Freedom Before Commitment
A Lightweight Type System for Object Initialisation

Alexander J. Summers Peter Muller

ETH Zurich, Switzerland
{Alexander.Summers, Peter.Mueller}Qinf.ethz.ch

Abstract sign decisions that are crucial for developing, understand

One of the main purposes of object initialisation is to estab @nd maintaining the code. They are assumed by method im-
lish invariants such as a field being non-null or an immutable Plémentations, for instance, to ensure that a field may be
data structure containing specific values. These invariant Safely dereferenced. _

are then implicitly assumed by the rest of the implementa- Most invariants do not hold for newly-allocated objects;
tion, for instance, to ensure that a field may be safely derefe ey need to be established during objectinitialisaticioige

enced or that immutable data may be accessed concurrentlyin€® code operating on the object may rely on them. Main-
Consequently, letting an object escape from its constructo SU€am programming languages such as Java, C# and C++

is dangerous; the escaping object might not yet satisfypits i provide qon;truct.ors to separate initialisation code izt
variants, leading to errors in code that relies on them. Neve (© €stablish invariants from other code that may rely on the

theless, preventing objects entirely from escaping frogirth ~ invariants. A problem occurs when an object escapes from

constructors is too restrictive; it is often useful to calki- its constructor before it is fully initialised. The escapiob-

iary methods on the object under initialisation or to pags it 1€Ct Might not yet satisfy its invariants, which may lead to

another constructor to set up mutually-recursive strgstur ~ €170rs in code that relies on them. Due to dynamic method
We present a type system that tracks which objects arebmdmg, detgrmmmg which code potentially operates on an

fully initialised and which are still under initialisatiohe ~ €Scaped objectis in general non-modular.

system can be used to prevent objects from escaping, but Escapingoccurs if a constructor (1) calls a method on

also to allow safe escaping by making explicit which ob-
jects might not yet satisfy their invariants. We designed, f
malised and implemented our system as an extension to
non-null type system, but it is not limited to this applicati
Our system is conceptually simple and requires little anno-
tation overhead; it is sound and sufficiently expressive for
many common programming idioms. Therefore, we believe
it to be the first such system suitable for mainstream use.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Featurg<Classes and Objects

General Terms Design, Languages, Reliability

1. Introduction

the object under initialisation, (2) passes the object as an
argument to a method or constructor, or (3) stores the object

E{n a field of another object, in a static field, or in an array.

Letting an object escape from its constructor is often
considered bad programming practice. Many programming
guidelines and blogs recommend to avoid escaping, style
checkers such as PMD [1] issue warnings for some forms of
escaping, and languages such as Java and C# enforce some
ad-hocrules to prevent some forms of escaping (for instance
Java does not allow one to refer to theis literal before
calling the superclass constructor). However, none ofethes
approaches effectively prevents escaping.

Entirely preventing objects from escaping their construc-
tors would be too restrictive. It is useful to call auxiliary
methods on a new object, and to pass it to other construc-

Object-oriented programs maintain numerous invariants tors to set up mutually-recursive structures. All threarfsr

about their heap data structures. These invariants reféect d

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear ttiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA'11, October 22-27, 2011, Portland, Oregon, USA.

Copyright© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

of escaping occur in the Java APl implementation. For in-
stance, a constructor of claksnkedList calls the method
addAll to add all elements of a collection to the new list; a
constructor of clasScrollPane passeshis as argument
to a constructor oPeerFixer, which stores it in a field.

In this paper, we present a type system that tracks which
objects are fully initialised and which are still under iali
sation. The type system can be used to prevent objects from

escaping, but also to allow safe escaping by making explicit object initialisation in this context. We present the dasig
which objects might not yet satisfy their invariants. Our ob of our type system informally in Sec. 3 and formalise it in
jective is to design a system that is suitable for mainstream Sec. 4. We discuss extensions of our type system to further
use, which requires it to satisfy the following design goals language features and invariants in Sec. 5. We report on our
implementation and its application in Sec. 6, discusseélat

1. Modularity: The type system can check each class Sepa-, ork in Sec. 7. and conclude in Sec. 8.

rately from its subclasses and clients.
2. Soundnessthe system is type safe: objects that are con- 2. Background on Non-Null Types

sidered to be fully initialised do satisfy their invariants 1¢ getect null-dereferences statically, Fahndrich anitid.e

3. Expressivenessthe type system handles common ini- proposed anon-null type systerfil0], in which reference
tialisation patterns. In particular, it allows objects ® e types can be annotated with non-nullity expectations. iThei
cape from their constructors and supports the initialisa- idea has been widely adopted in the research community—
tion of cyclic structures. various non-null type systems have been developed for

4. Simplicity: The type system is conceptually simple and SPEC# (an extension of C#) [11, 15], Eiffel [6, 17, 19], and

requires little annotation overhead, making it easy and Java [7]. In this section, we present those aspects of non-
null types that we build on and summarise previous work on

object initialisation in non-null type systems.

For concreteness, we present our type system as an ex:
tension of a non-null typg system [10],pwhich has several 2.1 Non-Null Types
advantages: (1) Preventing null-dereferencing stayidall ~ The existing non-null type systems share the same funda-
of great practical importance. (2) The expected invarianti mental idea: each reference type(in the declaration of a
very clear: fields of non-null types contain non-null values field, variable, method signature, or in a cast, etc.) isxegd
(3) Targeting an invariant that can be checked by a type by two variantsC'? andC!, indicating apossibly-nulland a
system rather than runtime checks or verification allows us non-null type respectively. The type system enforces that
to formalize the whole system in one coherent framework. expressions with non-null types do not evaluate to the null
(4) Most of the related work on object initialisation hasibee Value; it then prevents null pointer exceptions by forbiugi
applied to non-null types, which enables detailed compar- the dereferencing of expressions with possibly-null types
isons. Beyond non-nullness, our type system generally sup- The doubly-linked list example in Fig. 1 (the motivating
ports monotonic invariants: invariants that get estabfisty example from [10]) illustrates the use of non-null types: Ev
a constructor and are never violated afterwards. Theséinva €ery Node has references to its predecessor and successor in
ants include one-state invariants, which are supposeddo ho the list. The corresponding fielggev andnext are of the
in each execution state (such as non-nullness of a field), ashon-null typeNode !, which means that the list is cyclic. In
well as two-state invariants, which are supposed to hold for addition, each node has a non-null reference td.tfs ob-

all pairs of states (such as immutability of a data strugture jectit belongs to. The list elements stored in the nodesfare o
typeObject?, that is, are allowed to be null. Each instance

of classList stores a non-null reference to a sentinel node.
The method calthis.sentinel.insertAfter (data) in
methodinsert type-checks becausais is implicitly non-

« the first type system for object initialisation that meets al null andsentinel is declared to be non-null; hence, both

four design goals stated above; expressions may be dereferenced.
C! is a subtype of”? for any C' sinceC'! is a speciali-

sation of C'? both in terms of sets of possible values and in

terms of behaviour (one can do strictly less witb'arefer-

* a discussion of how to support concurrency and addi- ence). With this subtype relation, the usual type rule for as
tional language features such as arrays and static fields; signment ensures that only non-null values can be assigned

« a discussion of how to support monotonic invariants be- to variables declared with a non-null type (calledn-null
sides the non-nullity of fields; variablesin the following). In particular, it ensures that the

¢ an implementation of the type checker in the Spec# com- |_n|t|al|sat|on of T“?r_"rT“” flel<_js Isnonotoniconce a no_n-nuII
piler [15]; field has been initialised with a n(_)n—null value, it will neve

store null. Downcasts from possibly-null types to non-null

e an evaluation USing two major applications written in types are pOSSible and entail a runtime check.
Spec# as well as examples from the literature.

convenient to learn and use.

Contributions. The key contribution of this paper is a type
system for object initialisation that is suitable for main-
stream use. More specifically, we present:

¢ a formalization of the type system for a sequential core
language with non-null types, and preservation proof;

2.2 Object Initialisation

Outline. In the next section, we provide the background The main technical challenge in designing a non-null type
on non-null types, and discuss previous attempts to handlesystem is how to handle object initialisation. The problem

class List {

}

Node! sentinel ;

List() { this.sentinel = new Node(this); }

void insert (Object? data) {
this.sentinel.insertAfter(data);

3

class Node {

}

Node! prev; Node! next;
List! parent;
Object? data;

// for sentinel construction

Node([Free] List! parent) {
this.parent = parent;
this.prev = this;
this.next = this;

3

// for data node construction

Node(Node! prev, Node! next, Object? data){

this.parent = prev.parent ;
this.prev = prev;
this.next = next;
this.data data;

}

void insertAfter (Object? data) {

Node n = new Node(this, this.next, data);

this.next.prev = n;
this.next = n;

3

Figure 1. Doubly-linked list example. Theist construc-
tor illustrates mutual object initialisation; th&is reference
is passed to the firdtode constructor and assigned to the
node’sparent field while theList object is still under ini-
tialisation. Like in Java'd . inkedList implementation, the
nodes of our list form a cyclic structure, whose initialieat

is illustrated by the firsiode constructor. ThdFree] an-
notation in its signature is explained in Sec. 3.

class with non-null values before they termirfat&his is en-
forced statically using a straightforwadefinite assignment
analysis which checks that each non-null field of a class can
be statically guaranteed to be assigned to at least oncg in it
constructor. The existing solutions differ in how they hiend
objects that escape from their constructor. We summarése th
approachesin the following and evaluate them using the four
design goals stated in the introduction.

Raw Types.The original work of Fahndrich and Leino [10]
introducedraw typesto handle initialisation. In addition to
the non-null information, raw types have an additional an-
notation indicating that the referred object may not beyfull
initialised and, thus, may not be reliable in terms of non-
null guarantees. An object is allowed to escape via a method
or constructor call, provided the signature of the method or
constructor explicitly permits its receiver or argumentbé

raw (and consequently does not rely on their non-null guar-
antees). However, the system does not permit a raw refer-
ence to be assigned to a field of any object, even of the
referenced object itself. This restriction prevents commo
implementations such as the mutual initialisation of multi
ple objects, or cyclic data structures such ashitvée struc-

ture in the example from Fig. 1. So with respect to our de-
sign goals, Fahndrich and Leino’s type system is relativel
simplé?, sound, and modular, but not sufficiently expressive
to handle the initialisation of recursive structures. Thé/o
work-around for this problem is to declare the fields of the
recursive structure with possibly-null types and to injact
downcast each time they get dereferenced, which clutters up
the code and leads to unnecessary runtime checks.

Delayed TypesFahndrich and Xia'slelayed typefL1] dec-
orate reference types withdelay timewhich indicates the
notional point during execution after which the referenced
object satisfies its non-null annotatioR®lay scopesare in-
troduced into the program text to indicate points at which
certain times will expire. Delay times on reference types ca
be existentially quantified, with bounds expressing retati
ships between various delay times. Because references to
many objects can share the same delay types, the system
is flexible enough to support practical examples. So with
respect to our design goals, delayed types are expressive,
sound, and modular. However, the complexity of the annota-
tions makes the system as presented in the paper unsuitable
for mainstream use.

Indeed, when implementing the system in Spec# [15],

is that the runtime system initialises all fields of a new Fahndrich and Xia decided to greatly cut down the complex-

object with zero-equivalent values. So even fields declared
as non-null start out being null. Until all non-null fields of
the newly-created object have been initialised with noh-nu

ity of the type system, including only a single “Delayed”

1Masked Types [21] free constructors from this obligationtfmse fields

values, it would not be sound to make use of their declared that the constructor’s signature declares to be left uialisied.
non-null information.

Several solutions have been proposed for tackling the
problem of initialisation for a non-null type system. Thely a
require constructors to initialise the non-null fields oéith

2Some complexity comes from the fact that raw types includierination
to which class in the inheritance hierarchy an object has lisigalised.
For instanceraw(A) expresses that the fields declared in clasnd its
superclasses have already been initialised, whereasrtaniag fields of
the object might not.

attribute in the language, representing an unknown delay essential for the usefulness of a type system. Delayed types
time. The resulting implementation is however unsound: at and masked types are the only sound systems that are suf-
method calls it allows any parameters to be provided as de-ficiently expressive to handle recursive structures, bt bo
layed arguments, but inside the method bodies assumes eachystems are conceptually complex and require significant an
such argument to have the same delay time. This assump-otation overhead. Since our goal is to develop a system for
tion can be exploited to provoke a null pointer exception; mainstream use, we resolve the trade-off differently. As fa
we discuss such an example in Sec. 7. Fixing this problemas practical examples are concerned, our system is slightly
by enforcing that all delayed references have the same de-ess expressive than delayed types and masked types, but sig
lay time would make the system too inflexible to handle the nificantly simpler.

mutual initialisation of multiple objects. System Simple Expressive Sound Modular
Raw Types v v v

Attached Types. Eiffel's non-null types (called “attached

types”) do not appear to address the problem of object ini- nggre)d Types - v v v
tialisation soundly. According to the Eiffel standard [@], Delayed Types v v _ v
field of classC' may be considereproperly set(essentially, (implementation)

fully initialised) provided it “. .. is (recursively) proply set Attached Types v v _ v
at the end position of every creation procedur€dfSince (ECMA)

objects may escape from their creation procedures (canstru Attached Types Vv - v -
tors), this is not sufficient for soundness. The problematic (implementation)

situation can sometimes be avoided by providing default cre _Masked Types - v v v

ation procedures for all types of non-null fields—these get
implicitly called when a field is found not to be initialised 3. The Design
yet. However, default initialisation cannot handle casehs | this section, we explain the main concepts of our type

as cyclic lists, or the mutual initialisation of objects. Bith system informally. We introduce initialisation types thet

respect to our design goals, attached types are simple, eXggct whether an object has been fully initialised or is stk

pressive, and modular, but not sound. _ derinitialisation, and motivate the mostimportant typesu
The actual Eiffel implementation appears (by experi- g e system is formalized in the next section. Additiona

ment) to acltua}IIE/J prevent ug§oundn(jess.by. elpfor.cmg much janguage features such as subclassing, arrays, generics, a
stronger rules: Using an object under initialisation as re- conerrency are discussed later in Sec. 5.

ceiver or argument of a call is permitted if the code of
the called method type-checks without making non-null as- 3.1 Initialisation States
sumptions for that object. For dynamically-bound methods, gach object is in one of twinitialisation states it is ei-
this check needs to be repeated for each override of thether under initialisation or it is initialised. When a new
Ca”ed method,WhiCh makeS the type Checking non-modular.object iS a”ocated as part of executing a new_expression
Moreover, an object may not be assigned to any field until jt is initially under initialisation until execution reaek a
its initialisation is complete. This rule makes cyclic and-m point from which on we consider the object to be initialised.
tual initialisations impossible. So the E|ﬁe| |mp|emafma Th|S Change Of the initia"sation state happens Whm’er-
is Simple and Sound, but neither eXpreSSiVe nor modular. tain new_expression terminatesl but not necessméy]ew_
expression that created the object. We call the point athvhic
the state change occurs tbemmitment pointf the object
and will explain later when it occurs.

Initialised objects have to satisfy their invariants, im-pa
ticular, their non-null fields must contain non-null values

Masked Types.The recent work of Qi and Myers [21] pro-
posesmasked type® tackle object initialisation. This sys-
tem provides versions of class types in which any subset
of fields can be “masked”, indicating that the initialisatio

of such fields cannot be relied upon. This permits various L L .
kinds of incremental initialisation, including cyclic gy~ Moreover, references stored in fields of an initialised obje
tures. However, even the simple examples found in their pa- r_nu.st ppmt to ObJECtS_th,at are also initialised. Thegp ini-
per require many annotations. So while this system is Sound'tlallsatlon guarantee is |mp0ftant for the practicality of the.
modular, and the most expressive approach yet, it is uglikel system_. It ensures that all objects t_hat are encpu_r)te_rdd whi
that an average programmer would find it simple enough to _traversmg an O.bje.Ct structure starting from an initialise-
handle the everyday problem of sound object initialisation jectare also initialised and, thus, the traversal can nelthe

We provide a more detailed discussion and comparison with invariqnts of the vyh_o_le structure. . - A
Masked Types in Sec. 7.2. Objects under initialisation might satisfy their invarign

but they are not required to. The fields of such objects may
Summary. As summarised by the following table, none of store references to objects in either initialisation stateese
the existing solutions for object initialisation in nonthu fields may refer to objects that are themselves under iRitial
type systems satisfies all four design goals that we considersation, which allows one to initialise cyclic structures.

It is important to understand that initialisation states
a purely conceptual notion. Neither do we store an obj
initialisation state in memory nor is it generally possituk
infer an object’s initialisation state by inspecting theajs
In particular, an object might satisfy its invariants buvee
theless be under initialisation because it has not yet et
its commitment point. A program may still assign an
initialised object to a field of such an object and thereb»
olate its deep initialisation. Such assignments are nodc
possible once the object has passed its commitment pc

3.2

In our type system, the type of an expression reflects th:
tialisation state of the object the expression refers taat
time. It uses this information to provide guarantees abiwa
invariants of the object and to enforce restrictions thatrgu

Initialisation Types

Allocation Commitment De-
Point Allocation
1 1 y Time
L] T L rd
\ A)
Y
free type committed type
\)

Y
unclassified type

Figure 2. Newly-allocated objects have a free type until
they reach their commitment point, when the type changes
to a committed type for the rest of the object’s lifetime.
Unclassified types subsume free and committed types.

two reasons. First, the type of an object changes from free to
committed when it reaches its commitment point. This type

antee soundness. For this purpose, we equip each referencghange would be problematic if the object was referenced

type with one of the following thremitialisation modifiers

committed: Expressions of committed types evaluate to ref-
erences to initialised objects.

from a free field because this field would be ill-typed after
the type change. Second, free fields contradict the expecta-
tion that objects of committed types be deeply initialised.

free: Expressions of free types evaluate to references to Field Update. For a field update of the form.f = y,

objects under initialisation.
unclassified: Expressions of unclassified types may evalu-

ate to any reference. An unclassified type is a supertype

of the corresponding committed and free types.

our type system performs nullity and initialisation checks
The nullity checks are trivialz must be non-null, and the
nullity of y must conform to the nullity declared fgt. The
former check prevents null-pointer dereferencing whereas
the latter ensures that only non-null values are assigned to

Note that these initialisation modifiers are independent of non-null fields; in particular, this check ensures that te-n

the non-nullity of a type—we can have both non-null and
possibly-null types with any of the three modifiers above (in
the latter case, guarantees about the “referred-to olpedy”
apply if the reference is not null). Despite attaching bath n
lity and initialisation information to reference typesetan-
notation overhead of our system is low. Almost all reference

nullity invariantis monotonic. Once a non-null field hashee
assigned a non-null value, it will remain non-null.

For the initialisation types, the update is allowed if the
initialisation modifiers satisfy at least one of the folloi
two cases. First, it is free, we may store objects with any
initialisation state in its fields. This is acceptable beseailne

handled in a program are committed, non-null references, free modifier does not make any guarantees about the ini-
such that a suitable default avoids overhead for those-refer tialisation state of reachable objects. In particulagwaihg

ences. Initialisation modifiers need to be declared explici
only for non-trivial initialisation patterns. In our exateg,

we make nullity information explicit; the default initigk-
tion modifier for all reference types is committed, except fo
the type ofthis inside a constructor, which is free. We use
the syntax{Free] and[Unclassified] to declare free and
unclassified types, resp. With these defaults, the List exam
ple in Fig. 1 requires a singlEree] annotation.

y to be free enables the initialisation of cyclic structuises,
illustrated byNode's first constructor (Fig. 1). All its field
updates type check becauseis is implicitly free inside a
constructor. Second, if is committed, we may assign it to
fields of any object. Ifc is committed, then we preserve the
deep initialisation guarantee; if is free or unclassified, it
does not make any guarantees about the initialisation state
of reachable objects anyway.

Fig. 2 illustrates the use of these modifiers. When a new The following table summarises the admissible field up-

object is allocated, its type is initially a free type (hence
the default forthis in constructors). Once it reaches its

commitment point, the type changes to a committed type,

dates. The case whereis committed and, is free is dis-
allowed because such an update would violate the deep ini-
tialisation requirement for committed objects. An update i

indicating that the program can now rely on the object to be allowed for unclassified references only if it is allowed for

deeply initialised. The type system enforces that the abjec
will remain deeply initialised until its de-allocation.

3.3 Fields

Field types include non-null annotations, but no initialis
tion modifiers. In particular, there are no “free fields” for

both committed and free references.

Y
vf=y committed| free | unclassified
committed v - -
xz | free v v v
unclassified v - -

An important consequence of the rule for field updates is is, assigns non-null values to all non-null fields declared i
that our type system must prevent aliasing between commit-the enclosing class. In our example, bitlde constructors
ted and free references, which we aatbss-type aliasingf satisfy this analysis because they initialise all three-noh
an objectr was reachable via a committed and a free ref- fields.
erence then one could use the free reference to store an un- Note that the definite assignment analysis is the reason
initialised (free) object in a field of, which would clearly why we require invariants to be monotonic, even for free
violate the deep initialisation expectation of the comedtt objects. Assigning null to a non-null field of a free object
reference ta: and therefore compromise soundness. Cross- would not compromise soundness because free objects are
type aliasing is prevented by not having a subtype relation- not expected to satisfy their invariants. However, if such-n
ship between committed and free types (in contrast to raw monotonic updates were permitted, the definite assignment
types, which are supertypes of the corresponding non-rawanalysis would have to assume conservatively that each time
types [10]). a free object is passed to a method or constructor, it will
come back with its fields set to null, even if they were
previously assigned non-null values. Such an analysisdvoul
produce many false positives and, thus, not be practical.

Field Read. When reading a field. f, we infer the nullity
and initialisation expectation of the result as followseTk-
sult is non-nullif and only iff is declared non-nulind x is
committed (recall that the committed type is the only type 3.5 Commitment Points
that guarantees that the referenced object is initialiSed

resultis committed if and only if is committed (since com-

mitmer_nt provides a.guaranteg.abogt al reaf:hable Objects)’der initialisation but now considered initialised; thisatiye
otherwise the result is unclassified since the fields of fieée r of the initialisation state will be reflected in a change af th

?rﬁ nces Tay store bot_h fret?]_and Icommltted references. Theobject’s type from free to committed. The commitment point
ollowing type summarises this rule. may occur when two requirements are satisfied. First, the

A central concept of our type system is the notion of commit-
‘ment point, the point in time when an object is no longer un-

x.f f type system must be able to determine statically that the ob-
¢t o ject is deeply initialised. Second, when an object readses i
committed | committedC'! | committedC? commitment point and becomes committed, the type system
v | free unclassified’? | unclassified”"? must be able to guarantee that there are no free references
unclassified] unclassified””” | unclassified”"? to the object. As explained earlier, such cross-type aiase
Consider the new-expression in methbgsertAfter could be used to violate the deep initialisation of the objec
(Fig. 1). The type of the second argumetittis .next is and, thus, compromise soundness.
committed and non-null becausais is by default com- To satisfy these requirements, we define the commitment
mitted in methods, as discussed in the next section. point as follows. When a new-expressitat takes only

committed argumenterminates then all objects that have
been created during the execution of this new-expression
Method signatures include initialisation modifiers for the (and the associated constructor) reach their commitment
method parameters as well as for the receiver. The type rulepoint (unless they have already reached it when a nested
for method calls is like in all object-oriented languagelseT new-expression with only committed arguments terminated)
types of the actual arguments must be subtypes of the de- Consider th&.ist constructor in Fig. 1. Th#ode object
clared parameter types. An analogous check is performed forn created by the expressiarw Node (this) does not yet

the receiver of a call. This rule ensures that an object underreach its commitment point when the new-expression termi-
initialisation may be passed to a method as receiver or argu-nates because it takes a free argumenis. In fact,n is not
ment only if the receiver or parameter in the method signa- deeply initialised then becaugseparent . sentinel is still

ture has a free or unclassified type. In both cases, the methodhull and, therefore, violates the first requirement for cathm
will not rely on the object to be initialised, which makessthi ment points. The same argument applies if an unclassified
form of escaping safe. Method overriding requires the usual reference is passed as argument to a new-expression,tsince i
contra-variance of parameter types and co-variance oftresu may (via subtyping) disguise a free reference. But when the

3.4 Methods and Constructors

types. expressiomew List () terminates then both the newist
Constructors are treated analogous to methods, but theirobject and its sentinel node reach their commitment point.
signature does not contain an initialisation modifier far th This definition of commitment point leads to a very
receiver because the receiver of a constructor is alwags fre simple type rule for new-expressions. An expressiefn
The first constructor in clasSode declares its parameter C(x4,...,z,) has type committed’! if the static types
parent with a free-modifier. Therefore, theist construc- of all actual arguments; are committed. Otherwise, it has
tor may pass the free objethis as an argument. type freeC'!. We justify our definition of commitment point

A definite assignment analysis enforces that the body of and the corresponding type rule for new-expressions in the
a constructor establishes the invariant of the receivat, th following.

New-Expressions with Free or Unclassified Arguments.
TheList constructor illustrates why it would be unsound to
assign a committed type to new-expressions with at least one l ’

free or unclassified argument. However, considering the new

object as free is safe if we can guarantee that there are nc - R

cross-type aliases. This is the case because no local lesriab

refer to the new object and because inside the constructor,

the new object was referred to via a free reference and,)
>‘ n

A 4

therefore, the constructor could not store the referentteein aiaiel e
field of a committed object.

N

New-Expressions with Committed Arguments OnlyCon- g re 3 Heap structure for the execution of a new-

sider a new-expression where all arguments are committedg, o qjon that takes only committed arguments. Objeets ar

(which subsumes the case that the constructor does not havgepicted by rounded boxes; references in fields and on the
parameters). Let be the object that gets created by this g5 0y are depicted by solid and dashed arrows, respectively
new-expression. During the execution @B CONSIUCION, The getV contains the objects created during the execu-

the set of reachable objects consists of thg set of objects;iy of the new-expression; the sBtcontains the (commit-

R that are reachable from the new-expression’s argumentseqy gpjects reachable from the new-expression’s argwsnent

and the set of object’ that includes: and all objects cre- yare noth objects iV are free until the new-expression ter-

ated during the execution of's constructor. The situation ina1e5 and, therefore, cannot be referred to by the commit-
is illustrated in Fig. 3. For th&ist constructor, the sek ted objects ink

is empty, whereasV contains the nevtist object and its
sentinel node.

When the new-expression terminates, the constructors of3 g pataflow Analysis
all objects inV have run and therefore, the non-null fields of
these objects contain non-null values. The values assigne) LS . "
to their fields are references to objectsinor N because the non-nullity anq |n|t|al|sat_|on |nforn_1_at|on provideg the
these are all the reachable objects. Therefore, we know thaﬁ[ype system. For instance, if a conditional-statemens st

the objects inV are deeply initialised because all objects ocal variablex for being. non-null ther: may be assum_ed
reachable from them are iRt or in N and thus initialisedl to have a non-null type in the then-block of the conditional

So the first requirement for commitment points is satisfied. and, therefore, may be dereferenced and assigned to non-

To argue that the second requirement is satisfied, WenuII variables. Similarly, a dataflow analysis can provide
have to show that there is no cross-type aliasing, that is no/nitialisation information for unclassified variables dields

free reference to an object iIN. When the new-expression of free o_k)jeqts. Such a dataflow analys_is. Is important for
terminates, no local variable refers to an objectNin The the practlcallty. of the type system, but it is Qrthogoqal to
only objects that possibly refer to objects¥hare the objects]Ehﬁ fopus of this pr;per a:nd. therﬁfokr]e Iar.gel)ll ignored |r: the
in N andR. These objects are all committed when the new- ollowing. Any such analysis, whether simple or complex,

expression terminates, and so is the reference to the neV\FOUId be used_ to complt_ament the typg _s_ys_te_m we outh_ne.
objectn. For example, if support is needed for initialising fields via

Note that for constructors that have only committed for- method calls, suitably chosen extra annotations on method
mal parameters, it might be tempting to consider the receive signgtures and/or inter-procgdural aqalyses could betosed
initialised as soon as the definite assignment analysis Con_prowde the necessary extra information to the type checker

firms that all fields have been initialised. However, this so-
lution would be unsound because it violates both require-
ments for commitment points. First, during the execution of As in other non-null type systems, we allow the down-
a constructor, we can in general not determine modularly casting of an expression from a possibly-null type to a
whether there are subclass constructors, which have not exenon-null type. The associated runtime check ensures that
cuted yet. So there might be non-null fields declared in sub- the expression indeed evaluates to a non-null value. We do
classes that have not been initialised. Second, the catstru ~ not however allow down-casts to change initialisation mod-
might have local variables that store free references teethe ifiers (from unclassified to free or committed) nor do we al-
ceiver, which creates cross-type aliasing. low instanceof-expressions to check initialisation meui
Such casts and instanceof-expressions would essengally r
3This argument generalises trivially to global data if thebgll vari- qu'_re us to store ea.Ch objects initialisation state m_tha_m
ables (that is, static fields) are enforced to store comehittéerences, see Which leads to runtime overhead and problems with library
Sec. 5.3. code. Consequently, the only runtime support our system re-

e use a simple intra-procedural dataflow analysis to refine

3.7 Runtime Support

quires is simple non-null checks for down-casts to non-null We define three auxiliary predicates on types. nullabie:)
types. holds exactly whem =?. committedC*n) holds exactly
whenk = 1. freg{C*n) holds exactly whek = 0.

4. The Formalisation . .

_) o In order to define the type system and operational seman-
In this section, we present a formalisation of our approach. tics, we require the existence of field and method lookup
Much of the formalisation is standard. However, the sound- f,nctions. In particular, we need to be able to retrieve the d
ness arguments for our system are subtle, especially thegjared (simple) type for a field in a class, and the signatures
treatment of commitment points described in Sec. 3.5. OUr 4t methods and constructors. Method signatures include the
soundness result (in Sec. 4.4) makes these arguments exysssibility of specifying an initialisation modifier for éfre-
plicit. ceiver of the method, as well as its arguments and return
type. Constructors only have such modifiers for arguments;
during execution of a constructor its receiver is alway®a fr
We focus on a very simple language, which nonetheless il- reference, and after execution the initialisation typehef t
lustrates the main features of the problems of object Initia ey expression is determined by those of the passed argu-
isation and our solutions. We consider a simple class-basetnents (cf. Sec. 3.5). Both kinds of signatures also include

language (without generics), in which we have exactly one geclarations of local variables used within the method body
constructor per class. Note that we do not model calls to su-pt this is just to simplify the formal presentation.

pertype constructors here—a constructor is obliged ty full
initialise a new object. DEeFINITION 3 (Field and Method Lookups). Field type

o lookup is modelled by a partial function fTyp€, f) from
DeFINITION 1 (Classes and Types)Ve assume a finite set airs of class-name and field-name to simple types.
of classesranged over by, D, and a pre-defined reflexive, A mMethod Signatureis a four-tuple (k,:TTi,T,m%
transitive, acyclicsubclassingelation on classes, written \yhose elements are as folldtv§1) an initialisation mod-
c<D. ifier k, indicating the initialisation type of the receiver, (2) a
We assume a set afiethod namesanged over byn, and sequence;: T} of parameter names (variable names) along
a set of field namesranged over byf,g. We assume the \ith their declared types, (3) a ty[ié representing the re-

existence of a function flds() from classes to sets of field yrn value of the method, and (4) a sequepgd; of local
names, and a function meths() from classes to sets of methodariaple names along with their declared types.

4.1 Programming Language

names. _ _ A Constructor Signaturis a two-tuple(x;:1;, y,:7}), simi-
Non-null annotationsranged over byn, are defined by |arly declaring parameters and local variables.

na=7|! 3 . Method signature lookugs modelled by a partial func-
Initialisation modifiersranged over by:, are defined by: tion mSigC, m) from pairs of class-name and method-

name to method signatures. It satisfies the usual variance
requirements for subclassing (covariant return types and
contravariant parameter types).
Method body lookupis modelled by a partial function
mBodyC, m) (with the same domain as mSig) from pairs
of class-name and method-name to statements.
Constructor signature lookujs modelled by a function
For exampleC°! is a type for a non-null free reference of c¢SigC) from class-names to constructor signatur€an-
classC, while C°? is a type for a possibly-null unclassified structor body lookugs modelled by a function cBogy)
reference. Simple types are used in field declarations and infrom class-names to statements.
casts, where initialisation modifiers are not permitted.
Subtyping combines specialisation of initialisation modi
fiers, non-nullity and classes themselves (i.e., subcigsi

k 0 (free)
1 (committed)
<&

(unclassified)

Types ranged over byl’, are defined byl ::= C*n.
Simple Typesranged over by, are defined byt ::= C n.

Our statements include assignments, method calls, object
creation and casts. We do not include conditionals singe the
would only be of interest when combining our type system
DEFINITION 2 (Type Relations). Initialisation specialisa- with a dataflow analysis (Sec. 3.6). Note that we do not have
tion is a binary relation on initialisation modifiers, written a return statement; methods return the value of a pre-defined

ki < ks and defined byk; < ky & k1 = k2 V kg = o local variableres. For simplicity, we treat field assignments,
Non-null specialisatioifs a binary relation on non-null an- calls, object creation, and casts as statements. Complex ex
notations, writtenn; < ny and defined byn; < ny < pressions can be decomposed using local variables.

ny =ns Vng =7.
. . . . < _
Subtyplngs abinary relation on types, writteTh < T and 4We use vector notatiofr; for sequence/repetition with elements indexed

defined by: by i (the index clarifies which terms vary in a sequence). Use fedréint
CiFing < Cyk2ng < Oy < Co Aky < ky Ang < na. indexes indicates sequences with different index sets.

DEFINITION 4 (Expressions and Statementdje assume a
set of program variableganged over by, y, z, including a
distinguished variablehis. Expressions, ranged over by

only variables inA and, after execution, will guarantee
that variablesA’ and fieldsX are definitely assigned. The
judgements are defined in Fig. 5.

are defined by the following grammar:
ex=z|z.f|null

Statements, ranged over byare defined by the following
grammar, with the extra restriction that (in all cases)nay
not be the special variabtehis:

S (variable assignment)
(field assignment)

(method call)

Tr=e€

z.f=y
z = y.m(z;)

LASIAN
- TNULL
;A Fz:T(2) (TvaR) F;AFnull:C’ki’()
[;AFx:CH fTypdC, f) = D ny
I 1 ifk=1
2:

o otherwise
if ny =landk; =1
otherwise

|
n2{7

|
|
| z=new(C(%)
|

(object creation) ;AR z.f : DFny (TFLD)
z=(t)y (cast)
81; 82 (sequential composition) Figure 4. Expression typing.
Note that casts employ only simple types. As discussed in
Sec. 3.7, we do not support casts that change the initialisa-
tion type of a reference. D;AFe:T T <T(z)
(TVARASS)

4.2 Type System ARz =c|AU{z};0
We now turn to the definition of our type system, which) B
includesdefinite assignmerthecks. There are two kinds of LiAFz:CR fTypdC, J;) =Dn

. - . ARy T T < DFn
checks made. Firstly, a sét of definitely assigned program O\ e
variables is used in judgements, to (conservatively) track A
which variables can be safely read from. Local variables can Y= { {f} ifx=this
only be safely read from if they are named in the Aethis ¢ otherwise (TFLDASYS)
is necessary since all local variables are initialised tbinu DAFzf=y|AX
our operational semantics, regardless of their types. When
typing expressions, we enforce this check—an expression is ITAby 32” N
only well-typed if it reads only from variables named in the mSigC,m) = (kg, x:1:, T, y;:T5)
currentA. When typing statements we use a “before” and DiAE 2z 1) T)<T;
“after” A to track this information in the type system. T <D(z) ki<ko (TeaLL)

Secondly, we employ a set of field nanteswhich con- D;AFz=ym(z) | Au{z};0

servatively record which fields of the current receiver are
definitely assigned during execution of a statement. This se cSig0) = (:ETT;, m)
is relevant only for constructors; it is used to enforce #e r DAz T T <T;
guirement that constructors guarantee to assign all ndin-nu k = A\ committedT!) C*! <T(x)
fields. Since we do not need to make any intermediate checks (TCREATE)

based on this set, it only occurs once in each typing judge-
ment, indicating the fields definitely assigned between the
beginning and end of execution of the statement.

DEFINITION 5 (Static Type AssignmentA type environ-
mentT" is a partial function from program variables to types.
An assigned variables sét is a set of variable names (in-
dicating which have been definitely assigned).assigned
fields set® is a set of field names (indicating which fields of

ARy : Chng

ARz =newC(z) | AU{z};0

t=Dmny DFny< I(x)

F;AF81|A1;21

(TcAsT)
TiAFz=@)y | AU{z};0

AL s | AT

(TSEQ
F;A"Sl;SQ | A2;21U22

the receiver have been definitely assigned).
Expression typinds defined by judgemeni§ A + e : T,

Figure 5. Statement typing.

indicating thate has typ€el’ under assumptionB, possibly
reading variables imA. The judgements are defined in Fig. 4.
Statement typings defined by judgemenis A + s | A’; 3,
indicating thats is well-typed under assumptiods reads

Our expression typing judgement plays a dual role in
our formalisation. It checks not only that the expression is
typeable in a standard way, but also that it can be “read
from”; any variable mentioned has to be known to be already

assigned. Since our judgement does not include subtypingin this rule; the basic flow analysis we use here does not
(which is dealt with at the level of typing statements), we handle initialisation via a method (but see Sec. 3.6).
have the property that a variable can be typed exactly The rule for object creation (@REATE) specifies that
with the typeTI'(z), andonly whenx occurs inA (i.e., it the initialisation type of the returned value is defined to be
has been assigned). When defining subsequent typing rulescommitted () if all the arguments have committed types,
we choose between applying the rulevfR) to variables, or and free () otherwise; we denote this “conjunction” with the
justlooking up the typ&'(z) directly, depending on whether shorthandA committedZ?;). Our rule for casting (TAST)
or not we require the variable to already be assigned. incorporates a variable assignment, and allows the class ty
The rule (TVAR) looks up the type for a variable in the en- and non-null type of the value to change arbitrarily, but
vironment, also checking that the variable has already beendoes not affect the initialisation type. Finally, our ruler f
assigned (i.e., it is named iA). The rule (TNuLL) allows sequential composition @EQ) chains together the inference
anull expression to be typed with any class and initiali- of which variables have been assigned, and accumulates
sation type, but of course it must take a possibly-null type. the fields ofthis known to have been assigned in either
The rule for field read, (#LD), first checks that the receiver statement.
expression: is typeable with a non-null type; this also im- If one wanted to adapt our formalisation to check for
plicitly enforces the requirement thatis known to be as- some other kind of invariant (such as immutability) and not
signed (this would not have been the case if we had lookedfor non-null types, the changes that would be needed are
up the type forz directly in I'). Then, based on the class fairly small. Firstly, one should remove the requiremeiatth
type C of x, the appropriate field type is retrieved (this im- variables dereferenced always have non-null types T
plicitly requires that the field is defined for the class). The TFLDASS TcALL). One might also simplify/modify the rule
type for the whole expression is then derived. The class typefor computing the type of a field read €ID). The role of:
is whatever was declared in the field type. The type is com- in our judgements is specific to tracking progress towards
mitted if the receiver expressianwas typed as committed, a newly-constructed object being initialised. The use &f th
and is unclassified otherwise. Finally, the expressionis no judgement for the proof might well vary depending on the
null if the field was declared non-null and the receiver was invariant in question. Finally, the check for a well-formed
also of committed type; otherwise, the expression is typed constructor WFCONS) below would need to be adjusted
as possibly-null. Note that while we have no subtyping here, to guarantee initialisation with respect to the invariamt i
we build it into the statement typing rules where required. question (for non-null types, we require that every norl-nul
In the rules for statement typing (Fig. 5), we take care to declared field of the new object gets assigned).
“update” the variables known to be assigned (via the second We can now type check class definitions.
set of varigbles .in the judgements), and glsp to recgrd _theDEFINITION 6 (Well-formed program)A program is well-
fields ofthis which ge_t assigned values (_thls mformafuon IS ftormed if for each clas€’ of the program, each method <
only needed for checking constructor bodies, but for simpli methsC) is well-formed k., C,m), and the constructor is

it!y, we accumulate it in general). The rule for variabl_e aS" well-formed ¢ C). These judgements are defined in Fig. 6.
signment, (WVARASS), checks that the source expression is

typeable with a subtype of the declared type of the variable,

and adds the variable to those known to be assigned. Note mBodyC, m) = s

tha_t the destination v_arlable is not subject to the expoessi mSigC,m) = (k. gﬁ:’ T, ﬁ>

typing judgement; this means we do not erroneously insist —nullable(T) = res € A

on it being assigned beforehand (while any variables refer- I — (2T this:C* 7T T

enced in the source expression must be). In the rule for field = (a: L’t 1s:C%,y;:T5, res:T)
assignment, (FLDASS), we require both the receiver and [{7i this} F s | AT (WEMETH)
the source variable to be assigned and typeable, and impose Fm C,m

the additional requirement that the receiver must be free or
the source variable must be committed. In the case wherethe cBodyC) = s ¢SigC) = (2T, y;:1})
receiver isthis, we also record the field to be assigned, in ~ {f€fld{C) | —nullable(fType&C, f))}C T

. T = (2;:1;, this:C0l, y;:T})
The rule for method call (TALL) checks that the receiver T;{z;, this} F s | A%
is assigned and non-null, and then checks that the types (WFCONS)
of the receiver, arguments and return value destination, al Fe C
agree with the declared method signature. Note that in the
case of the receiver, this involves checking that the receiv Figure 6. Well-formed methods and constructors.
initialisation typek; specialises the initialisation typk,
declared for the receiver in the method signatdirées empty Essentially, every method bodwEMETH) must be ty-

peable with respect to its signature, under the assumption

that all parameters are initially assigned. Furthermdre, t write o(x) to denote the corresponding lookup (defined only
method body must assign to the result variabés (of whenz € dom(o)), and we writes[z—v] for stack update
course, this restriction could be relaxed to support void Extended Valuesranged over by, are valuesv plus the
methods). For constructorsvECons), the body must be special valuelerefExc (denoting failure to obtain a value).
typeable with respect to its signature, along with the as- Expression evaluatiomaps an expression, heaph and
sumption that the receiver is a free, non-null referenceeft stack framer to an extended value. It is writtee], ,, and
appropriate class type. Furthermore, every non-nullated defined as follows:

field of the class must be assigned a value in the method

lz|,, = o(x) [null], . = null
body. " o) ifolr) = and
4.3 Semantics [z flhe = f e fldg(cls(h,)

: derefE otherwise
We adopt a reasonably standard heap model on which to ererExe

define our operational semantics. Note that the heap modelVe can now define our operational semantics.

does not contain any type-system-specific information; in periniTION 9 (Operational Semantics). Exception States
particular, no support for the initialisation aspects of ou ranged over by, are one of three possible concrete values:
type system is needed at runtime; as we described earliere ..— ok | derefExc | castExc.

initialisation states of objects are purely conceptuall an Runtime Type Assignmergssigns simple types to runtime
used to explain the workings of the static type system. This ya|ues, according to the subclassing relationship in the pr
fact is essential for the feasibility of our type system for gram. Itis defined in Fig. 7. We define a big-step operational
mainstream languages. semantics via judgementsh, o, s ~ K',o’, €, indicat-

ing the execution of statementstarting in exception state

¢, heaph and stack-framer, and finishing with heag’,
stack-framer and exception stat€. The rules are defined

DEFINITION 7 (Heaps, Values and Allocatiorije assume
a finite set ofaddressesanged over by.
Values ranged over by are define@byv ::= ¢ | null.

Aheaph is a pair (h,, h.) of partial functions;,, from pairs in Fig. 8.

of address and field-name to values, androm addresses cls(h, 1) < C

to class names. The domains of the functions are related by: —————— (RNuLL) — — (RADDR)
dom(he) = {¢ | 3f.(u, f) € domh,)}. As shorthand, we 7 null= €7 hie:Cn

will typically useh in place ofh,, or he.

We writeheap lookupas h(¢, f) (defined ash, (¢, f), only Figure 7. Runtime type assignment.

when(e, f) € donm(h,)).

We write h[(¢, f)—v] for heap update/extensiqmeaning 4.4 Soundness Results
standard map update @f,).

We writeclass lookupas clgh, ¢), meaningh.(¢) (provided
that: € dom(h,.)).

We model object allocation via a function alloc which
takes a heap and a class-name as parameters, and returns DEFINITION 10 (Initialisation and ReachabilityAn — ad-
pair of heap and address, satisfying the following propeesti dress islocally initialised in a heap, written inith, ¢), if

all non-null fields contain non-null values:

We can now turn to the formalisation of our soundness
results. Firstly, we need to formally define our initialisat
and reachability concepts.

v & dom(h, -
h,g: hn,([m‘l] init(h,¢) & (Vf € fldgcls(h,) :
(R, 1) = alloc(h, C) = v whel;ef; T flds(C) —nullable(fTypecls(h,), f)) = h(c, f) # null)
hl, = he[t— C)] An addressreachesanother address in a heap, written

. _ _ reachesgh, 11, 12), as defined recursively by the least fixpoint
We can now define the evaluation of expressions. Note thatsp|ution of the following equation:

evaluation is not guaranteed per se to produce a value, since
we might dereference a null variable. We model this by reachegh, v, t2) & 11 = 12

introducing an exception state (later, our main theorerh wil vV 3f,es : h(u, f) = 13 Areachesh, i, i)

show that for a well-typed program, this exception state is Given an address and heap, the set of addressashable
never encountered). written reachabléh, .) is defined by: reachablé,) = {// |
reaches¢h, ¢, ¢')}.

An address isleeply initialisedn a heap, written as a pred-
icate deepinit(h,), if all reachable addresses are locally

5Note that we use bothull as an expression in the source language, and initialised:

null as a distinguished value. However, the two are always disihable .. .
by context. g v d deenpinit(h,t) < V. € reachabléh,) : init(h,.")

DEFINITION 8 (Expression evaluationf stack framer is
a partial function from program variables to values. We

LGJ h,o =v

ok, h,o0,0 = e ~ h,o[z—v], ok

(VARASS)

le]), , = derefExc

(VARASSBAD)
ok,h,0,x =e ~ h,o,derefExc

olx)=1

(FLDASY)
ok, h,o,z.f =y ~ h[(t, f)—0c(y)],o, ok

o(z) =null

(FLDASSBAD)
ok, h,0,x.f =y ~» h,o,derefExc

o(y) =t C=cls(h,t)
515

mSigC,m) = (k,z;:T;, T,y;:T;)

o1 = this, x;—~0(z;), res—null, y,;—null
mBodyC,m) =s ok, h,01,8 ~ h',0’ €

ok, h,o,x = y.m(z;) ~ h' olx—o'(res)], e

(cALL)

o(y) = null

— (CALLBAD)
ok, h,o,x =y.m(z;) ~ h,o,derefExc

cSIgC) = (z:T5, y;°T5)
(h1,t1) = alloc(h, C)
o1 = this—u1, z;—~0(%), y;—~null
cBody(C) = s ok, hi,01,8 ~ R/ o9,€

ok, h,0,x =new C(z;) ~ h',olz—i1],¢€

(CREATE)

hto(y):t

(casT)
ok, h,o,z = (t)y ~ h,olx—0o(y)], ok

htfo(y):t
ok, h,o,z = (t)y ~ h,o,castExc

(CASTBAD)

ok,h,0,81 ~ hy,01,0k
ok, hi,01,82 ~ ha,02,€

(SEQ
Oka h7 0,81;82 ~ h2; 02, €

ok, h,0,81 ~ hi,01,€ €# ok

(SEQBAD)

ok, h,O’,Sl;SQ ~ hlvalve

Figure 8. Operational semantics.

Now, we are in a position to specify exactly what our type

that stack variables which have been initialised contaita su
able values. Finally, we characterise the type invariahts o
our system: committed references are deeply initialise an
cannot reach objects directly referred to by free reference

DEFINITION 11 (Good ConfigurationsA pair of heap and
stack-frame is g@ood configuration foF, A, writtenI'; A -
h, o, if the following conditions hold:

1. dom{o) = domT') A this € dom(o)
2.V, € domh), f € fldgcls(h,¢)) = (¢, f) € domh) A
(h(e, f) # null = cls(h, h(e, f)) < fTypdcls(h,), f))
3.Vz € dom(o) :
(=nullablgT'(z)) Az € A = o(z) # null)
4.Vzx edomo): (o(x) #null= hto(x):T'(x))
5.Vz,y € domo) : (committedl(x)) =
deepinit(h, o(x)) A
(free(T'(y)) = —reacheséh,o(x),o(y))))
We can now state our desired soundness theorem:

THEOREM 1 (Preservation and Safetyj.I'; A + h, o and
A R s | AY andok, h,o,s ~ R/ o',e ande #
castExc all hold, thenl'; A’ - b/, 0’ A € = ok.

The proof of this theorem is challenging for a number of rea-
sons. Not only is the design of our approach centred around
reachability in the heap, but we present “good configura-
tions” as a property local to each particular stack-frantgs T
means that there is much work to do in the proof when we
change stack frame, particularly for a method or construc-
tor return. Furthermore, because initialisation statesnat
present at runtime, we need to infer the expected initiali-
sation state for an object via the static types of references
to that object. In fact, we identified a number of interesting
properties of our formalisation (some of which were not ini-
tially obvious) which lead to the proof. For any well-typed
statement execution in our semantics the following proper-
ties hold in addition to the properties claimed in the theure

1. The domain of the stack is preserved, and the domain of

the heap only grows.

. After execution of the statement, all non-null fieldgin
of the receiver object contain non-null values.

. Non-null fields which were initialised before execution
of the statement, are still initialised afterwards.

. Objects locally initialised before the execution of the
statement are still locally initialised afterwards.

5. Any objects newly-allocated during the execution of the

statement are locally initialised afterwards.

system preserves about the stack and the heap. We identify

five conditions which go together to make up a “good” con-
figuration. The first just forces the stack to have a suitable
domain, while the second is the standard property that fields
contain only objects which agree with their declared class
type. The third expresses the meaning of our definite as-
signment checks for local variables, and the fourth expess

6. Any object which is not locally initialised and reachable
from a stack variable after execution,is reachable from a
stack variable before execution.

7. If, after execution, an objectis reachablefrom acom-
mitted stack variable, and bothand the object referred

to by the stack variable exist before execution, thems

reachable from a committed stack variable before execu- PROOF1. By (elaborate) induction on the derivation of
tion. ok,h,0,s ~ h' o' e The full proof and accompanying

8. If, after execution, an object reachesan object: re- lemmas are available in our technical report [23].

ferred to by afree stack variable, and both objects exist
before execution, then reaches an object referred to by
a free stack variable before execution.

5. Extensions

In this section we discuss how to support additional languag
9. If an object.; reaches another, after execution, and features and approaches to make our type system even more

both objects exist before execution, then at least one expressive.

of the following properties must hold before execution:

(a) .1 reaches,. (b) 2 can be reached from a committed ©-1 Concurrency

stack variable. (c); reaches an object referred to by a Our type system naturally extends to concurrency. The only

free stack variable, and can be reached from a (possibly requirement that is necessary to preserve soundness is that

different) stack variable. each object is thread-local until it is initialised. That\ee

maintain an invariant that any shared object (reachabie fro

Property 9 particularly deserves explanation. It reflelsés t more than one thread) is initialised. Sharing uninitialise
connecting of objects that can possibly happen during exe-objects could lead to cross-type aliases when the object
cution. Because committed references can be assigned to anyeaches its commitment point in the thread that created it.
fields, an object reachable from a committed local variable |n Java this invariant can be maintained by two rules.
before execution could potentially be reachable by any ob- Firstly, only initialisedThread objects can be started; that is,
ject after execution. The only other kind of field assignment the Thread.start method requires a committed receiver.
we allow, is the assignment of references to the fieldse&f This rule ensures that starting a new thread preserves-he in
references. In this case, an object which newly reaches an-ariant because thehread object can only reach initialised
other must have previously reached the receiver of such agpjects. Secondly, only committed references can be stored
field update, thatis, a free reference. We use all of the above in static fields (see below). This rule ensures that threads
mentioned properties to strengthen our induction hypéhes cannot pass free references from one thread to another via
we prove the following lemma (from which Theorem 1 fol- 3 static field. Since starting a thread is a “synchronization
lows), which includes properties 1-9: action” in Java’s memory model, this argument also applies
to Java’'s weak memory model.

The rules for concurrency are an example where we use
initialisation types tgreventescaping (namely escaping of
a free reference from the creating thread) rather than rgakin
escaping safe (as for the escaping from constructors).

LEMMA 1 (Preservation and Safety (strengtheneld)).
;A R hyoandT;A F s | A and ok, hyo,8 ~
h' o', e ande # castExc all hold, then:

0.T;A'F AW 0" AN e=ok
1. o/(this) = o(this) A dom(c’) =dom(o) A h <h’
2.Vf € ¥ : (-nullablegfTypécls(h, o(this)), f)) =

5.2 Arrays
Arrays do not have constructors and their number of ele-

Vo € dom(h'),z € dom(e”) :

.¥v € domh’),z € dom(o’) :

Vi € dOI'T'(h),LQ S dOI'T'(h) :

K (o(this), f) # null)

. Ve € domh) : ((—nullable(fTypecls(h,), f)) A

h(e, f) # null) = A/(¢, f) # null)

.¥Ve € domh) : (init(h,) = init(h',¢))
Ve e domh’) : (v € domh) = init(h',)
.V € domh’),z € dom(o’) :

(reaches$h’, o’ (x),1) A
reachesgh, o (y),t))
(reachegh’, o’ (z),1)
committedl’(x)) A ¢ € dom(h) A o'(z) € domh
(Jy € dom(o) : committedl(y))Areachesh, o(y),¢)))

(reaches¢h’, ., 0’ (x)) A
freg(T'(x)) A v € domh) A o'(x) € domh) = (Fy €
dom(o) : free(T'(y)) A reachesh, ¢, o(y))))
(reachesh’, 11,12) =
reaches$h, 1, t2) V (3z € dom(o) : committedI’(z)) A
reachesh, o(x),t2)) V (Jy € domo),z € dom(o) :
free(T'(y)) A free(T'(z)) A reachesh, t1,0(y)) A
reache¢h, o(z),2)))

—init(h', 1) = (Jy € dom(o) :

ments might not be statically known. Therefore, it is not
easily possible to use a definite assignment analysis to-dete
mine when an array has been initialised. Delayed types [11]
allow programmers to call a special marker method to indi-
cate that an array of non-null elements has been initiglised
the method performs a runtime check to ensure that the array
elements are indeed non-null.

We adopt this approach and use the return from the
marker method as the commitment point for the array. How-
ever, since we do not store initialisation states at runtinee
cannot check at runtime that the array elements are them-
selves initialised, that is, we cannot check that the arsay i
deeply initialised. Therefore, we ensure deep initialsabf
the array by a type rule. An array update of the ferfi] =
e requirese to have a committed type. This rule is more re-
strictive than the corresponding rule for field updatespesl
not allow one to store free objects amy arrays and, there-
fore, does not support the initialisation of cyclic struets
that include an array of non-null elements.

The initialisation modifier of a new array with a non- After a call to a constructor of the same class, one may
null element type is unclassified. An array reference is neve additionally assume that the non-null fields of that clasgha
free, which avoids cross-type aliases when the array reache been initialised.
its commitment point. The initialisation modifier of a new Note that this design avoids having to parameterise our
array with a possibly-null element type is committed. Such types with type frames (as in raw types), to express partial
arrays do not have an invariant to establish and (as allg¥ray initialisation: our free references, along with the dataflo
can never reach uninitialised objects. So they can safely beanalysis, already give us the expressiveness we requite. No
regarded as committed at creation. further that we do not need to prevent dynamically-bound

o method calls on free references (a common source of initial-
5.3 Static Fields isation errors); our type system will check that such calls ¢
Static fields belong to classes rather than objects andiare in handle free receivers, which will in turn force the method
tialised by static class initialisers rather than consorg It implementation not to assume that the receiver is inigalis
is in general not possible to determine modularly whencstati
class initialisers execute and, thus, when a static fieldiis i
tialised. Therefore, we use a conservative type rule:cstati We allow type arguments for generic classes to include non-
fields must not have non-null types and may only be assignednullity modifiers but not initialisation modifiers. The selu
null and committed objects. The latter requirement is neces tion for non-nullity is adopted from Spec#. Parameterising
sary to guarantee that objects cannot reach uninitialibed o class with initialisation modifiers isn’t very useful besau
jects when they reach their commitment point (see Sec. 3.5)field types cannot have initialisation modifiers. For exagnpl

5.6 Generics

and to handle concurrency (see Sec. 5.1). a committed instance of clak$st<T> may store only com-
mitted objects; thus it would not be meaningful to instatetia

5.4 Factory Methods the type parametearwith a free or unclassified type.

One alternative approach to initialisation is the ustaofory It is potentially useful to parameterise methods with ini-

methodsin which complex initialisation code is performed tialisation modifiers. For instance, an identity-methodkgo

in a (usually static) method rather than a constructor. We for each of the three initialisation modifiers. To avoid hnayi
could extend our technique to handle factory methods, atto define several copies of such a method for different ini-
the expense of more complex annotations. Firstly, to allow tialisation modifiers, we can support for polymorphism over
interesting initialisation in factory methods, we wouldede initialisation modifiers in method signatures. We omittiee t

to support a special kind of “weak constructor” which is feature here and in our implementation because we have not
not obliged to initialise the fields of the new object. Weak yet seen code “in the wild” that needs the extra expressive-
constructors could only be invoked via new expressions in ness provided. However, we did include it in our extended
factory methods (or super calls from weak constructors), formalisation and soundness proof [23].

and would always return a free reference. Further, we would
need the ability to mark certain methods as factory methods,
which would be tasked with initialising the returned object The type system presented so far does not generally handle
(which must have been newly-allocated). Calls to factory Situations where a constructor stores a committed referenc
methods could then be treated similarly to our rules for into a field of its receiver, and then reads it back to perform
handling new expressions. So far, such an extension has nosome computation onit. For example, consider the following

appeared to be worth the additional complexity involved. ~ code (based on an example we found while experimenting
with our implementation):

5.7 Committed-only Fields

5.5 Subclassing class C {

Extending our formalisation with subclassing and inheri- Stack! s; // library class

tance affects the definite assignment analysis for construc public C(object o) {

tors and the dataflow analysis in general Sec. 3.6. The def- this.s = new Stack(); // committed value
inite assignment analysis requires each constructor to ini ... // other code
tialise the non-null fields of the enclosing class. Fields de this.s.push(o); // fails to type-check
clared in superclasses will be initialised by a superclass c }

structor. Since our field initialisation is monotonic, thés }
sufficient to ensure that all non-null fields of an object have The problem here is that theish method of clasStack
been initialised when the new-expression terminatesjshat does not (and cannot be expected to) support anything but
when the last constructor of the object has run. a committed receiver. However, sintkis is free, the field

The dataflow analysis may safely assume that after areadthis.s has an unclassified type and, thus, the call does
call to a super-constructor, each non-null figiddeclared not type check. One might initially think that this problem
in a superclass contains a non-null value. So it is safe tocan be best handled by extending the dataflow analysis to
give this. f a non-null type even thoughhis is free. remember the initialisation states of values stored in dield

However, one cannot (soundly and modularly) preserve this or extend the existing code written by Manuel Fahndrich
information across method calls because the method mightand Songtao Xia. In the implementation (unlike our formal-
reassign the field, possibly with a free value. isation), we made use of the dataflow analysisnfer the

We observed that many fields are only ever used to storeinitialisation states for local variables. This makes tiis-s
committed values (at all program points), and for such fields tem much more usable for substantial code. Our compiler
one would prefer to make this discipline explicit and use implements the type system presented in this paper, with ad-
the information to refine our type system’s expressiveness.ditional support for base calls, static fields and methoald, a
In fact, it is sufficient to distinguish two kinds of fields: arrays (see Sec. 5.2). In the course of our experiments, we
committed-onhandstandardfields. A committed-only field realised that the committed-only-fields extension (diseds
may only be assigned values which have committed types.in Sec. 5.7) would enable us to handle many more cases, and
Any value which is read from a committed-only field can (if so we also implemented this extension.
known not to be null) be assumed to refer to an initialised We tested our implementation on two fairly large code-
object; we therefore give such field-reads a committed type bases - a version of SSCBoogie (the Spec# verifier, which is
even when reading from a receiver which is not committed. written entirely in Spec#), and an old version of the widely-

Committed-only fields proved useful in many practical used Boogie program verifier (written in Spec#; we used
examples. In fact, we found it most fruitful in our experi- an older version because the Boogie project has been mi-
ments to make committed-only the default declaration for grated to pure C# since June 2010). As well as these two
fields, and to introduce explicit annotations only for those large projects, we also tested our compiler against the#spec
fields which need to store non-committed references at somecollections used by the compiler itself, and by-hand encod-
point during initialisation. This means a few extra annota- ings of the examples found in this paper. All of this code

tions are required for the initialisation of interestingcliy was already written with non-null annotations (but without

structures, but on the other hand examples like the one aboveppropriate initialisation annotations).

can be supported without annotations. Our approach was to start from the code without any
initialisation-related annotations, and first see how many

5.8 Invariants type-checking warnings were issued by our compiler; this

We presented our type System as an extension to a non.jndicates how many cases were not already handled by the
null type system, but it is far more general. Our approach defaults in our type system. We then investigated how many
supports all monotonic one-state and two-state invariantsOf these warnings could be eliminated by the addition of
that satisfy the following two requirements. [Free] and [Unclassified] annotations, without performing
First, it must be possible to determine that the invariant @ny other changes to the code itself. This process was very
holds for the new object at the end of a new-expression. mechanical; in the end, it amounted to the systematic appli-
For non-null types, we achieve that with a flow analysis. cation of three rules:
For othgr on_e-state invariants, one could use an assertionl_ When the type system warned that the receiver of a
that_the mvarlz_ant holds_; the assertion can _then_be chedked a method call was expected to be initialised, but was not
runtime or verified statically. For two-state invariantsisas guaranteed to be so (i.e., its static type was free or unclas-

irr?mutab.ility, r:loldchfeck |”s reguir?d; it sul‘fices to check that sified) we annotated the signature of the called method
the invariant holds for all pairs of states from now on. with [Unclassified].

Second, it must be possible to check that the invariant is
monotonic. For non-null types, we achieve that by prevent- 2- When the type system warned that an argument to a
ing programs from storing null in non-null fields. For other ~ Method call was expected to be initialised, but was not
one-state and two-state invariants, one could add anissert ~ guaranteedto be so (i.e., its static type was free or unclas-
to each field update with a committed or unclassified receiver ~ Sified) we annotated the formal parameter of the called

that checks a condition that is sufficient for the preseovati method with [Unclassified].

of the invariant (for instance in the form of update guards 3. When the type system warned that we attempted to store

[3]). For immutability, this assertion would always fail. a non-committed value in a committed-only field, we
removed the committed-only status from the field.

6. EXpe”mentaI Evaluation The results of this annotation effort are shown in Fig. 9. In

In order to evaluate our type system in practice, we wrote some cases (particularly for the first two rules above),ghes

a modified version of the Spec# compiler [15], implement- rules had to be iterated; when we mark a new receiver of a
ing our type system. Starting from Spec# gave us the prac-method as [Unclassified], for example, this means that any
tical advantage that the existing non-null type checking uses of the receiver inside the method body might no longer
and dataflow analysis could be reused. Our implementationtype-check. In the case of the third rule, it could be thatgar

adapted and replaced the implementation of delayed types:of the code already depend on the committed-only status of
in most cases we were greatly aided by being able to adaptthe field; in this case, unless those parts could themselves

| Boogie | SSCBoogie| Other We anticipated worse results than we actually discov-

Lines of code 43996 15672 1739 ered, because the old approach to initialisation in Spec#
Total warnings 43 108 19 supported optional “non-delayed constructors”, which en-
Annotations used 74 58 19 courage a programming style in which extra code can be
Warnings removed 42 106 18 (soundly) included in the body of a constructor, after ini-
Warnings remaining 1) 1 tialisation is known to be completed. These “non-delayed

constructors” initialise the type-frames of an object bott
Figure 9. Experimental evaluation result©ur modified up rather than top-down; one must initialise the non-null
version of the Spec# compiler was run on two large projects: subclass fields before the superclass ones. This initi@lisa
a Spec# version of the Boogie verifier, and the verifier for the must take placdeforethe “base” (“super”, in Java) call is
Spec# language itself, SSCBoogie. We also ran our compilermade in the constructor body. In this way, one can be sure
on several small, challenging examples, including thosd us thatafterthe base call is made, the object has been initialised
in this paper (included together under “Other” in the table) at all type-frames, and therefore can take part in arbitrary
We show the total type-checking warnings generated for code. We chose not to support this feature in our type sys-
the un-annotated code, indicating how many initialisation tem or implementation, mainly because it requires runtime
problems are not handled by the defaults in our type system.behaviour which is not typically supported by mainstream
We then annotated the code in a mechanical fashion, to sedDO languages; for example, these constructors cannot be
how many warnings could be removed. The (few) remaining supported directly in Java or C#. We were pleasantly sur-
cases indicate that some code refactoring was still neededprised to find that, even given an initial codebase which in-
to make the code type-check, by moving some code which cluded many complex constructor definitions which allowed
depends on initialisation being complete, to outside of a the newly constructed object to escape in interesting ways,
constructor body. our type system was able to handle virtually all cases eas-
ily. We judge this to be because the complicated construc-
tors still typically enforced an informal discipline for ha
be fixed with annotations as above, we marked the case asjling escaped objects; such objects were sometimes cepture
one which required refactoring (cf. “Warnings remaining” in the fields of other objects under initialisation, but asno
in the table). This also applied if we found that we needed to never had their own fields written to, and those fields which
add annotations to code to widely-used superclasses, sincgyere read from an escapee object typically only ever stored
these would in general prohibit interesting implementa&io committed values or null, at all program points. Thus, the
Similarly, we were not able to annotate any library code. combination of free references (particularly inside const
The results provide convincing evidence that our type tors), [Unclassified] annotations to support the passing of
system is usable; we found only four points in the code ex- escaped objects, and committed-only fields, allows to pro-
amined where we couldn’t make the code type-check sim- grammer to enforce these apparent informal policies in a
ply by adding appropriate annotations. The first of these in- \way which can be expressed and directly checked in our type
volved calling a method on the receiver in a constructor, and system.
then within the method relying on a non-null field contain-
ing a non-null value. Two cases involved passing thés 7. Related Work
reference from a constructor as an argument to an overrid-
den method call for which we could not re-annotate the su-
perclass signature. The final case is the example discussedVe first revisit some of the related work discussed in Sec. 2,
in Sec. 7.2. All four cases could be handled by moving the with respect to a simple example fafulty object initialisa-
problematic lines to outside of the constructor (which nsake tion, shown in Fig. 10. A non-null type system must reject
sense in general, since there might still be subclasse$to in the constructor of clasS because its execution leads to a
tialise after the constructor executes). null dereference exception. The constructor first ingiedi
The number of annotations required in our experiments field £ with a reference to the (already initialised) object
is very low; on average about one annotation per warning p. The next statement is the one that causes the problem: it
about initialisation, and per about 500 lines of code. In storesthehis reference in a field of the initialised objgst
fact, it was often the case that several warnings could be which violates the deep initialisation guarantee of his vi-
removed by a single annotation, while in the worst case we olation is then exploited in the third statement by expertin
had to provide thirteen annotations to deal with one origina falsely that all objects reachable froprare initialised and,
issue, when an escaping object was passed between manthus, their non-null fields contain non-null values, whish i
calls before finally being captured in the field of another not the case fothis.g.
new object. Because of our positive experiences and the Raw types prevent this example by forbidding raw refer-
soundness guarantees our type system provides, we plan thagnces to be stored in any field. SasétF’s parameter is
our implementation will replace the currentrelease of 8pec typed as raw, the method body does not type cheelisifiot

7.1 Avoiding Initialisation Bugs

public class C

{ example, while the typdseaf andBinary are standard OO
Cl £, g; class types, the tyfginary\parent!
\left[root.parent]\right [root.parent] describes a
public setF(C! q) { this.f = q; } reference to @inary object whosearent is not assigned,
and whoseleft andright fields may refer to a objects
public C(C! p) { which cannot be assumed to be fully initialised until thecfiel
this.setF(p); // alias p as this.f root.parent is as;igned a yalue (this_is cal_ledcandi_—
this.f.setF(this); // assign this to p.f tional maskon the fields). Using the various kinds of field
this.g = p.f.g.f; // null ptr exception masks included in their type system, it is possible to stati-
} cally describe arbitrary combinations of uninitialisedd&
} and mutually-dependent conditions under which masks can
be lifted, and the fields read from. A programmer can poten-
Figure 10. Example of faulty object initialisation. tially express precisely under which conditions a field can

be soundly assumed to be permanently initialised, on a per-

field basis. Furthermore, method and constructor signature
raw then the calthis.f.setF(this) does nottype check are annotated with explicit effects which describe how the
becausehis is raw inside the constructor. However, while mask information associated with references passed to the
this solution is type-safe, it prevents implementationshsu ¢4l evolves during the method execution. In contrast to our
as the firstiode constructor in Fig. 1, which assigns objects system, the programmer is not forced to initialise all non-
that are still under initialisation to all three fields. Dydal null fields before a constructor terminates; instead, a con-
types prevent the faulty example essentially by requiring o stryctor can employ an effects annotation to make explicit
the callthis.f.setF(this) thatthis andthis.f (thal the state of each uninitialised field, potentially in ternfs o
is, p) have the same delay time, which is not the case be- congjtional masks which can later be lifted in the clienteod
causep is initialised, butthis is not. We already argued in Masked Types are highly expressive; they can encode
the introduction that this treatment is sound, but makes thearbitrarily complicated idioms in a precise and statically
system complex. The simplified version of delayed types im- cnecked way. But this complexity inevitably finds its way
plemented in Spec# does not prevent the example, which il-intg the type system itself, even at the source level. As we ex
lustrates that this system is unsound! If both the receindr a plained in our design goals, we believe that an important cri
the parameter adetF are marked as delayed, the type sys- terion for widespread adoption of a type systersinsplicity,
tem assumes that both have the same delay time and permitihich encompasses both the conceptual understanding re-
the assignment. However, this assumption is not (and can-qyjred to use the system, and the level of annotation redjuire
not) be checked at the call site, which causes the unsoundsq, typical programming idioms. The Masked Types syntax

ness.) for annotations includes grammars for flexible effects anno
Let's now discuss how our system prevents the faulty ex- ations and sequenced masks, abstractions over masks, con-

ample from Fig. 10. Consider the second calstaF in C's straints on these abstract masks, and so on. The concepts and

constructor. The receiver of this catlhis. £, is unclassi- notations a programmer must learn in order to understand

fied becausehis is not committed. Therefore, the calltype 5nd use this type system are both numerous and sophisti-
checks only ifsetF’s receiver is declared unclassified. The ¢ated in nature. Furthermore, fully understanding thergpi
argument of the callhis, can be typed with a free or un- yjes can be quite subtle, e.g., for eliminating field masks:
classified modifier. So the call type checks onlyétF’s pa- “In general, if some dependencies form a strongly connected
rameterq is declared free or unclassified. In both cases, the component in which no mask depends on a mask outside the
field update insetF’s body is rejected by the type checker component, they can all be removed together”. For these rea-
(the receiver of the update is not free and the right-harel sid sons, we believe that the technical complexity and richness
is not committed). This illustrates that our system present s the type annotation language, while extremely powerful,
storing objects that are not expected to be initialised iddie 115kes the system unsuitable for widespread use by program-
of objects that are expected to be initialised, which préeven mers, which was our overall design aim.

the unsoundness. A modified version of the binary tree example (using our
type system) is shown in Fig. 12. To be able to type the ex-
ample, we had to make two changes. Firstly, the original
Since we believe Masked Types to be the most expressiveexample initialises thearent of the newBinary object
comparable approach to object initialisation, we provide a outside the constructor (in the last line of Fig. 11). Since
more-detailed comparison with our approach here. Fig. 11 our system enforces that constructors initialise all nat-n
shows the running example from the Masked Types paperfields, we added a default assignment of paeent field in

[21]. Masked Types allow a programmer to flexibly express classNode. Secondly, théinary constructor in the origi-
a wide variety of different refinements of a class type. For

7.2 Comparison with Masked Types

class Node { class Node {

Node! parent; Node! parent;
Node() effect x! -> x! { } Node() { parent = this; }
} }
final class Leaf extends Node { class Leaf extends Node { }
Leaf () effect *! -> parent! { }
} class Binary extends Node {
Node! left, right;
final class Binary extends Node { Binary(Node! 1, Node! r)
Node left, right; {
Binary(Node\parent!\Node.sub[l.parent] -> this.left = 1;
*[this.parent] 1, this.right = r;
Node\parent!\Node.sub[r.parent] -> }
*[this.parent] r) }
effect *! -> parent!, left[this.parent],
right [this.parent] Leaf! 1 = new Leaf();

{ Leaf! r = new Leaf();
this.left = 1; Binary! root = new Binary(l, r);
this.right = r; 1l.parent = root;
1l.parent = this; r.parent = root;
r.parent = this;

} Figure 12. Tree with back-pointers in our type system.

}

The comparison of the two versions of the example il-
lustrates that our version reduces the annotation overhead
tremendously. We do not have to add a single annotation to
handle the initialisation of the cyclic struct§ré®ur system
does not directly support the deferral of initialisationtilaf-
ter the constructor has terminated; if such a deferredlniti
isation is required, the constructor needs to assign a dummy
object to the non-null field, which gets replaced later (Emi
dummy assignments are sometimes necessary for local vari-
ables in Java and C# to pass the definite assignment checks).
However, the implementation is also more general; we do
not requireLeaf objects to be partially initialised in order to
add them t®inary objects.

We believe that these differences illustrate different mo-

Leaf\parent! 1 = new Leaf();

Leaf\parent! r = new Leaf();
Binary\parent!\left[root.parent]

\right [root.parent] root = new Binary(l, r);
root.parent = root; // Now fully initialised

Figure 11. Tree with back-pointers using masked types.

nal example assignshis to theparent field of the argu-
mentsl andr. Our system does not permit these assign-
ments becausehis is free inside the constructor and, thus,

may be assigned only to fields of other free objects. How- . . :
) : ; tivations. Masked Types provide a very general and expres-
ever,1 andr are considered committed in our example code. g
sive solution (which can handle more-complex typing disci-

_The reason the masked types typing is sounq (even tho.u.ghplines with regard to initialisation), and also tackleaita-
it points the constructor arguments at an object under ini-

tialisation), is that the constructor signature builds e t tive problem_s Su.Ch as object recycl|ng,_/vh|ch our paper does

) not. Our motivation, on the other hand, is very much to keep
requirement that the andr parameters passedustnot to a proposal which is as simple and lightweight as possible
yet have had theiparent fields initialised. Effectively, this prop P ghtweignt as p

means that their constructor definition can only be used with for programmers t_o be able to use for the specific problem
. . . S of object initialisation.

Leaf instances which are themselves still under initialisa-

tion. Our constructor, on the other hand, must be called with 7.3 Other Related Work

initialised Leaf arguments (we could weaken this require- — .

ment my annotating the parameters as unclassified); in thei'?aaf; a\?v?]izﬁ lLzrsezizi:grgﬁasr?f[iséir?of?)ru??/{/?lt(m::L:ra?ab"_

client code oumode constructor takes care of the default rgnEarll’ in Section 4 of their paper. the initialisat.ion rol:))/-

initialisation for us. Note that our refactored code wouge r lem for immutability is sim Ie? bF:ecr;luse one does no{)need

main typeable without extra annotations even if thaf y P

andBinary classes were not declarédnal, which is not 6 Although, with the committed-only-fields extension (Sed)5ve need a

the case for the original code. single annotation on the fiejshrent to override our chosen default.

to handle complex interactions between immutable and mu- under initialisation (for the sake of ease of understanding
table references, unlike the problems of initialising naliter the user). The implemented version of their type system also
cyclic data structures with non-null types. The same is true does not support cyclic patterns of initialisation, altgbwa

for the Javari work of Tschantz and Ernst [24]. However, possible extension to handle this is sketched.

the work of Haack and Poll can support initialisation of im-

mutable structures by introducing extra generic “qualifier 8. Future Work and Conclusions

arguments to met_h(_)qs,_ an_d using these to explicitly SCOP€g 1 EFuture Work

and then end the initialisation phase for a group of objects.

This requires extra annotation overhead, although some an-Since the annotation efforts required in our experiments
notations can be inferred for their system. In recent work, turned out to be very mechanical, it seems natural to in-
Zibin et al. present a type system which combines O\,\,nershipvestigate the possibility of developing inference tools to
types with immutability [25]. This system can handle cyclic provide or suggest annotations for existing code. We have
data structures, provided they are initialised under alsing Not yet seen many cases in practice where such inference
common owner object; in our terminology, the owner’s com- would need to be sophisticated, but in principle there are

mitment point can be used to implicitly define the commit- SOMe interesting design choices to be made. For example,
ment point of all owned objects, which can be initialised SO far whenever we found that a method was called with

flexibly in the meantime. a non-committed actual parameter, we tried annotating the

Various implementations and practical works have been Mmethod formal parameter with [Unclassified]. However, in
based on the original proposals of Fahndrich and Leino [10] c@ses where such a methodoisly called with free actual
(with their “raw types” approach to object initialisation) —Parameters, one might gain flexibility by choosing a [Free]
Several implementations have been based on p|uggab|@nnotation; this would allow the passed parameter to have
types frameworks [4]. Andreae et al. developed the Java- its fields written to. So far in the code we have examined,
COP framework, and implemented a non-null type checker We have not seen any cases where an object escapes from
in the framework [2]. Ekman and Hedin [7] have written a its constructor and then has its fields written to via other
pluggable types implementation of the type system on top of Mmethods; it seems that this (difficult to reason about) apdin
their JAstAdd compiler framework [8]. Papi et al. have de- Patternis typically avoided.
veloped the Checker framework [20], to facilitate the flexi- The experimental results obtained with our implementa-
ble development of type systems based on customisable Jav$on are very promising, and we plan to extend our experi-
annotations. This framework has since been used to develognents to further codebases. Since Spec# is a superset of C#
many type checkers for different properties [9]. As future 2.0,0ne possibility is to port existing C# codebases to pec
work, we aim to develop a pluggable types implementation allowing us to experiment with annotating widely-used slas
using one of these frameworks, so that we can also evaluatdmplementations. We plan to migrate our implementation to
our design against Java code. the open source version of the Spec# compiler. As mentioned

Hubert et al. [14] present a machine-checked analysis for 200Vve, we also plan to implement our type system in a plug-
inferring non-null types, and Hubert has also extended this 9able types framework for Java; this will provide a simple
work to the level of Java bytecode [13]. Male et al. [16] Way to access large bodies of critical code, and see how well
also present a bytecode verification for non-null typesjavhi Our annotations work for, e.g., the Java standard libraries
Chalin and James [5] present an empirical study on the uselt will also provide a more convenient means for other re-
(and defaults) of non-null types. All of these works take Searchers to experiment with using our type system directly
essentially the original “raw types” approach of Fahnkdric We are also interested in developing prototype implemen-
and Leino (if any) to object initialisation; that is, theynreot ~ tations for other suitable languages, and to apply our type
handle examples involving mutual or cyclic initialisation ~System to the initialisation of invariants other than narkn

(with the exception of some special cases for the “this” types. We have been informed that the Eiffel development

reference in the work of Hubert et al.). team plan to adopt and implement our approach to handle
Spoto and Ernst [22] have recently presented an inter- initialisation in the Eiffel language [18].

procedural flow analysis (implemented in the Julia tool) for

inferring “raw” annotations from unannotated Java byte-

code; their technique can also be broadly applied to other We have presented a novel type-based approach to object
initialisation-related properties. initialisation, based on a simple distinction between otgje

In other recent work, Zibin et al. [26] present a type- known to be under initialisation, and objects known to be
system for object initialisation in the open-source larggua initialised. The core of our system has been formalised and
X10. Their work has similar design goals to ours in terms of proven sound, specifically for the problem of handling ob-
simplicity and soundness, but they are more restrictivey th ~ jectinitialisation for non-null types, but in a way whichrge

require that dynamic method calls be forbidden on objects €ralises to other monotonic object invariants such as im-
mutability. Our type system is implemented, and experi-

8.2 Conclusions

ments on large codebases have yielded promising results [5] P. Chalin and P. R. James. Non-null references by defiault
both in terms of expressiveness and ease of use. While our ~ Java: Alleviating the nullity annotation burden. ECOOR
implementation is based around Spec#, the type systerhitsel ~ pages 227-247, 2007.

is suitable for use in any heap-based language with explicit [6] ECMA. ECMA-367: Eiffel analysis, design and programming
constructors (or an equivalent language concept). language ECMA, 2006.

Since the goal of our work was to design a system suitable [7] T. Ekman and G. Hedin. Pluggable checking and inferemcin
for mainstream use, let us revisit the design goals which we of non-null types for JavaJournal of Object Technology
highlighted in the introduction. (7), 2007.

Our type system imodular, each method is type-checked [8] T. Ekman and G. Hedin. The jastadd extensible Java cempil
independently of the others, and the usual rules for co- and In OOPSLA pages 1-18. ACM, 2007.
contra-variant method overriding allows our analysis to re [9] M. D. Ernst and M. Ali. Building and using pluggable type

main ignorant of overriding subclass implementations. systems. IIFSE pages 375-376. ACM, 2010.

The type system isound we have provided a detailed [10] M. Fahndrich and K. R. M. Leino. Declaring and checking
formalisation for a small language which illustrates thié-cr non-null types in an object-oriented language. OBPSLA
cal aspects of the problem, and the full soundness proofs are pages 302-312. ACM, 2003.
available online in our technical report [23]. _ [11] M. Fahndrich and S. Xia. Establishing object invatsawith

Our presented solution is suitat#ypressiveour experi- delayed types. I®@OPSLA pages 337-350. ACM, 2007.

ments on large volumes of code show that the defaults in our[15) ¢ Haack and E. Poll. Type-based object immutabilitghwi
type system handle the vast majority of constructors; aimos flexible initialization. In ECOOP, LNCS, pages 520-545.

all remaining cases can be dealt with simply by the straight- Springer, 2009.
forward addition of type annotations. [13] L. Hubert. A non-null annotation inferencer for Javaémode.
Last, but not least, our type systensimple Understand- In PASTE pages 36—42. ACM, 2008.

ing how to use the system requires classifying objects It 1141 | Hybert, T. P. Jensen, and D. Pichardie. Semantic-foun
just two initialisation states, and handling referenceagis dations and inference of non-null annotations. FMOODS
just three initialisation modifiers (the most common being pages 132—149, 2008.
the default). Our experiments show that the modifiers are [15] K. R. M. Leino and P. Miiller. Using the Spec# language
rarely needed, and are generally sufficient to handle istere methodology, and tools to write bug-free programs_ASER
ing initialisation patterns which do arise, both in praetamd Summer School 2007/2008&Ilume 6029 oL NCS pages 91—
in research papers. We believe that the conceptual siryplici 139. Springer, 2010.
of our approach, along with its low annotation burden and [16] c. Male, D. J. Pearce, A. Potanin, and C. Dymnikov. Java
lack of required runtime support, make it a promising candi- bytecode verification for @NonNull types. 1BC, LNCS,
date for future use in mainstream programming languages. pages 229-244. Springer, 2008.

[17] B. Meyer. Attached types and their application to thopen
Acknowledgments Er(;bzlerznosogf object-oriented programming.BE€OOPR, pages

We are grateful to the anonymous referees for extensive
and constructive feedback. We would like to thank Manuel

Fahndrich for helpful discussions of delayed types and the
previous Spec# implementation. We thank Hermann Lehner
and Sophia Drossopoulou for useful discussions on the de-
tails of the formalisation and presentation. We especially

thank Arsenii Rudich for many discussions on the inception

and details of this work, and for last-minute food supplies.

[18] B. Meyer. Personal commmunication, 2011.
[19] B. Meyer, A. Kogtenkov, and E. Stapf. Avoid a void: The
eradication of null dereferencing. 2010.

[20] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D
Ernst. Practical pluggable types for Java. IBETA pages
201-212, 2008.

[21] X. Qi and A. C. Myers. Masked types for sound object
initialization. InPOPL, pages 53-65, 2009.

[22] F. Spoto and M. D. Ernst. Inference of field initializati In

References ICSE’11, Waikiki, Hawaii, USA, May 25-27, 2011.
[1] PMD tool. http://pmd.sourceforge.net/, 2002. [23] A. J. Summers and P. Mulller. Freedom before commitment
[2] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A : Simple flexible initia_llisation for non-null types. Tecloal
framework for implementing pluggable type systems. In Report 716, ETH Zurich, 2011.
OOPSLApages 57-74. ACM, 2006. [24] M. S. Tschantz and M. D. Ernst. Javari: adding reference

[3] M. Barnett and D. Naumann. Friends need a bit more: Main- immutability to Java. IOOPSLAACM, 2005.
taining invariants over shared state.NHPC, volume 3125 of [25] Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst. Owner
LNCS pages 54-84. Springer, 2004. ship and immutability in generic java. BOPSLA '102010.

[4] G. Bracha. Pluggable type systemsQ®PSLA'04 Workshop ~ [26] Y. Zibin, D. Cunningham, I. Peshansky, and V. Saraswat.
on Revival of Dynamic Languag@04. ObJeCt initialization in X10. InX10 Workshop2011

