive state abstractions. In ECOOP 2013, volume 7920 of LNCS, pages
129–153, 2013.

38. J. Villard, É. Lozes, and C. Calcagno. Proving copyless message passing. In
TOPLAS, volume 5904 of LNCS, pages 194–209, 2009.

39. J. Villard, É. Lozes, and C. Calcagno. Tracking heaps that hop with heap-hop. In
TACAS 2010, volume 6015 of LNCS, pages 275–279, 2010.

40. R. Virding, C. Wikström, and M. Williams. Concurrent Programming in ERLANG.
Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 2nd edition, 1996.

41. Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst. Ownership and immutability
in generic Java. SIGPLAN Not., 45(10):598–617, Oct. 2010.

27

