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Abstract

In this paper we investigate how to adapt the well-known notion ofML-style poly-
morphism(shallow polymorphism) to a term calculus based on a Curry-Howard
correspondence with classical sequent calculus, namely, theXi-calculus. We show
that the intuitive approach is unsound, and pinpoint the precise nature of the prob-
lem. We define a suitably refined type system, and prove its soundness. We then
define a notion ofprincipal contextsfor the type system, and provide an algorithm
to compute these, which is proved to be sound and complete with respect to the
type system. In the process, we formalise and prove correctness ofgeneric unifi-
cation, which generalises Robinson’s unification to shallow-polymorphic types.

Key words: Curry-Howard, classical logic, generic unification, principal types,
cut elimination

1. Introduction

Polymorphism is a powerful aspect of most modern programming languages.
It is a mechanism for allowing a program to be applied in various contexts which
each expect different types, and allows flexibility and reuse of code. In a non-
polymorphic programming language for example, even if a function’s behaviour
is independent of the type of its argument, it must be redefined for each such type.

In recent years, there has been a wealth of work sparked by theseminal paper
of Griffin [1], concerning the extension of the Curry-Howard Correspondence [2,
3, 4] to various classical logics (e.g., [5, 6, 7, 8]). In particular, the reduction
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behaviour of calculi based on classical logic has been shownto have strong and
natural correspondences with control operators in functional languages (e.g., [9,
10, 11, 12, 13]). In this way, proof reductions can be given a strong computational
interpretation, and it seems feasible in principle that a calculus based on a Curry-
Howard correspondence with a classical logic could be used as the basis for a
practical programming language.

In this paper we investigate how to adapt the well-known notion of ML-style
polymorphism (which we callshallow polymorphismin this paper) to a term cal-
culus based on classical logic, namely, theXi-calculus [14]. The problems here
are two-fold: firstly what difference does the extension to a classical logic setting
make, and secondly, how should polymorphism be implementedin the unusual
setting of the sequent calculus? We will show that the logical basis of the sequent
calculus (as opposed to variants of theλ-calculus, which correspond to logic in a
natural deduction style) provides a clearer understandingof the issues involved.

We will first review the key aspects of the Hindley-Milner approach, and then
examine how they can be brought to the more-general setting of theXi-calculus.
This turns out to be non-trivial; not only do some aspects require extra machinery
to be adapted naturally to the sequent calculus setting, butthe intuitive approach
fails for the general system; witness reduction is violatedby the more-general
reductions possible in theXi-calculus. This problem was not identified in the
published work by the author [15], in which a witness reduction result for this type
system is erroneously claimed. We examine here this problem, and identify three
sufficient conditions for such a polymorphic type system tofail to be sound in this
way. We compare with examples in the literature; in particular the unsoundness
of ML when extended with various non-functional concepts, such as exceptions
and control operators. By exploring the exact cause of the unsoundness, we show
how the type system can be amended in a novel way, which is moregeneral than
one of the standard approaches in the context of ML.

Having obtained a suitably general polymorphic type system, we then move
on to the question of principal types. We show that we can define a notion of prin-
cipal types (which is more-suitably named “principal contexts” for this calculus)
similar to the well-known result for ML. We define a principaltyping algorithm,
and prove soundness and completeness of the algorithm. In order to define the al-
gorithm correctly, we define the concept ofgeneric unification, whose naı̈ve def-
inition is shown to be incomplete. We define this operation precisely, and prove
a most-general-unifier property, generalising the classical unification results of
Robinson [16].

Finally, we discuss the definition of a naturally-arising ‘dual’ notion of poly-
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morphism, using existential quantification (∃) rather than universal. Although in
a programming setting based on intuitionistic logic (asλ-calculus and indeed ML
can be seen to be) the addition of existential quantificationdoes not make any
new programs typeable, in a classical logic setting there are programs which can
be made typeable in this way. We also discuss the idea of a typesystem combining
bothkinds of quantification at once. Such a system can type even more programs:
the roles of the quantifiers can be seen to be complimentary, but requires a non-
trivial extension of our principal contexts results, and isleft for future work.

This paper builds on and corrects the work previously presented in [15], and
is based on otherwise unpublished material from the author’s PhD thesis [14].

1.1. Overview

Section 2 covers the background material for the rest of the paper. We begin
with a brief overview of some notation and conventions in section 2.1, which is
followed by a review of the basic definitions of ML and shallowpolymorphism in
section 2.2. Section 2.3 discusses principal types. Section 2.4 provides an intro-
duction to theXi-calculus, which we use as the basis for our work. Section 3 isthe
body of the paper. It begins with a discussion of the intuitive, unsound approach
to a polymorphic type system in the classical logic setting (section 3.1). We then
discuss the precise source of the unsoundness, and define an improved type sys-
tem in Section 3.2. Section 3.4 deals with the problem of principal contexts for
this new type system. We discuss some possible extensions and future work in
section 4 and conclude in section 5. Detailed proofs of all ofthe important results
can be found in Appendix B.

2. Background

2.1. Notation

We give here a brief summary of the notations and conventionsemployed
in this paper, particularly regarding the introduction of binders within our type
language, and the handling of substitutions, renamings etc., within types.

The binders we will be employing within types come in the formof (second
order) logical quantifiers: specifically∀ (universal quantification). We will usu-
ally refer to types containing these symbols asquantified types. We choose to
distinguish between bound and free ‘type variables’, usingdifferent notation and
language to describe each. The ‘free type variables’ are referred to asatomic
types, and are represented byϕ, ϕ′, ϕ1, ϕ2 etc.. Thebound type variablesare cho-
sen from the latter part of the uppercase Roman alphabet; i.e. W,X,Y,Z,X1,X2 etc..
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For example, we can write bothϕ→ϕ and∀X.(X→X) as types. We believe that
maintaining a clear distinction between these two notions is both natural (since
their meanings and behaviours are quite different) and illustrative. We believe
the clear distinction to be necessary for the presentation of our technical results,
which mostly require a careful treatment of quantified types.

We use the early part of the uppercase Roman alphabet (A, B,C,D,E, F,A′,A1

etc.) to represent Curry types1. In order to describe quantified types separately
from Curry types, we use the overlined version of this notation, i.e., the symbols
A, B,C etc. (note however that we may also writeA for Curry Types). Types
which may be quantified are referred to asgeneric types.

When introducing bindings, we require operations to renamefree atomic types
ϕ with bound type variablesX, and we write this operation asA[X/ϕ]. Dually,
we also require the replacement of bound type variablesX with (Curry) types
B, which we write asA[B/X]. Note that these operations are kept distinct from
the usual Curry substitutions, which replace atomic types with Curry types. We
assume that all of these operations bind tighter than any logical connectives in the
types: for example,∀X.A[X/ϕ] should be read as∀X.(A[X/ϕ]).

Since we will frequently be concerned with the question of which atomic types
occur within a type, it is convenient to define the setatoms(A) to be the set of all
atomic types in a typeA (note: this does not include bound type variables). We
can then writeϕ ∈ atoms(A) to state that an atomic type occurs within a (generic)
typeA. For convenience, we allow ourselves to write this asϕ ∈ A when this does
not cause confusion. We extend this notation to contexts in the obvious way, e.g.,
ϕ ∈ 〈Γ;∆〉 means that there exists a statement in〈Γ;∆〉 featuring a typeA such
thatϕ ∈ A.

When discussing generic types, i.e. types of the form∀X1.∀X2. . . . .∀Xn.A, we
find it convenient to introduce the. notation, e.g.,∀Xi .A. We do not explicitly
quantify over the subscripts, but it is always intended thata subscripti, j,k etc.
is bound under the corresponding.. We extend this notation slightly informally
to facilitate the statement and proof of our results, by using it as a shorthand for
repetition in other statements. For example, we write{ϕi } for the set{ϕ1, ϕ2, . . .},
and we writeϕi ∈ A to mean “ϕ1 ∈ A andϕ2 ∈ A etc..”

As usual, we assume all binders in types areα-converted appropriately to
avoid clashes, and that all substitutions and renamings which cross binders are
capture-avoiding.

1As usual, Curry types are those built from atomic types and the binary→ operator.
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2.2. The Hindley-Milner Type System for ML

The archetypal example of a shallow-polymorphic type system is the Hindley-
Milner [17, 18] type system, which underlies the type systemfor the ML pro-
gramming language. The main advantages of this approach over that of System
F [19, 20], for example, are practical: type checking and type assignment (within
certain constraints, as we will explain) are decidable, andcan be implemented by
relatively straightforward algorithms [21]. In contrast,it has been shown that the
corresponding problems are undecidable for System F [22].

We briefly recall here the basic definitions, and refer the reader to Damas and
Milner’s work [21] for the details.

Definition 2.1 (ML Syntax). The syntax ofML terms is defined by:

M,N ::= x | M N | λx.M | Fix g.M | let x= M in N

The constructFix g.M is included to allow typeable recursion in the calculus.
For simplicity in our discussions of polymorphism we chooseto study the subset
of ML expressions withoutFix, and will hereafter only consider ML expressions
within this subset.

ML valuesare defined by: V::= x | λx.M

Definition 2.2 (ML Reductions). The reduction relation in ML is the transitive,
compatible closure of the following two rules:

(λx.M)V →ML M[V/x]
(let x= V in M) →ML M[V/x]

We choose to present types and type assignment rules using the approach of
Damas and Milner [21], as this gives a clearer treatment thanthat of [18].

Definition 2.3 (Generic Types [21]2). The set ofgeneric typesis built from the
usual Curry types by allowing any number (possibly zero) of∀ quantifiers to be

2Damas and Milner call these “type schemes” rather than “generic types” [21]. We also dis-
tinguish between atomic types and bound type variables, whereas they choose not to. In fact, in
[18] the set of Curry types is also extended with type constants, to represent concrete types such
an integers, booleans, etc. However, this is more a practical consideration, and we leave them out
in these discussions for simplicity. Since, as we shall see,our type derivations are closed under
substitution on atomic types, we can imagine extending these substitutions to replace atomic types
with concrete types; everything works out in the same way.
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built on the outside. We recall below the definition of Curry types A, B (extended
with occurrences of type variables X), and then define generic typesA:

A, B ::= ϕ | X | (A→ B)
A ::= ∀X1.∀X2. . . .∀Xn.A (n ≥ 0)

A generic typeA iswell-formedif it contains no free type variables (type variables
X not occurring under a corresponding∀X. binding). We will assume all types to
be well-formed in this paper, unless otherwise stated.

Note that in the casen = 0 in the definition of generic types, we assert that
any Curry typeA is a generic type itself. We use the symbolΓ to represent a basis
of assumptions, as before. We writeΓ ⊢mlM : A to mean ‘there is a type derivation
assigning the type (scheme)A to the termM under the basis of assumptionΓ’.
The form of these type derivations is defined as follows:

Definition 2.4 ([21]). ML-type assignmentis defined by the following derivation
rules.

(ax)
Γ, x : A⊢ml x : A

Γ ⊢mlM : A Γ, x : A⊢mlN : B
(let)

Γ ⊢ml let x= M in N : B

Γ, x : A⊢mlM : B
(→I)

Γ ⊢mlλx.M : A→B

Γ ⊢mlM : A→B Γ ⊢mlN : A
(→E)

Γ ⊢mlM N : B

Γ ⊢mlM : A
(∀I)*

Γ ⊢mlM : ∀X.A[X/ϕ]

Γ ⊢mlM : ∀X.A
(∀E)

Γ ⊢mlM : A[B/X]

* if ϕ is not free inΓ.

As a standard example, consider the term (λz.zz)(λy.y). This remains unty-
peable in ML, just as it is in theλ-calculus, becausez is bound in a lambda-
abstraction over the self applicationzz. The self application requiresz to be given
two types, of the formA→B andA (for some Curry typesA andB), whereas the
lambda abstraction forcesz to take a unique Curry type. Using thelet construct, it
is possible to form the termlet z= λy.y in zz, which will reduce in the same way
as our original term. However, it is typeable in the ML system, because the type
∀X.(X→X) is derivable forλy.y, and different instances of this type can be taken
for the two occurrences ofz (e.g. (ϕ→ϕ)→(ϕ→ϕ) and (ϕ→ϕ) respectively):
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(ax)
y :ϕ′ ⊢mly : ϕ′

(→I)
⊢mlλy.y : ϕ′→ϕ′

(∀I)
⊢mlλy.y : ∀X.(X→X)

(ax)
z:∀X.(X→X) ⊢mlz : ∀X.(X→X)

(∀E)
z:∀X.(X→X) ⊢mlz : (ϕ→ϕ)→(ϕ→ϕ)

(ax)
z:∀X.(X→X) ⊢mlz : ∀X.(X→X)

(∀E)
z:∀X.(X→X) ⊢mlz : ϕ→ϕ

(→E)
z:∀X.(X→X) ⊢mlz z: ϕ→ϕ

(let)
⊢ml let z= λy.y in z z: ϕ→ϕ

Although ML admits less polymorphism than System F does, it has the ad-
vantage of being very practical: in particular, it has a principal type property.
Milner presents an algorithm (calledW) that takes as input a pair of basis and
term (Γ,M) and returns a pair of substitution and type (S,A), representing the
most general typing for the term (if one exists) using an instantiation of the basis.

The formal results concerning the algorithm depend on the following defini-
tion (essentially from [21]):

Definition 2.5 (Generic Instance). A generic typeA = ∀Xi .A has ageneric in-
stanceB = ∀Yj .A′ if there exist types Bi and atomic typesϕ j such that3 A′ =
A[Bi/Xi] [Yj/ϕ j] , andϕ j < A.

We writeA�B in this case, read “B is a generic instance ofA”.

Considering the types as logical formulae, in Natural Deduction terms this
definition essentially says thatB�A if and only if we can deriveB from A using
a series of (∀E) steps, followed by a series of (∀I) steps. Equivalently in terms
of the sequent calculus,B�A if and only if the sequentA ⊢ B is derivable using
only the∀-fragment of the logic (i.e., the rules (∀I),(∀E) and (ax)). This notion
of derivability gives an intuition as to whyB may be considered ‘smaller’ or ‘less
general’ thanA.

This is made formal by the following results:

Theorem 2.6(Properties of the algorithmW).

Soundness:IfW(〈Γ,M〉) = 〈S,A〉 then(S Γ) ⊢mlM : A.

Completeness:If, for a basisΓ and term M, there exist S and A such that
(S Γ) ⊢mlM : A then there exist substitutions S1 and S2 and a type B such
thatW(〈Γ,M〉) = 〈S1, B〉 and(S Γ) = (S2◦S1 Γ) and(S2◦S1 B)�A.

3Note that the “types” following are not well-formed types, but e.g.,A′ forms a part of a well-
formed type (B). The equality we write here just means syntactic equality on these portions of
types.
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2.3. Principal Types and Principal Typings

It is worth making clear at this point what we mean by a “principal type prop-
erty”. Wells [22] wrote a paper specifically addressing thispoint, in which defi-
nitions are given for “principal types” and “principal typings”. For a type system
to have a “principal typing property” there must be an algorithm which, given any
term of the syntax, either determines that the term is not typeable at all or else de-
rivesall of the information used in a typing judgement for the term (other than the
term itself), in amost-generalway. What this information exactly is, and what the
notion of ‘most general’ means depends on the specific calculus and type system.
For example, the simply-typed lambda calculus has a principal typing property,
for which ‘most general’ essentially means “can be obtainedby applying substi-
tutions and adding extra (redundant) information to the context Γ (weakening)”.
On the other hand, ML, equipped with the shallow polymorphictype assignment
described above,does nothave a principal typing property [23]. Informally, this
essentially is because, given a termM with free variables, it is not possible to de-
termine the most general ‘amount’ of polymorphism to assumefor the types of the
free variables. In most cases, the stronger the assumptionsmade inΓ, the stronger
the derived type forM, and vice versa. Instead, ML has a weaker property, which
is referred to as aprincipal typesproperty. Essentially, this says that if onefixes
an initial basis of assumptionsΓ, as well as a termM, then one can compute the
most general pair of substitutionS and generic typeA (if such a pair exist) such
that (S Γ) ⊢mlM : A. Since a substitutionS cannot affect the quantified (bound)
parts of the types inΓ, it can be understood that the initialΓ determines exactly the
polymorphic behaviour which will be assumed for the free variables ofM. This
is what the algorithmW achieves.

2.4. TheXi-calculus

In this paper we will work largely with theXi-calculus, which is an untyped
term calculus based on a Curry-Howard Correspondence with classical sequent
calculus. As such, the reduction rules of theXi-calculus correspond (in the ty-
peable cases) with the process ofcut elimination[24]. The calculus is essentially
anuntypedvariant of one of the term representations for sequent calculus proofs
used in Urban’s PhD thesis [8], and the reduction behaviour is that described by
Urban’s cut elimination. The calculus is named after theX-calculus of van Bakel
et. al. [25], but is presented with propagation of cuts as an ‘implicit’ operation
(similar to the treatment of substitution in theλ-calculus). The notation we use is
not based on Urban’s prefix notation, but rather the infix notation of [25], since
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this makes more explicit the input/output symmetry of the calculus, in particular
in the case of cuts.

Since the sequents of classical sequent calculus have multiple formulas on
bothsides of the sequent, when defining a term inhabitation for the logic it is nat-
ural to have two alphabets of names to index them. We see thosenames indexing
formulas on the left of the sequent as inputs, and call themsockets, and those on
the right as outputs, and call themplugs[25].

Definition 2.7 (Xi-Terms4). The terms of theXi-calculus (ranged over by P,Q,R,
etc.) are defined by the following syntax, where x, y range over the infinite set of
socketsandα, β over the infinite set ofplugs(sockets and plugs together form the
set ofconnectors).

P,Q ::= 〈x.α〉 | x̂P̂α·β | Pα̂ [y] x̂Q | Pα̂ † x̂Q
capsule export import cut

The·̂ symbolises that the connector underneath is bound in the attached subterm—
a bound socket is written as a prefix to the term, whereas a bound plug is written
as a suffix. For example in the importP̂β [y] x̂Q, occurrences ofβ are bound in
the subtermP and occurrences ofx are bound inQ. A connector which does not
occur under a binder is said to be free. We will usefp(P) to denote the free plugs
of P, and similarlyfs(P) for free sockets.

The capsuleis the basic building-block of the calculus, which consistsof a
single input-output pair (which may be thought of as two endsof the same con-
nection). Anexportis a construct reminiscent of function abstraction; it binds an
input (socket)x and an output (plug)α (whose combination may loosely be con-
sidered a function fromx to α), and provides this newly-constructed “function”
on the output plugβ. An import is the dual notion to an export, and provides a
pair of terms, one with a bound plug, and one with a bound socket. The idea is
that an appropriate export term can be inserted between the two terms in an im-
port, providing a way of connecting them together. Thecut is the active construct
in the syntax, which attempts to connect the output plugs namedα in P with the
input sockets namedx in Q. In order to understand the reduction behaviour of

4A more-general version of the calculus presented here occurs in the PhD thesis of the author
[14], in which the underlying logic includes negation as well as implication as primitive con-
nectives. This allows for completeness in a logical sense, and a more-symmetric computational
content. However, for the purposes of this paper, the distinction is not particularly relevant, and
we drop negation in order to simplify the presentation.
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this calculus5, and also to aid various discussions later on, it is useful tobe able to
describe the location of occurrences of a free connector in aterm. To this end, we
make use of the following definitions:

Definition 2.8 (Exhibiting and Introducing a Connector). For anyXi-term P and
socket x , we say Pexhibitsx if there is an occurrence of x at the top-level of P’s
syntactic structure (i.e., not located within a subterm of P).

We say that Pintroducesx if x ∈ fs(P) but, for all proper subterms P′ of
P, x < fs(P′) (alternatively, x occursuniquelyat the top-level of P’s syntactic
structure).

We define exactly the same notions for plugsα instead of sockets x.

For example,̂x〈x.α〉̂β·α exhibitsα but does not introduceα (since there is a
further occurrence ofα within a subterm). Also,〈x.α〉 introduces (and therefore
exhibits) bothx andα.

The most important use for these definitions is in understanding the behaviour
of the cut-elimination procedure. A cutPα̂ † x̂Q in which P introducesα andQ
introducesx can always be removed (and possibly replaced by new cuts between
the subterms ofP andQ) - this is the ultimate goal of the cut elimination proce-
dure. These rules (which are called thelogical reduction rules) are described as
follows.

Definition 2.9 (Logical Rules). The logical rules are presented by:

(cap) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉
(impR) : (̂yP̂β·α)α̂ † x̂〈x.γ〉 → ŷP̂β·γ α < fp(P)
(impL) : 〈y.α〉α̂ † x̂(P̂β [x] ẑQ) → P̂β [y] ẑQ x< fs(P,Q)

(imp) : (̂yP̂β·α)α̂ † x̂(Q̂γ [x] ẑR) →

{
Q̂γ † ŷ(P̂β † ẑR)
(Q̂γ † ŷP)̂β † ẑR

} {
α < fp(P),
x < fs(Q,R)

The logical rules areonly applicable in the special case of a cut whose sub-
terms both introduce the appropriate connector. In all other cases, a cut is reduced
by ‘seeking out’ the positions in its subterms where the appropriate connectors
are exhibited. For example, ifP does not introduceα, then a cutPα̂ † x̂Q can be
reduced by pushing copies of the cut withQ through the structure ofP, depositing
a cut at the level of each occurrence ofα in P. A similar behaviour is possible

5For a more-detailed explanation, please see citevanBakelLengrandLescanne’05,Summers’08.
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whenx is not introduced inQ. This reduction behaviour is referred to as (left- or
right-)propagation.

In contrast to theX-calculus, we present propagation as a meta-operation,
external to the calculus itself, in much the same way as substitution is treated in
theλ-calculus6. We introduce the notationP{α]x̂Q} to denote the result of left-
propagation, which propagates through the structure of theterm P, connecting
each occurrence ofα with a new cut withQ, via x. The notationQ{Pα̂]x} is
used for the analogous right-propagation operation. Note that this notation is not
a part of the syntax of the calculus; rather it denotes theresult of evaluating the
associated operations. These are defined as follows:

Definition 2.10(Propagation Operations). The operation P{α]x̂Q} is defined re-
cursively over the structure of P, as follows:

〈y.α〉{α]x̂Q} = 〈y.α〉α̂ † x̂Q
〈y.β〉{α]x̂Q} = 〈y.β〉 β , α

(̂yP̂β·α){α]x̂Q} = (̂y(P{α]x̂Q})̂β·α)α̂ † x̂Q
(̂yP̂β·γ){α]x̂Q} = ŷ(P{α]x̂Q})̂β·γ, γ , α

(P̂β [z] ŷR){α]x̂Q} = (P{α]x̂Q})̂β [z] ŷ(R{α]x̂Q})
(P̂β † ŷ〈y.α〉){α]x̂Q} = (P{α]x̂Q})̂β † x̂Q

(P̂β † ŷR){α]x̂Q} = (P{α]x̂Q})̂β † ŷ(R{α]x̂Q}), R, 〈y.α〉

The operation Q{Pα̂]x} is defined recursively over the structure of Q, as
follows:

〈x.β〉{Pα̂]x} = Pα̂ † x̂〈x.β〉
〈y.β〉{Pα̂]x} = 〈y.β〉, y , x

(̂yQ̂β·γ){Pα̂]x} = ŷ(Q{Pα̂]x})̂β·γ
(Qβ̂ [x] ŷR){Pα̂]x} = Pα̂ † x̂((Q{Pα̂]x})̂β [x] ŷ(R{Pα̂]x}))
(Qβ̂ [z] ŷR){Pα̂]x} = (Q{Pα̂]x})̂β [z] ŷ(R{Pα̂]x}), z, x

(〈x.β〉̂β † ŷR){Pα̂]x} = Pα̂ † ŷ(R{Pα̂]x})
(Qβ̂ † ŷR){Pα̂]x} = (Q{Pα̂]x})̂β † ŷ(R{Pα̂]x}), Q , 〈x.β〉

6X can be seen as the ‘explicit’ (i.e., propagation is includedexplicitly in the reduction rules)
version of theXi calculus, just asλx can be seen as the ‘explicit’ version of theλ-calculus. In terms
of Urban’s work, theXi calculus is essentially the untyped version of his→aux cut elimination
procedure, whileX can be equally compared with the ‘localised version’,→loc [8].
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The propagation operations are used to define the twopropagation rulesfor
this calculus.

Definition 2.11 (Propagation Rules). We define twocut-propagationrules.

(prop-l) : Pα̂ † x̂Q→ P{α]x̂Q} if P does not introduceα
(prop-r) : Pα̂ † x̂Q→ Q{Pα̂]x} if Q does not introduce x

Hereafter, we will write→ for the reflexive, transitive, compatible reduction
relation generated by the logical and propagation rules.

2.4.1. Type Assignment forXi

SinceXi is the untyped analogue of a typed term assignment for sequent
proofs, it comes with a natural notion of type-assignment. The type system that we
present in this section corresponds with a simple sequent calculus for the restric-
tion of classical logic to the two connectives implication (→) and negation (¬).
The sequent calculus on which the type system is based is a variant of Kleene’s
G3, in which structural rules are treated implicitly. Arbitrary weakenings are al-
lowed at the leaves of a derivation (in the (ax) rules), while contraction is treated
implicitly per rule; if a statement is introduced to a context in which it is already
present, it is simply merged. Gentzen’s original formulation also includedex-
changerules, for reordering the statements on the left and right ofa sequent; in
our setting we treat these collections of statements as (unordered) sets.

Definition 2.12 (Types and Contexts).

1. The set ofCurry typesT , ranged over by A, B, is defined over a set ofatomic
typesV = {ϕ1, ϕ2, ϕ3, . . .} by the grammar:

A, B ::= ϕ | A→B

2. A left contextΓ is a partial mapping from sockets to types, denoted as a finite
set ofstatementsx:A, such that thesubjectsof the statements (the sockets)
are distinct. We writeΓ, x:A for Γ∪{x:A}. When writing a context asΓ, x:A,
we indicate that eitherΓ is not defined on x or contains the same statement
x:A. We writeΓ\x (read as “Γ without x”) for the context from which the
statement concerning x, if any, has been removed.
Right contexts∆, and the notationsα:A,∆ and∆\α are defined in a similar
way.
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3. A pair 〈Γ;∆〉 is usually referred to simply as acontext, and is a shorthand
for the sequent (with labelled formulas)Γ ⊢ ∆. We will sometimes also refer
to left/right contexts simply as contexts, when it is clear to do so.

Armed with these definitions, we can define the simple type assignment sys-
tem for the calculus.

Definition 2.13 (Typing forXi).

1. Type judgementsare expressed via a ternary relation P··· Γ ⊢ ∆, whereΓ is
a left context,∆ is a right context, and P is anXi-term. We say that P is the
witnessof this judgement.

2. Type assignmentis defined by the following sequent calculus:

(ax)
〈x.α〉 ··· Γ, x : A ⊢ α : A,∆

P ··· Γ ⊢ α : A,∆ Q ··· Γ, x : A ⊢ ∆
(cut)

Pα̂ † x̂Q ··· Γ ⊢ ∆

P ··· Γ, x : A ⊢ α : B,∆
(→R)

x̂P̂α·β ··· Γ ⊢ β : A→B,∆

P ··· Γ ⊢ α : A,∆ Q ··· Γ, y : B ⊢ ∆
(→L)

Pα̂ [x] ŷQ ··· Γ, x : A→B ⊢ ∆

We write P··· Γ ⊢ ∆ if there exists a derivation using the above rules that has
this judgement in the bottom line.

It is easy to show that a judgementP ··· Γ ⊢ ∆ includes types for (at least) the
free connectors inP. In terms of the Curry-Howard Correspondence,P represents
the syntactic structure of a proof of the sequentΓ ⊢ ∆, soP is in fact a witness to
this sequent being provable in the underlying logic. Note that there is no notion
of a type forP itself; rather, the whole context〈Γ;∆〉 describes a consistent way
of assigning types toP’s connectors.

It is important to emphasise that the typing rules include a notion of implicit
contraction; if a new statement is introduced on the bottom line of a rule, but it
was already present in the context, then it is simply merged.We do not consider
duplicate statements, as we consider contexts to be unordered sets. This also
implies that a typing rule cannot be applied if it would result in the addition of
a statementx : A to a contextΓ, say, in whichx was already assigned a different
type.

13



(ax)
〈y.π〉 ··· y : ϕ ⊢spπ :ϕ

(→R)
ŷ〈y.π〉̂π ·θ ··· ⊢spθ :ϕ→ϕ

(∀R)
ŷ〈y.π〉̂π ·θ ··· ⊢spθ :∀X.(X→X)

(ax)
〈x.γ〉 ··· x : A→A⊢spγ : A→A

(ax)
〈p.α〉 ··· p : A→A⊢spα : A→A

(→L)
〈x.γ〉̂γ [x] p̂〈p.α〉 ··· x : (A→A)→(A→A), x : A→A⊢spα : A→A

(∀L)
〈x.γ〉̂γ [x] p̂〈p.α〉 ··· x : (A→A)→(A→A), x :∀X.(X→X) ⊢spα : A→A

(∀L)
〈x.γ〉̂γ [x] p̂〈p.α〉 ··· x :∀X.(X→X) ⊢spα : A→A

(cut)
(̂y〈y.π〉̂π·θ)̂θ † x̂(〈x.γ〉̂γ [x] p̂〈p.α〉) ··· ⊢spα : A→A

Figure 1: Example of shallow-polymorphic type assignment inXi

Example 2.14.If the judgement P··· x : A ⊢ α : B, β : A had been derived, and one
wished to apply the(→R) rule to this statement, binding the connectors x andα,
it would not be possible for the connector exhibited in the premise to beβ, since
this would meanβ was assigned both type A and type A→B. Put more succinctly,
theXi-termx̂〈x.β〉α̂·β is not typeable in the type system presented above.

We have the following result for the simple type system:

Theorem 2.15(Witness Reduction). If P ··· Γ ⊢ ∆, and P→ Q, then Q··· Γ ⊢ ∆.

Proof. Xi-terms to which types have been assigned correspond to sequent proofs
and can be equivalently represented in the term calculus of Urban; this result then
follows from the soundness of the cut elimination procedureof Urban [8].

3. Universal Shallow Polymorphism forXi

3.1. The Intuitive, Unsound Approach

The key to the use of polymorphism in ML is in thelet construct, which is
interpreted as a substitution both syntactically (according to its reduction rule)
and semantically (see [18]). The polymorphism present in the (let)-rule essen-
tially gives a way of typing the substitution about to take place such that multiple
occurrences of the name to replace need not all be typed in thesame way. The
let-construct is a necessary extension to the syntax for a shallow polymorphic ap-
proach (short of allowing polymorphism to be used directly with abstractions and
applications, which leads to System F), since there is nothing in the syntax of the
λ-calculus to represent these substitutions.

In theXi-calculus, there is a construct already present which can beseen to
encode substitution. The cutPα̂ † x̂Qcan, by right-evaluation, approximately sim-
ulate the substitution ofP for the occurrences ofx in Q. This observation led to
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the investigation of a notion of shallow polymorphic type-assignment for theXi-
calculus. Following what seems to be the analogous approachto ML, one adds
generic types to the type language, which are allowed to be used for the typing
of cuts and axioms (but not the other syntax constructs), andthe standard logical
rules for∀ (this time for the sequent calculus) are added to the type assignment
rules.

Definition 3.1 (Naı̈ve Shallow Polymorphic Type Assignment forXi [15]). Types
A, B and type-schemesA are defined as follows:

A, B ::= ϕ | X | (A→ B)
A ::= ∀X1.∀X2. . . .∀Xn.A (n ≥ 0)

The shallow polymorphic type assignment forXi is defined by the following rules
(whereA represents a generic type of Definition 2.3):

(ax)
〈x.α〉 ··· Γ, x : A⊢nspα : A,∆

P ··· Γ ⊢nspα : A,∆ Q ··· Γ, x : A⊢nsp∆
(cut)1

Pα̂ † x̂Q ··· Γ ⊢nsp∆
P ··· Γ ⊢nspα : A,∆ Q ··· Γ, x : B⊢nsp∆

(→L)1

Pα̂ [y] x̂Q ··· Γ, y : A→B⊢nsp∆

P ··· Γ, x : A⊢nspα : B,∆
(→R)1

x̂P̂α·β ··· Γ ⊢nspβ : A→B

P ··· Γ, x : A[B/X] ⊢nsp∆
(∀L)

P ··· Γ, x :∀X.A⊢nsp∆

P ··· Γ ⊢nspα : A,∆
(∀R)2

P ··· Γ ⊢nspα :∀X.A[X/ϕ],∆

1: if x < Γ andα < ∆. 2: if ϕ does not occur inΓ,∆.

We include a notion of implicit contraction in the above rules, so that if a
derivation rule introduces a statement which was already present in the context, it
is simply merged.

Notice that generic types are not used in the (→R) or (→L) rules. This en-
forces the restriction that the∀-symbol may not appear underneath an ‘→’ in a
type, and is similar to the way the (→I) and (→E) rules are treated in ML.

A subtle problem occurs in defining a shallow polymorphic type assignment in
this way, which suggests a possible relaxation of Definition2.12 to allow multiple
statements in a context with the same subject. The mechanismfor taking instances
of a generic type employs the (∀L) rule, which can be seen to allow instances
of the ∀ formula to be taken further up in a derivation. However, because the
instanceA[B/X] appears also on the left-hand side of the sequent, and is labelled
with the same name (socket), this eliminates the possibility of further instances
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being taken further up in the same ‘branch’ of the derivation- the statement∀X.A
may not remain in the upper sequent of the rule, since we insist in Definition 2.12
that thesubjectsof the statements in a context are distinct. Thinking in terms of
the logical proofs however, the subjects of the statements are not a consideration
- sequent proofs need not always be annotated (depending on the presentation of
the logic) and would certainly allow a use of the (∀L) rule to include an implicit
contraction. For example, in the following proof thel formula ∀X.(X→X) is used
in two (∀L) rules:

(Ax)
(A→A) ⊢ (A→A)

(Ax)
(A→A) ⊢ (A→A)

(→L)
(A→A), (A→A)→(A→A) ⊢ A→A

(∀L)
∀X.(X→X), (A→A)→(A→A) ⊢ A→A

(∀L)
∀X.(X→X) ⊢ A→A

This might correspond to a type derivation in a shallow polymorphic system,
(where we useB as a shorthand for the formula (A→A)), as in the following
derivation:

Example 3.2.

(Ax)
〈x.α〉 ··· x : B ⊢ α : B

(Ax)
〈y.β〉 ··· y : B ⊢ β : B

(→L)
〈x.α〉α̂ [x] ŷ〈y.β〉 ··· x : B, x : B→B ⊢ β : B

(∀L)
〈x.α〉α̂ [x] ŷ〈y.β〉 ··· x :∀X.(X→X), x : B→B ⊢ β : B

(∀L)
〈x.α〉α̂ [x] ŷ〈y.β〉 ··· x :∀X.(X→X) ⊢ β : B

This is a type derivation we would like to be legal in this system, since we can
view this as part of the type derivation for a term analogous to let x= λy.y in xx,
which we wish to be able to type (c.f. Figure 1). It is possibleto work around this
problem, by adjusting the set of rules so that instances can be taken implicitly of
a quantified formula. In fact, this solution will be employedin the next section,
for reasons which will become clear. However, for the momentwe explore a more
basic solution, which yields a type-system whose underlying derivations are still
standard logical proofs.

To deal with the problem of instantiating quantified types inthis system, we
initially considered relaxing Definition 2.12, allowing multiple statements in a
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context with the same subject. This seems at first glance a risky move, but hope-
fully the example above has shown that it allows intuitivelysound derivations to
be constructed. In order to retain soundness, we needed to becareful that when-
ever a connector (plus/socket) is bound, some statements involving the connector
do not remain in the context. We therefore insisted that whenever the rules (→R),
(→L) and (cut) were employed, the connectors mentioned in the top line of the
rule (which are bound in the construction of the respective terms) had a unique
statement in the rule. This enforces that all the types for a connector disappear
from the contexts when the connector is bound. We also insisted that a deriva-
tion is not complete unless the subjects of the statements inthefinal sequent are
unique (so the relaxation is only usable temporarily withina derivation). As a
consequence of these restrictions, if several statements with the same subject (but
different types) are used in a derivation, it will be necessary for the∀ rules to be
applied until the types of these statements match, and they are contracted into a
single statement. Until this takes place, it will be impossible to either bind the
connector (plug/socket) concerned, or complete the derivation.

This is the type system which was presented in [15], in which anotion of
principal contexts (with respect to an initial context) wasalso defined, in the spirit
of the principal types property for ML. As we shall explain next, while this type
system seems in many ways analagous to the way polymorphism is introduced
to ML, in our more general setting (and particularly in the presence of classical
logic), this approach is unsound.

3.1.1. Failure of Subject Reduction
Unfortunately, the ‘intuitive’ approach outlined in the previous section does

not guarantee subject reduction (although it was originally believed to do so [15]).
The problem is due to the interaction between the use of implicit (i.e., not rep-
resented syntactically in the calculus) polymorphism in the type derivation, and
the ability to perform left propagation reductions. In particular, since the implicit
quantifier rules can occur at any point in a derivation, a cut may be left-propagated
‘through’ an occurrence of the (∀R) rule used to type the left-hand subterm. In or-
der to construct a new type derivation for the resulting term, we need to be able to
‘relocate’ the occurrence of the (∀R) rule, to be applied further up on the deriva-
tion. This is not always possible, because the side-condition of the rule is not
always satisfied in this new position. We can make this clearer with an example.

Example 3.3(Failure of Subject Reduction). Define P= x̂(̂y〈x.α〉α̂·γ)̂β·γ. This
term can be assigned the same contexts as the identity, in thetype system presented
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above:

(ax)
〈x.α〉 ··· x :ϕ, y :ϕ ⊢nspα :ϕ, β :ϕ

(→R)
ŷ〈x.α〉α̂·γ ··· x :ϕ ⊢nspβ :ϕ, γ : ϕ→ϕ

(→R)
x̂(̂y〈x.α〉α̂·γ)̂β·γ ··· ∅ ⊢nspγ :ϕ→ϕ

(∀R)
x̂(̂y〈x.α〉α̂·γ)̂β·γ ··· ∅ ⊢nspγ :∀X.(X→X)

Therefore, if we place this term in a cut which ‘applies it to itself ’ (i.e. in an
ML sense, we construct let z= P in z z, cf. Example 3.2), then the resulting term
can be typed as follows:

A
AA

�
��

as above

P ··· ∅ ⊢nspγ :∀X.(X→X)

A
AA

�
��

Example 3.2

〈z.δ〉̂δ [z] ŵ〈w.ǫ〉 ··· z:∀X.(X→X) ⊢nspǫ : ϕ′→ϕ′
(cut)

P̂γ † ẑ(〈z.δ〉̂δ [z] ŵ〈w.ǫ〉) ··· ∅ ⊢nspǫ : ϕ′→ϕ′

However, this term can be shown to reduce as follows:

(x̂(̂y〈x.α〉α̂·γ)̂β·γ)̂γ † ẑ(〈z.δ〉̂δ [z] ŵ〈w.ǫ〉)
→ (x̂((̂y〈x.α〉α̂·γ)̂γ † ẑ(〈z.δ〉̂δ [z] ŵ〈w.ǫ〉))̂β·γ)̂γ † ẑ(〈z.δ〉̂δ [z] ŵ〈w.ǫ〉) (prop-l)
→ x̂〈x.ǫ 〉̂β·ǫ

The resulting term is not typeable in this system. In fact, the problem came
right in the first step, when the cut was propagated to the left, through the structure
of the term P. In the typing derivation for P, the crucial(∀R) rule comes right
at the very end. But, when propagating a copy of this cut inside the structure of
P, in order to maintain the same quantified type for the new cutthere must be a
similar occurrence of the(∀R) rule on this copy; i.e., the rule needs to be moved
upwards in the derivation with the cut. This is not possible;at this point x is still
a free socket in the context, carrying the typeϕ which is to be generalised by the
(∀R) rule.

In short, the condition on the(∀R) rule is not necessarily preserved by moving
it further up the typing derivation, and so, when cuts are left-propagated ‘past’ an
occurrence of the(∀R) rule, it is not always possible to rebuild the same quantifier
rule in a suitable new position. In general, this means that atype derivation
cannot always be reconstructed.

With hindsight, the failure of subject reduction is not thatsurprising. It is well-
known that the original ML approach to polymorphism is unsound in the presence
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of various extensions to the language, such as references, exceptions and the con-
trol operator call/cc [26]. Calculi based on classical logic can also be closely
related to functional calculi extended with control operators, and we believe that
(for example), the version of ML with call/cc included could also be encoded into
theXi-calculus. Therefore, the polymorphic type-system presented above must
almost inevitably be unsound. Furthermore, Fujita has shown that a similar un-
soundness arises in the context of an alternative calculus based on classical natural
deduction [27]. However, we believe that the source of the unsoundness is actu-
ally much clearer in the sequent calculus setting: it is clear that the attempted left
propagation of a cut ‘past’ an occurrence of (∀R) in the left-hand typing deriva-
tion is the exact source of the problem. In fact, we can describe the essence of
this problem by observing that the presence of the followingthree aspects will
guarantee such an unsoundness:

1. Implicit universal quantification.
2. Call-by-value reductions (not necessarilyonly these reductions, but their in-

clusion in the calculus).
3. Ability to express/encode classical structural rules (e.g., contraction) manip-

ulating statements on the right of a typing sequent.

Our counter-example depends on the presence of these three features. Implicit
quantification allows reduction to ‘ignore’ the quantifier steps which are violated
in the example. Left-propagation of a cut which could be right-propagated (i.e.,
a call-by-value reduction) ensures that such a violation cannot be ‘fixed’ in the
reduct (i.e., there is in general no way of typing the reduct by, for example, resort-
ing to non-quantified types). Finally, (implicit) right-contraction in the typing is
used to cause the failure of the side-condition on the (∀R) after left-propagation
is performed.

It is interesting to note that examples exist in the literature of proposed cal-
culi and type systems which include each possible pair oftwo out of the three
ingredients for unsoundness described. The ML calculus hasimplicit universal
quantification, and call-by-value reductions, but no classical logic features such
as right-contraction in the type system. Parigot’s presentation of theλµ-calculus
in [7] includes implicit universal quantification, and the ability to (indirectly) ex-
press right-contraction in the type system, however the reduction rules are es-
sentially restricted to call-by-name reductions. Ong and Stewart’s definition of
call-by-valueλµ-calculus [12] includes call-by-value reductions, and still permits
right-contraction to be expressed in the type system, but norules for polymor-
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phism are included. Therefore, in each of these works, one ofthe three ‘ingredi-
ents’ described above is missing, and so the unsoundness we are concerned with
is avoided.

There are three main approaches described in the literaturefor dealing with
this unsoundness in the context of ML:

1. Introducing a separate class of (‘imperative’) atomic types [28], which must
be used whenever an ‘imperative’ feature such as call/cc is to be typed, and
may not be generalised using the (∀R) rule. In our setting it is less obvi-
ous how to understand this solution, but it amounts essentially to permitting
polymorphic types only on cuts where the left-hand subterm satisfies certain
properties (we conjecture that these properties amount to the subterm repre-
senting a proof valid inminimal logic, but this idea is not explored here).

2. Restricting reductions to a call-by-name strategy [29].It turns out that the
problematic cases cannot be reached by call-by-name reductions. The rea-
son for this can be fairly clearly seen in the context of theXi-calculus and
the counter-example presented above; restricting to call-by-name amounts
to insisting that cuts be propagated preferentially to the right, and only left-
propagated if the socket bound in the right-hand subterm is introduced. In
such a situation, any cut which can be typed with a quantified type may also
be typed without quantification; this is because the uniqueness of the socket
means that the ability to take multiple instances of the quantified type is ir-
relevant. Therefore, by the time a cut is left-propagated, we may depend
essentially on the subject reduction property of the simpletype system.

3. Restricting the form of let-bound terms to bind only values [30] (i.e., only
allow terms of the formlet x = V in M. Again, the soundness of this ap-
proach can be seen clearly in our setting; restricting to values here amounts
to restricting the left-hand subterm of cutsPα̂ † x̂Q to the cases whereP in-
troducesα. In such a system, no left-propagation reductions can ever take
place, and so the problematic scenario is avoided.

Unfortunately, given that our original aim was to eventually define a type sys-
tem in which both existential and universal quantification could be employed,
none of the solutions above seem very desirable. We will explain why this is so
for each in turn:

1. This approach breaks the logical foundation of the type system, and, while
practical in the ML setting, it is not clear how it would be adapted to deal
with existential quantification, and whether a useful system would result.
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2. Unfortunately, just as a call-by-name reduction strategy is required to make
implicit universal quantification safe, a call-by-value strategy would be needed
to ensure subject reduction for a system with similar existential polymor-
phism. Thus, no reduction strategy would work for a system with both kinds
of polymorphism.

3. Similarly, in order to ensure that subject reduction heldfor a system with
both kinds of quantifiers, one would need to restrict the system to allow both
kinds of quantifiers in the typing of cutsPα̂ † x̂Q only in the case when both
P introducesα andQ introducesx. Ensuring this condition was met and pre-
served by reduction would result in a system with almost no useful polymor-
phism - these cuts can be typed just as well in the simple (non-polymorphic)
type system.

By examining the problematic cases in more detail, we were able to come
up with a fourth solution (which is in fact, a generalisationof the restriction to
values, above). This is, to restrict the points in a derivation where polymorphic
generalisation (i.e., the (∀R) rule in the previous type system) may be employed.
In order to avoid the unsoundness described, we only allow generalisation of a
statement immediately when it is introduced into the derivation. For example,
when the (→R) rule is applied, the type for the exhibited plug may be generalised,
but if it is not, then it cannot be later on in the derivation. The advantages of
our solution are that it imposes fewer restrictions on the type system than the
restriction to values (more terms are typeable), and that itdoes not eliminate in
principle the possibility of a useful extended system basedon both existential and
universal quantification.

The observation we have gained from the sequent calculus setting is that the
unsoundness of the naı̈ve system is directly caused by the left-propagation of cuts
Pα̂ † x̂Q past occurrences of the (∀R) rule in the typing derivation forP. We note
that this can only happen because, in general, it is allowed for such occurrences
to exist in positions far devoid from the points in the derivation (and term) where
occurrences ofα are exhibited. Since it is these points which the left-propagation
of the cut reaches, the cut can of course pass over occurrences of the (∀R) rule on
the way. The third solution listed above ([30]) can be understood then as removing
the possibility of such ‘gaps’ between the occurrences ofα and the occurrences
of (∀R) applied to the type ofα; by insisting on the strong requirement thatP
introducesα, i.e., that there is exactly one occurrence ofα in P, and that it is at
the top-level, any (∀R) rules to be used in typing the cut must also occur at this top
level. However, we observe that it would suffice to guarantee the weaker property,
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that there are no ‘gaps’ between each occurrence ofα and the polymorphic rules
applied to the type for the occurrence; this guarantees thata cut ‘seeking out’ the
occurrences ofα need never cross over such rules.

Consider the followingXi-term, for example (where the subtermP is left un-
specified):

((x̂〈x.α〉α̂·β)̂ǫ [i] ĵ(x̂〈x.α〉α̂·β))̂β † ẑP

The left-hand subterm of the cut contains two copies of the identity function
x̂〈x.α〉α̂·β, both of which exhibit occurrences of the outputβ (the other names
within the terms are also identical, but since these are bound it is only for com-
parison). The two ‘copies’ of the identity are independent of one another (the
surrounding import does not bind any plugs/sockets in the subterms, and acts as a
‘dummy context’ for this example). Since each copy can be given the polymorphic
type∀X.(X→X), it seems reasonable for the cut to employ this type, also. Fur-
thermore, since the (∀R) rule applications needed to derive the type∀X.(X→X)
can be located at each of the points whereβ is exhibited, there is no need to risk
the possibility of the cut ‘crossing’ these rules by left-propagation. Essentially,
if the polymorphic generalisation steps in a derivation canbe located at the same
syntactic level as the connector whose type they apply to is exhibited, the deriva-
tion is safe from the potential unsoundness described above. This notion is tricky
to formalise in a type system with rules for manipulating quantifiers independent
of the other rules in the type system (e.g., the (∀L) and (∀R) rules in the system
presented above). However, since we are now proposing that such rules be em-
ployed only at the points where the corresponding connectors are introduced, we
can instead present a system with the polymorphism steps ‘built in’ to the other
rules. This will be presented next.

3.2. An Improved Shallow Polymorphic Type System

We writetypeof xΓ andtypeofα ∆ to denote functions which look up the type
assigned to the connector by the context, and if none is defined, return a fresh
atomic type. For example, ifΓ = {x : A, y : B} then typeof xΓ = A, while, for
y , z, x, typeof zΓ = ϕ for some fresh atomic typeϕ.

We now extend Definition 2.5 to allow the comparison of (right) contexts as
follows:

Definition 3.4 (Generic Instance for Contexts). We extend the notion of generic
instance to (right)-contexts∆1,∆2 as follows: ∆1�∆2 ⇔ (α ∈ ∆1 ⇒ α ∈

∆2 & ( typeofα ∆1)�(typeofα ∆2).
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It is also useful to have an explicit notation for a ‘closure’relation on types,
which characterises the behaviour of the∀R rule. This rule can be used to replace
types with more general (larger, in the� relation) forms, provided this is sound
with respect to the context in which it is used. Thus this relation depends not
only on the types which are changed, but also on the types present in the rest of
the context (c.f. the condition on the∀R rule). We introduce a relation on types
which coincides with any number of valid∀R steps being applied to the same
statementα : A say, in a context〈Γ;∆〉.

Definition 3.5 (Closures and fresh instances). 1. For any generic typesA, B and
context〈Γ;∆〉, we sayA closes toB in 〈Γ;∆〉, and writeA ⊳〈Γ;∆〉 B, if and only
if there exist Xi andϕi such thatB = ∀Xi .A[Xi/ϕi] , whereϕi < 〈Γ;∆〉 and
ϕi < B.

2. For any generic typeA = ∀Xi .A, we define freshInst(A) = A[ϕi/Xi] where
theϕi are fresh atomic types.

We have the following results for these definitions:

Proposition 3.6. 1. � is a preorder on generic types.
2. For any contexts〈Γ;∆〉, ⊳〈Γ;∆〉 is a partial order on generic types.
3. For any contexts〈Γ;∆〉 and generic typesA, B,C, if A�B andB ⊳〈Γ;∆〉 C and

A is the type for some connector in〈Γ;∆〉, thenA�C.
4. For any generic typesA,B and substitution S , ifA�B then(S A)�(S B).
5. For any generic typesA,B, context〈Γ;∆〉 and substitution S , ifA ⊳〈Γ;∆〉 B then

there exists a substitution S′ such that dom(S′) ⊆ (atoms(A)\atoms(〈Γ;∆〉))
and(S′ B) = B and(S◦S′ A) ⊳〈(S Γ);(S ∆)〉 (S B).

6. For any type A, generic typesA andB, and context〈Γ;∆〉, if A ⊳〈Γ;∆〉 A and
A�B then there is a substitution S with dom(S) ⊆ (atoms(A)\atoms(〈Γ;∆〉))
and(S A) ⊳〈Γ;∆〉 B.

7. For any typeA = ∀Xi .A and Curry type B, if A′ = freshInst(A) = A[ϕi/Xi]
and A�B then there exists a substitution S such that dom(S) = {ϕi } and
(S A′) = B.

Proof. See Proof B.1 in Section B.

We are now able to define our amended type system. The essence of the
system is to “bake in”7 the quantifier rules at the points where the corresponding

7Thanks to Gavin Bierman for this terminology!
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connectors are exhibited in the derivation. This avoids thepossibility for cuts to
propagate through the quantifier rules, since they occur exactly at the points at
which cuts are deposited and propagation halts8.

Definition 3.7 (Improved Shallow Polymorphic Type Assignment forXi). The
(sound) shallow polymorphic type assignment forXi is defined by the following
rules (whereA represents a generic type of Definition 2.3):

(ax)1

〈x.α〉 ··· Γ, x : A⊢spα : B,∆

P ··· Γ, x : A⊢spα : B,∆
(→R)2

x̂P̂α·β ··· Γ ⊢spβ : C,∆

P ··· Γ ⊢spα : A,∆ Q ··· Γ, y : B⊢sp∆
(→L)3

Pα̂ [x] ŷQ ··· Γ, x : C ⊢sp∆

P ··· Γ ⊢spα : A,∆ Q ··· Γ, x : A⊢sp∆
(cut)

Pα̂ † x̂Q ··· Γ ⊢sp∆

1 A�B. 2 (A→B) ⊳〈Γ;∆〉 C. 3 C�(A→B).

In comparison with the previous (unsound) proposal, this type system can be
seen as a restriction in which the (now implicit) uses of quantifier rules, which
could previously occur at any apparently valid point in a type derivation, are now
restricted to be applied in precise positions. In fact, all such quantifier rules are
implicitly applied immediately after the statement which they affect is introduced
into the context. For example, an occurrence of the (∀L) rule in the naı̈ve type
system, which bound a statement originally introduced by anoccurrence of the
(→L) rule, is (in the new type system) implicitly included in thenew version of
the (→L) rule, by allowing the type forx in the premise to be a generic instance
of the type forx in the conclusion of the rule. This essentially permits any number
of implicit applications of the (∀L) rule here.

Note that in the new type system, the problematic term from Example 3.3 can
no longer be typed. This is because the termP = x̂(̂y〈x.α〉α̂·γ)̂β·γ can no-longer
be typed with a polymorphic type forγ. Any type derivation for this term must

8Note that there exist presentations of ML which “bake in” thequantifier rules as well. How-
ever, the analogous system in our work would bake all quantifier rules in at the point of a cut
occurrence in a derivation. This does not avoid the potential unsoundness of cuts being propa-
gated past these occurrences (and indeed, does not affect the natural unsoundness of the ML type
system in the presence of control operators [26].
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have the following form:

(ax)
〈x.α〉 ··· Γ, y : C, x : A⊢spα : B, β : D,∆

(→R)
ŷ〈x.α〉α̂·γ ··· Γ, x : A⊢spγ : E, β : D,∆

(→R)
x̂(̂y〈x.α〉α̂·γ)̂β·γ ··· Γ ⊢spγ : E,∆

whereA�B andC→A ⊳〈Γ,x : A;β : C,∆〉 E and alsoA→D ⊳〈Γ;γ : E,∆〉 E. SinceA andB are
Curry types,A�B means thatA and B are the same. SinceC→A is “closed to
E” in a context in whichA occurs, none of the atomic types inA may be closed,
and soE must be of the form∀Xi .(C′→A) for someC′. However, sinceA→D
is “closed” in a context in whichE occurs, none of the types inA may be closed
at this point either, and soE must (also) be of the form∀Yj .(A→D′) for some
D′. These constraints can only all be fulfilled if there are no quantifiers, and
E = A→A. Without a polymorphic type forγ, the term on the right of the cut in
Example 3.3 cannot be typed (the “self-application” fails).

We can show the following properties for this type system:

Proposition 3.8(Basic properties). 1. For all substitutions S , if P··· Γ ⊢sp∆ then
P ··· (S Γ) ⊢sp (S ∆).

2. (Weakening) If P··· Γ ⊢sp∆, and〈Γ∪Γ′;∆∪∆′〉 is a well-formed context, then
then P··· Γ∪Γ

′ ⊢sp∆∪∆
′.

3. (Strengthening) If P··· Γ∪Γ
′ ⊢sp∆∪∆

′, with no sockets x occurring both inΓ′

and in fs(P), and similarly no plugsα occurring in both∆′ and fp(P), then
P ··· Γ ⊢sp∆.

4. If P ··· Γ, x : B⊢sp∆ andA�B then P··· (Γ\x), x : A⊢sp∆.
5. If P ··· Γ ⊢sp∆, α : A andA�B then P··· Γ ⊢sp (∆\α), α : B.
6. If P ··· Γ ⊢sp∆ and∆�∆′ then P··· Γ ⊢sp∆

′.

Proof. See Proof B.2 in Appendix B.

The new type system is a proper restriction of the old one, which can be under-
stood by adding back the explicit quantifier rules in the naı̈ve type system wher-
ever the� and⊳〈Γ;∆〉 relations are employed in the improved type system. We omit
the rather-lengthly details here, since we do not depend on this result. However, in
brief, in the case of the (ax) rule one employs an (ax) rule followed by a (possibly
empty) sequence of (∀L) rules, followed by a (possibly empty) sequence of (∀R)
rules. In all other cases which employ�, a (possibly empty) sequence of (∀L)
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rules is added. In all cases which employ⊳〈Γ;∆〉, a (possibly empty) sequence of
(∀R) rules is added.

In order to deal succinctly with the more-complex inferencerules of the im-
proved type system in the following proofs, we employ the following straightfor-
ward lemma:

Lemma 3.9(Generation Lemma). 1. 〈x.α〉 ··· Γ ⊢sp∆ if and only ifΓ = Γ′, x : A
and∆ = α : B,∆′ with A�B.

2. x̂P̂α·β ··· Γ ⊢sp∆ if and only if x < Γ andα < ∆ and∆ = ∆′, β :C and there
exist A,B such that A→B ⊳〈Γ;∆′〉 C and P··· Γ, x : A⊢spα : B,∆′.

3. Pα̂ [x] ŷQ ··· Γ ⊢sp∆ if and only ifα < ∆ and y< Γ andΓ = Γ′, x : C and there
exist A,B such thatC�A→B and P··· Γ

′ ⊢spα : A,∆ and Q ··· Γ
′, y : B⊢sp∆.

4. Pα̂ † x̂Q ··· Γ ⊢sp∆ if and only ifα < ∆ and x< Γ and there existsA such that
P ··· Γ ⊢spα : A,∆ and Q ··· Γ, x : A⊢sp∆.

Proof. Each case follows from the fact that each syntactic construct can be typed
by a unique typing rule, imposing exactly the conditions described.

We can now show that this new type system amends the unsoundness of the
previous one.

Theorem 3.10(Witness Reduction for Improved Type Assignment). 1. If both
of the following hold:

P ··· Γ ⊢spα : A,∆ (1)

Q ··· Γ, x : A⊢sp∆ (2)

then we have:
(a) Q{Pα̂]x} ··· Γ ⊢sp∆
(b) P{α]x̂Q} ··· Γ ⊢sp∆

2. If P ··· Γ ⊢sp∆ and P→ Q then Q··· Γ ⊢sp∆.

Proof. See Proof B.3 in Section B for full details. We duplicate herea few repre-
sentative cases:

1. (a) By induction on the structure of the termQ.

Q = 〈x.β〉: ThenQ{Pα̂]x} = Pα̂ † x̂Q and the result follows by appli-
cation of the (cut) rule.
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Q = 〈y.β〉, y , x: ThenQ{Pα̂]x} = Q. Sincex < fs(Q), By (Eq. 2)
and Proposition 3.8 3 we obtainQ ··· Γ ⊢sp∆ as required.

Q = Q1̂β [x] ẑQ2:
Q{Pα̂]x} = Pα̂ † ŷ((Q1{Pα̂]x})̂β [y] ẑ(Q2{Pα̂]x})) in which y
is fresh. By (Eq. 2) and Lemma 3.9 3, there existB,C,D,Γ′ such
that D�(B→C) and Γ = Γ′, y : D and (by weakening, by apply-
ing Proposition 3.8 2 where necessary) bothQ1 ··· Γ, x : A⊢spβ : B,∆
and Q2 ··· Γ, x : A, z:C ⊢sp∆. By induction, twice, we obtain that
both Q1{Pα̂]x} ··· Γ ⊢spβ : B,∆ and alsoQ2{Pα̂]x} ··· Γ, z:C ⊢sp∆.
SinceD�(B→C), we can apply the (→L) rule to obtain the judge-
ment (Q1{Pα̂]x})̂β [y] ẑ(Q2{Pα̂]x}) ··· Γ, y : D ⊢sp∆. Finally, we
apply the (cut) rule to obtain the required result.

(b) By induction on the structure of the termP. The argument is simi-
lar to the previous part, and we show only the most-interesting case,
where P = ŷP1̂β·α. Then P{α]x̂Q} = (̂y(P1{α]x̂Q})̂β·γ)̂γ † x̂Q,
in which γ is fresh. By (Eq. 1) and Lemma 3.9 2, there existB,C
with P1 ··· Γ, y : B⊢spβ : C,∆ and B→C ⊳〈Γ;∆〉 A. By applying Propo-
sition 3.8 2 as necessary, we obtainP1 ··· Γ, x : A, y : B⊢spβ :C,∆ and
Q ··· Γ, x : A, y : B⊢spβ : C,∆. By induction,P1{α]x̂Q} ··· Γ, y : B⊢spβ : C,∆.
By the rule (→R) we obtain̂y(P1{α]x̂Q})̂β·γ ··· Γ ⊢spγ : A,∆. Finally,
by the rule (cut) we obtain that (̂y(P1{α]x̂Q})̂β·γ)̂γ † x̂Q ··· Γ ⊢sp∆ as
required.

2. By inductions on the number of reduction steps, and the structure of the term
P, we need only consider the case whereP is the redex itself, and is reduced
in one step toQ. Therefore, we show the witness reduction result for each of
the reduction rules in turn:

(cap) : 〈x.α〉α̂ † ŷ〈y.β〉 → 〈x.β〉
Suppose〈x.α〉α̂ † ŷ〈y.β〉 ··· Γ ⊢sp∆. By Lemma 3.9 4,α < ∆ andx < Γ
and there existsBsuch that〈x.α〉 ··· Γ ⊢spα : B,∆ and〈y.β〉 ··· Γ, y : B⊢sp∆.
By applying Lemma 3.9 1 twice, there existsA,C,Γ′,∆′ such thatΓ =
Γ′, x : A and∆ = β : C,∆′ with A�B andB�C. By Proposition 3.6 1,
A�C. Therefore, by the rule (ax), we obtain〈x.β〉 ··· Γ

′, x : A⊢spβ :C,∆′

as required.

(impR) : (x̂P̂α·β)̂β † ŷ〈y.γ〉 → x̂P̂α·γ (if β < fp(P))
Suppose (̂xP̂α·β)̂β † ŷ〈y.γ〉 ··· Γ ⊢sp∆. By Lemma 3.9 4,β < ∆ andy < Γ
and there existsC such that̂xP̂α·β ··· Γ ⊢spβ :C,∆ and〈y.γ〉 ··· Γ, y : C ⊢sp∆.
By Lemma 3.9 2, there existA,B,∆′′ such that (A→B) ⊳〈Γ;∆〉 C and
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P ··· Γ, x : A⊢spα : B,∆′′ and (β :C,∆) = (β :C,∆′′). Sinceβ < P, by
Proposition 3.8 3, we may assume without loss of generality that we
haveβ < ∆′′, and therefore that∆′′ = ∆. By Lemma 3.9 1, there exist
D,∆′ such that∆ = γ : D,∆′ andC�D. By Proposition 3.6 6, there ex-
ists a substitutionS such that (S 〈Γ;∆〉) = 〈Γ;∆〉 and (S A→B) ⊳〈Γ;∆〉 D.
By Proposition 3.8 1, we haveP ··· Γ, x : (S A) ⊢spα : (S B), γ : D,∆′. By
the rule (→R), we deduce that̂xP̂α·γ ··· Γ ⊢spγ : D,∆ as required.

(prop-r) : Pα̂ † x̂Q→ Q{Pα̂]x}(if Q does not introduce x)
By Lemma 3.9 4 and part 1a.

(prop-l) : Pα̂ † x̂Q→ P{α]x̂Q}(if P does not introduceα)
By Lemma 3.9 4 and part 1b.

3.3. Encoding ML inXi

Using our previous observation concerning the fact thatlet and a cut can both
explicitly represent a substitution, we define an encoding of the language of ML
intoXi.

Definition 3.11 (Encoding ML inXi).

⌈⌈x⌋⌋α
ML = 〈x.α〉

⌈⌈λx.M⌋⌋α
ML = x̂⌈⌈M⌋⌋β

MLβ̂·α

⌈⌈MN⌋⌋α
ML = ⌈⌈M⌋⌋β

ML β̂ † ŷ(⌈⌈N⌋⌋γ
MLγ̂ [y] ẑ〈z.α〉)

⌈⌈let x= M in N⌋⌋α
ML = ⌈⌈M⌋⌋β

ML β̂ † x̂⌈⌈N⌋⌋α
ML

where y, z, β, γ are fresh connectors.

This is an extension of the encoding ofλ-calculus given for theX-calculus
[25]. In all cases there is exactly one occurrence of the plugα in the resulting
X

i-term, and this is the only free plug9.

Lemma 3.12(Cuts simulate substitutions).

1. For all ML-terms M,N, ⌈⌈N⌋⌋α
ML{⌈⌈M⌋⌋β

ML β̂]x} → ⌈⌈(N[M/x])⌋⌋α
ML.

9Note that this is consistent with the logical perspective onthese calculi also: the restriction of
classical sequent calculus to precisely one conclusion on the right of the sequent gives Gentzen’s
sequent calculus for minimal logic, which underpins typical functional programming languages
via the original Curry-Howard Correspondence.
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2. For all ML-terms M,N, ⌈⌈M⌋⌋β
MLβ̂ † x̂⌈⌈N⌋⌋α

ML → ⌈⌈(N[M/x])⌋⌋α
ML.

Proof. 1. By straightforward induction on the structure of the termN.
2. From the previous part.

The fact that such a cut behaves like the substitution of the original system
relies on the fact thatβ occurs only once in the left-hand subterm of the cut. If
an arbitraryXi-term were to appear here in whichβ occurred many times, the cut
might be activated to the left (via the rule (act-l)), and copies of the right-hand
term made during propagation; then the behaviour might be quite different.

Returning to our encoding of ML, we have the following result.

Theorem 3.13(Simulation of ML). For all ML -terms M,N, if M →ML N then
⌈⌈M⌋⌋α

ML → ⌈⌈N⌋⌋α
ML.

Proof. Examining definition 2.2, there are two cases to consider.

(M ≡ (λx.M1 M2)) Then N≡M1[M2/x]. Applying Definition 3.11, we can see
that:

⌈⌈(λx.M1) M2⌋⌋β
ML = ⌈⌈λx.M1⌋⌋δ

MLδ̂ † ŷ(⌈⌈M2⌋⌋ǫ
ML ǫ̂ [y] ẑ〈z.β〉)

= (x̂⌈⌈M1⌋⌋φ
MLφ̂·δ)̂δ † ŷ(⌈⌈M2⌋⌋ǫ

ML ǫ̂ [y] ẑ〈z.β〉)

→ ⌈⌈M2⌋⌋ǫ
ML ǫ̂ † x̂(⌈⌈M1⌋⌋φ

MLφ̂ † ẑ〈z.β〉)

→ ⌈⌈M2⌋⌋ǫ
ML ǫ̂ † x̂(⌈⌈M1⌋⌋φ

ML[β/φ])

= ⌈⌈M2⌋⌋ǫ
ML ǫ̂ † x̂⌈⌈M1⌋⌋β

ML

This case is completed by Lemma 3.12.

(M ≡ let x= M2 in M1) Again, N≡M1[M2/x]. The result follows immediately
from Lemma 3.12, noting that

⌈⌈let x= M2 in M1⌋⌋β
ML = ⌈⌈M2⌋⌋ǫ

ML ǫ̂ † x̂⌈⌈M1⌋⌋β
ML

We can show that our type system is at least as flexible as the restricted type
system for ML which we have generalised:
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Proposition 3.14(Preservation of Typings). For all ML -terms M, ifΓ ⊢mlM : A in
the type system in which polymorphism is restricted to let-terms which bind values
[30], then⌈⌈M⌋⌋β

ML
··· Γ ⊢spβ : A.

It is natural to ask whether our generalisation is useful in the original context of
ML. For example, can we define a type system for ML based on the observations
of this chapter which allows more typeable terms than [30], and is still sound?
We can answer this question in the affirmative; if we define a type system via
our encoding into theXi-calculus (i.e., we encode ML-terms and then type their
encodings), we obtain a more permissive system. A simple example of this extra
flexibility can be seen as follows:

Example 3.15(Enhanced type assignment for ML). Consider the following ML-
term: let x= (let y= λz.zin y) in x. This term reduces to the identityλz.z, and it
would be nice if this could be reflected by its assignable types. Furthermore, since
there are no free variables in the term (and no imperative features, of course),
it seems as though it must be safe to do so. However, the value restriction [30]
does not permit the outermost let-construct to employ a polymorphic type, since
let y= λz.zin y is not a value. Considering the encoding intoXi; we obtain (using
the plugα as output of the whole term)((̂z〈z.β〉̂β·γ)̂γ † ŷ〈y.δ〉)̂δ † x̂〈x.α〉. The
polymorphic type derivable for the term̂z〈z.β〉̂β·γ can be ‘carried through’ each
of the cuts, and in particular, when the subterm〈y.δ〉 is typed, the polymorphic
type can be assigned toδ immediately, as is required by the system. The first part
of such a typing derivation follows (the outermost cut is typed analogously to the
one shown):

(ax)
〈z.β〉 ··· z: ϕ ⊢spβ :ϕ

(→R)
ẑ〈z.β〉̂β·γ ··· ∅ ⊢spγ :∀X.(X→X)

(ax)
〈y.δ〉 ··· y :∀X.(X→X) ⊢spδ :∀X.(X→X)

(cut)
(̂z〈z.β〉̂β ·γ)̂γ † ŷ〈y.δ〉 ··· ∅ ⊢spδ :∀X.(X→X)

Therefore the application of our ideas to ML yields a more-permissive type
system than that proposed by Wright [30]. Our type system will not allow a
polymorphic type to be given to the result of an application,but allows greater
flexibility when typing nested let-bindings (cuts). A more-detailed exploration of
the precise class of programs which are permitted by our approach, and whether
this can be safely extended, remains future work.

3.4. Principal Contexts
It is well known that a notion of principal types for ML terms exists (as pre-

sented by Milner), with respect to an initial basisΓ. This result is shown through
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the definition of the algorithmW, which takes as input an ML-term and initial
basisΓ, and can be used to compute the most general pair of substitution S and
generic typeA such that (S Γ) ⊢ml M : A.

In the case of Milner’s algorithmW, the types returned are not quantified,
but in showing the completeness of the algorithm the∀-closure of the type (see
Definition 3.19 below) is taken. The closure can be seen to convert a type into its
most general form, and so it can be argued that the principal type should be defined
after this closure is taken. This is the idea we follow here; we will generalise the
types of our outputs as much as possible, in our definition of aprincipal context.

In order to formalise our results, we require the usual notion of Curry substi-
tution, along with some auxiliary definitions:

Definition 3.16 (Substitutions).

1. A substitutionS is a (possibly empty) set of pairs(ϕ,A) where eachϕ is
a distinct atomic type, and each A a type. The pair is meant to denote the
replacement of occurrences ofϕwith A. Hence, as notational sugar, we write
such pairs(ϕ 7→A).

2. For any substitution S and type A, theactionof S on A, written(S A) is
defined recursively as follows:

(S ϕ) ,

{
A if ∃(ϕ 7→A) ∈ S
ϕ otherwise

}

(S A1→A2) , (S A1)→ (S A2)

3. In the special case where the set of pairs is empty, we use a special symbol
id, and call this theidentity substitution.

4. We extend this definition to allow substitutions to act on contexts in the obvi-
ous way (i.e. the substitution is performed on all the types in the context).

5. For a substitution S we define dom(S) = {ϕ | (S ϕ) , ϕ}.
6. For a substitution S we define range(S) =

⋃
ϕ∈dom(S) atoms(S ϕ).

7. A subsitution S isidempotentif, for all atomic typesϕ, ((S ϕ) ϕ) = (S ϕ).

Principal contexts will be defined using Robinson’s unification algorithm [16].
Unification is also extended to contexts of sockets (and identically for plugs) in
the following definition:

Definition 3.17 (Unification). 1. The algorithm unify [16] takes two types as
arguments and returns a substitution (or fails: we do not model failure cases
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explicitly, but assume that if none of the definitions below apply then the
algorithm terminates immediately with failure). It is defined as follows:

unifyϕ ϕ = id
unifyϕ A = (ϕ 7→ A) if ϕ < A
unify Aϕ = unifyϕ A

unify A1→A2 B1→B2 = S2◦S1

where
S1 = unify A1 B1

S2 = unify (S1 A2) (S1 B2)

2. Unification is extended to contexts as follows (where∅ denotes an empty
context):

unifyContexts∅ Γ2 = id

unifyContexts(x : A, Γ1) Γ2 =



unifyContextsΓ1 Γ2 if x < Γ2

S2◦S1 if x : B ∈ Γ2

where
S1 = unify A B
S2 = unifyContexts(S1 (Γ1\x)) (S1 (Γ2\x))



Recall that for a well-formed context (x : A, Γ), it does not automatically follow
that x is not mentioned inΓ (so long as it is with the typeA), which is the reason
for explicitly removingx in the recursive call above.

We assume the classical soundness and completeness resultsfor unification,
along with their extension to contexts:

Lemma 3.18(Soundness and Completeness of Unification [16]).

1. If unify A B succeeds, then it yields an idempotent substitution Su satisfying
(Su A) = (Su B).

2. If there exists a substitution S such that(S A) = (S B) then unify A B suc-
ceeds, yielding an idempotent substitution Su, and there exists an idempotent
substitution S′ such that S= S′◦Su.

3. If unifyContextsΓ1 Γ2 succeeds, then it yields an idempotent substitution Su

satisfying(Su Γ1) = (Su Γ2).
4. If there exists S such that(S Γ1) = (S Γ2) then unifyContextsΓ1 Γ2 suc-

ceeds, yielding an idempotent substitution Su, and there exists an idempotent
substitution S′ such that S= S′◦Su.
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We can define principal contexts in our shallow polymorphic version ofXi,
with respect to a given initial left-contextΓ which gives types to the free sockets
in a term. We define an algorithm, based loosely on theW algorithm of [21],
which takes as input anXi-termP and a left-contextΓ, and either fails (in which
caseP is not typeable) or else produces a pair of substitutionS and right-context
∆, representing the least substitution and strongest right-context possible such that
P ··· (S Γ) ⊢sp∆. Before we are able to define this algorithm, we need to define a
number of ‘helper’ operations.

Firstly, we require an operation to take the ‘strongest’ closure of a generic type
A in a context〈Γ;∆〉; essentially this implicitly applies the (∀R) to the appropriate
statement as many times as possible. Viewed otherwise, the operation computes
the ‘largest’ (in the� relation) generic typeB, such thatA ⊳〈Γ;∆〉 B.

Definition 3.19 (∀-closure). The∀-closureof typeA with respect to a context
〈Γ;∆〉, is defined by:∀-closureA 〈Γ;∆〉 = ∀X1 . . .∀Xn.(A[Xi/ϕi] ) whereϕ1, . . . , ϕn

are exactly the atomic types occurring inA but not in〈Γ;∆〉.

The process of∀-closure may be seen as taking the ‘largest’ possible form of
a type, in terms of the ordering imposed by�. We can show that this operation
does indeed compute the ‘largest’ possible type, by the following result:

Proposition 3.20(∀-closure is the most general closure). If B = ∀-closureA 〈Γ;∆〉
then:

1. A ⊳〈Γ;∆〉 B.
2. If A ⊳〈Γ;∆〉 C thenB�C.
3. For all substitutions S ,(S B)�∀-closure(S A) 〈(S Γ); (S ∆)〉.
4. If ∆�∆′ thenB�∀-closureA 〈Γ;∆′〉.

Proof. See Proof B.4 in Section B.

In our amended type system, whenever a statement is introduced into a right-
context it may be ‘closed’ to a stronger type (with more∀ quantification). Fur-
thermore, this is the only point in the derivation at which these kinds of gen-
eralisations may be applied to the statement. For our type-inference algorithm
to compute the most general right-context possible, it willuse the operation of
∀-closure whenever such closures are permitted by the rules, in order to obtain
the strongest possible type so far. For example, if we were torun our algorithm
on the term̂x〈x.α〉α̂·β, we would expect it to generate a type such as (ϕ→ϕ) for β
but then to also quantify (close) it to the most-general possible type∀X.(X→X).
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This approach seems in line with the presentation of our typeinference rules;
we are employing them in the most-general way possible. However, it leads to
a new problem when the contraction of multiple occurrences of a plug β in a
term takes place. In general, different quantified types get computed by the algo-
rithm for the different occurrences of a plugβ, and at some stage these need to be
‘merged’ into just one type that works in all positions. In a simple type system,
without quantified types, one usually applies Robinson’s unification algorithm to
perform this ‘merging’. However, we need to deal with the fact that quantifiers
will, in general, occur in the types. Furthermore, we wish the resulting type to
itself be quantified as much as possible.

This leads to a desire for an operation which, given two generic typesA and
B, computes a third generic typeC which is the ‘most general’ type which can
be used in place of bothA andB. This has parallels with unification; indeed we
would expect that if bothA andB contain no quantifiers, then it would perform
exactly the operation of unification. On the other hand, ifA andB contained no
atomic types, it would seem reasonable that the operation should compute the
‘biggest’ (in the� sense) generic type which is a generic instance of bothA and
B. In general, we seek the ‘biggest’ generic typeC and minimal substitutionS
such that both (S A)�C and (S B)�C. Informally, we seek a most general solution
in S andC to the problem:

(S A)�C & (S B)�C

We define an algorithm, which we call ‘generic unification’, in order to com-
pute this ‘most general solution’. In order to do so, we need to introduce op-
erations to modify the domains of substitutions. This is because, during the al-
gorithm, fresh instances of the generic types will be taken,and the substitutions
subsequently defined will (in general) act on the fresh atomic types introduced.
However, these types were not present in the original generic types, and so the
resulting substitution would not be the most general one; itmight perform the
minimal operations onA andB but also perform other operations which are re-
dundant from the point of view of the initial problem.

In order to overcome these difficulties, we define two new operations on sub-
stitutions. Firstly, we define therestrictionof a substitutionS to a set of atomic
typesΦ, which is written (S∩Φ) and is itself a substitution which acts on elements
of Φ exactly asS does, and on all other atomic types as the identity substitution.

As a shorthand, we also define a complementary operation (S ∩ (dom(S)\Φ))
(i.e. restricting a substitution to everythingbut the setΦ), which we write as
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(S\Φ) and read as “S withoutΦ”.
We give formal definitions as follows:

Definition 3.21 (Restriction of a substitution). For any substitution S and set of
atomic typesΦ, therestriction ofS toΦ, written (S ∩ Φ) is defined by:

(S ∩Φ) = {(ϕ 7→ A)|(ϕ 7→ A) ∈ S & ϕ ∈ Φ}

We also define the shorthand:

(S\Φ) = (S ∩ (dom(S)\Φ)) = {(ϕ 7→ A)|(ϕ 7→ A) ∈ S & ϕ < Φ}

In order to reason formally about the effect of these operations later on, we
will require a number of properties about their definitions.

Lemma 3.22(Range and domain).

1. For any substitutions S1,S2 if dom(S1) ∩ range(S2) = ∅ and dom(S2) ∩
range(S1) = ∅ then(S2◦S1) = (S1◦S2).

2. If S2◦S1 = S4◦S3 and dom(S2)∩ range(S1) = ∅ and dom(S2)∩dom(S3) = ∅
and dom(S2) ∩ range(S3) = ∅, then there exists a substitution S5 such that
S1 = S5◦S3.

3. For any substitution S , generic typeA and atomic typeϕ, if ϕ ∈ (S A) then
either:
(a) ϕ ∈ atoms(A) andϕ < dom(S), or,
(b) ϕ < atoms(A) and there existsϕ′ ∈ atoms(A) with ϕ ∈ atoms(S ϕ′).

4. For any binding renaming[Xi/ϕi] , and any generic typeA and atomic type
ϕ, if ϕ ∈ atoms(A[Xi/ϕi] ) thenϕ ∈ atoms(A) andϕ < {ϕi }.

Lemma 3.23(Restrictions). 1. If atoms(A) ⊆ {ϕi } then(S∩{ϕi } A) = (S A).
2. For any two sets of atomic types{ϕi } and {ϕ j }, and for any generic typeA,

we have(A\{ϕi })\{ϕ j } = (A\{ϕ j })\{ϕi } = A\({ϕi } ∪ {ϕ j }).

3. For any substitution S , generic typeA and set of atomic types{ϕ}, if it is the
case that atoms(A) ∩ {ϕ} = ∅ then(S A) = ((S\{ϕ}) A).

4. For any substitution S and set of atomic types{ϕ}, if dom(S) ⊆ {ϕ} then
S\{ϕ} = id.

5. For any substitutions S1 and S2 and set of atomic types{ϕ}, if {ϕ}∩dom(S2)∩
range(S1) = ∅ then(S2◦S1)\{ϕ} = (S2\{ϕ})◦(S1\{ϕ}).

6. For any substitutions S1 and S2 and set of atomic types{ϕ}, if {ϕ}∩dom(S1) =
∅ and{ϕ} ∩ dom(S2) ∩ range(S1) = ∅ then(S2◦S1)\{ϕ} = (S2\{ϕ})◦S1.
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7. For any substitution S , generic typeA and set of atomic types{ϕ}, if (S A) =
A then(S\{ϕ} A) = A.

8. For any substitutions S ,S′, if it is the case that for allϕ ∈ dom(S′), we have
(S′ ϕ) = (S ϕ), then it holds that S′ = S ∩ dom(S′).

9. For any idempotent substitution S and set of atomic types{ϕ}, we have:

S = ((S ∩ {ϕ})◦(S\{ϕ}) = (S\{ϕ})◦((S ∩ {ϕ})

Armed with these definitions and results, we can now present the definition of
generic unification.

Definition 3.24 (Generic Unification).

unifyGenA B = (Sr ,∀Xi .Cu[Xi/ϕi] )
where
A′ = freshInst(A)
B′ = freshInst(B)
Su = unify A′ B′

Cu = (Su A′)
{ϕi } = atoms(Cu)\(atoms(Su A)∪atoms(Su B))
Sr = (Su ∩ (atoms(A)∪atoms(B)))

Note that this algorithm may fail, in the case where the callunify A′ B′ results
in failure. As usual, we do not model the failure case explicitly, but speak of
success or failure of the algorithm as a whole.

We can give a formal justification for the definition of the algorithm, using the
following results:

Theorem 3.25(Soundness and Completeness of Generic Unification). For any
generic typesA andB:

1. (Soundness:) If unifyGenA B succeeds, resulting in a pair(Sr ,C) then we
have(Sr A)�C and(Sr B)�C.

2. (Completeness:) If S is a substitution andD a generic type such that(S A)�D
and (S B)�D, then unifyGenA B succeeds, resulting in a pair(Sr ,C), and
there exists a further substitution S′ such that S= S′◦Sr and(S′ C)�D.

Proof. See Proof B.5 in Section B.
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Just as for the simple type assignment system (Definition 2.13), we require
the generalisation of unification to contexts, we require here the generalisation of
generic unification to right-contexts. We choose to omit a concrete definition, but
depend on the following properties, which are relatively easy to guarantee given
the previous theorem:

Proposition 3.26(Soundness and Completeness of Generic Context Unification).
There exists an algorithm unifyGenContexts which takes tworight-contexts∆1

and∆2 as arguments, and (if it succeeds) returns a pair of substitution Su and
right-context∆u, satisfying:

1. If unifyGenContexts∆1∆2 succeeds, then we have(Su∆1)�∆u and(Su ∆2)�∆u.
2. If S is a substitution and∆ a right-context such that(S ∆1)�∆ and(S ∆2)�∆,

then unifyGenContexts∆1 ∆2 succeeds, and there exists a further substitution
S′ such that S= S′◦Su and(S′ ∆u)�∆.

We are now in a position to define our type-inference algorithm.

Definition 3.27 (sppc). The proceduresppc ::〈Xi , Γ〉 → 〈S,∆〉 is defined in Fig-
ure 2.

Example 3.28.Consider the followingXi-terms:

M = x̂〈x.α〉α̂·β
N = Mǫ̂ [i] ĵM
O = x̂(̂y〈x.α〉α̂·γ)̂β·γ
R = 〈z.δ〉̂δ [z] ŵ〈w.ǫ〉

Then we have (some examples are shown in detail in Appendix A):

sppc (M, Γ) = 〈id, {β :∀X.(X→X)}〉 for any contextΓ
sppc (N, {i : E→F}) = 〈id, {β :∀Z.(Z→Z)}〉 for any Curry types E, F

sppc (O, Γ) = 〈id, {γ : ϕ→ϕ}〉 whereϕ is fresh, for any contextΓ
sppc (R, {z: E→E}) fails, for any Curry type E

sppc (R, {z:∀X.(X→X)}) = 〈id, {γ : ϕ→ϕ}〉 whereϕ is fresh
sppc (Mβ̂ † ẑR, ∅) = 〈id, {γ : ϕ→ϕ}〉 whereϕ is fresh

sppc (Nβ̂ † ẑR, {i : E→F}) = 〈id, {γ : ϕ→ϕ}〉 whereϕ is fresh
sppc (Ôβ † ẑR, Γ) fails, for anyΓ

Note that the last of these examples is the term from Example 3.3; since this
term runs to untypeable terms, the algorithm is correct to reject it. We can now
give our principal contexts result.
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sppc(〈x.α〉, Γ) = 〈id, {α : A}〉
where

A = typeof xΓ
sppc(x̂P̂α·β, Γ) = 〈Sr , (Su ∆P\α\β)∪{β : D}〉

where
ϕ = fresh

〈SP,∆P〉 = sppc(P, Γ∪{x :ϕ})
A = (SP ϕ)
B = freshInstance typeofα ∆P

C = ∀-closure A→B 〈(SP Γ);∆P\α〉

〈Su,D〉 =

{
unifyGenC typeofβ ∆P if β ∈ ∆P

〈id,C〉 otherwise
Sr = (Su◦SP ∩ atoms(Γ))

sppc(Pα̂ [y] x̂Q, Γ) = 〈Sr ,∆c〉

where
〈SP,∆P〉 = sppc(P, Γ)

ϕ = fresh
〈SQ,∆Q〉 = sppc(Q, (SP Γ)∪{y :ϕ})

A = freshInstance typeofα (SQ ∆P)
B = (SQ ϕ)
C = freshInstance typeof x(SQ◦SP Γ)

Su = unify C A→B
〈Sc,∆c〉 = unifyGenContexts(Su◦SQ ∆P\α) (Su ∆Q)

Sr = (Sc◦Su◦SQ◦SP ∩ atoms(Γ))
sppc(Pα̂ † x̂Q, Γ) = 〈Sr ,∆c〉

where
〈SP,∆P〉 = sppc(P, Γ)

A = typeofα ∆P

〈SQ,∆Q〉 = sppc(Q, (SP Γ)∪{x : A})
〈Sc,∆c〉 = unifyGenContexts(SQ ∆P\α) ∆Q

Sr = (Sc◦SQ◦SP ∩ atoms(Γ))

Figure 2: Principal Contexts for Shallow Polymorphic system
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Theorem 3.29(Soundness and Completeness ofsppc). Given anXi-term R and
an initial left-contextΓ such that

fs(R) ⊆ dom(Γ) (3)

we have:

1. If sppc (R, Γ) succeeds andsppc (R, Γ) = 〈SR,∆R〉 then R··· (SR Γ) ⊢sp∆R.
2. If there exist〈S,∆〉 such that R··· (S Γ) ⊢sp∆, then a callsppc (R, Γ) succeeds,

and if sppc (R, Γ) = 〈SR,∆R〉 then there exists a further substitution S′ such
that S= S′◦SR and(S′ ∆R)�∆.

Proof. See Proof B.6 in Section B.

4. Extensions and Future Work

Since classical sequent calculus exhibits a natural symmetry between left and
right contexts (inputs and outputs, in a computational sense), it is natural to con-
sider the asymmetric notion of (universal) polymorphism presented so far as an
incomplete picture. Universal polymorphism allows an output (plug) type to be
generalised with quantified variables, and then to be connected to multiple input
types, each taking a different instantiation of the variables. What then, if we allow
this the opposite way around? It seems natural to consider the generalisation of an
input type, to be instantiated many times for the multipleoutputsit is connected
with.

All of the work presented in this paper can be adapted analogously for this
alternative quantifier. The resulting type system is sound,although the analogous
naı̈ve system would not be (in this case, it isright propagation that presents a
potential for unsoundness, but this is eliminated above by an analogous restric-
tion. We can also define a principal typings algorithm, by ‘reflecting’ the defi-
nitions employed in the previous section. In particular, such an algorithm would
type a cut by typing first theright-hand subterm, and then using the (potentially
existentially-quantified) type obtained to help type the left.

Existential polymorphism is traditionally understood in the context ofinfor-
mation hiding[31], i.e., providing a facility tolose typing information from a
term, rather than providing extra power in terms of typeability. However, this is a
question of paradigm: in a traditional functional setting,corresponding with min-
imal logic (such as theλ-calculus), the addition of existential quantification does
not extend the typeable terms, while the addition of universal quantification does.
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This can be readily understood by moving again to the sequentcalculus setting;
when injecting ML (for example) intoXi, via the translation above, one always
obtains a term in which there is exactly one free plug, and exactly one occurrence
of the plug. Therefore, the additional power in terms of typeability which existen-
tial polymorphism brings, is not applicable, since it caters for the situation when
multiple occurrences of the same plug need to be typed in different ways.

To summarise, in the setting of classical sequent calculus,the two variants
of polymorphism can be seen exactly as dual to one another; universal polymor-
phism allowing generalisation of outputs and instantiation at multiple inputs, and
vice versa for existential. A possible and natural extension to this work which has
not been investigated in depth is the possibility of allowing bothkinds of quantifi-
cation to be exploited in a shallow polymorphic type system.Since the cuts in the
X

i-calculus can simultaneously bind multiple occurrences ofboth inputs and out-
puts, it seems reasonable that there may be example terms which would be made
typeable by such a system.

The main problem envisaged with such a system is decideable type-assignment.
In particular, the presented approach to typing a cut seems not to adapt to this set-
ting. In the case of universal polymorphism, a cut is typed bytyping the left-hand
subterm first, and using the information gained to help type the right. The re-
verse ordering of subcalls is suitable for a system with existential polymorphism.
But with both quantifiers permitted, there is no obvious approach; it may be that
eachsubterm provides some polymorphic behaviour which allows to overcome
difficulties in typing the other subterm. We leave such issues forfuture work.

5. Conclusions

This paper has been concerned with the adaptation of ML-style shallow poly-
morphism to the context of a term calculus based on classicallogic. We have
shown that the problem is not straightforward, and the ‘natural’ approach is un-
sound. The exact nature of the problem is made particularly clear in the context
of the sequent calculus, and we identified three contributing features of the type
system which together caused it to arise. By pinpointing theproblem, we were
able to define a neat refinement to the type system, and prove a witness reduction
result.

The question of principal typings was made more challengingby the restric-
tions in place in our amended type system. Because quantifiedtypes for outputs
(plugs) need to be introduced “early” in our type system, it became necessary to
deal with the case of many different quantified types being derived for different
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occurrences of the same output. Thus created the need for an operation to cal-
culate the most general generic type “smaller” than two generic types, which we
dubbed generic unification. Although the basic idea behind generic unification is
simple, the need to restrict the resulting substitutions isless obvious.

Having defined generic unification, and proved its soundnessand complete-
ness with respect to the generic instance and substitution operations employed
within the type system, we were able to define a notion of principal contexts, and
an algorithm to compute them. Our proof that such principal contexts are indeed
principal (given an initial specification of polymorphism to be assumed for free
sockets), makes our result analogous with the classical result for ML, but in the
context of a calculus with a more general type system and reduction behaviour.
This was the ultimate goal of the paper.
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A. Examples ofsppcalgorithm

Consider the followingXi-terms:

M = x̂〈x.α〉α̂·β
N = Mǫ̂ [i] ĵM
O = x̂(̂y〈x.α〉α̂·γ)̂β·γ
R = 〈z.δ〉̂δ [z] ŵ〈w.ǫ〉
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Then we have:

sppc(M, Γ) = 〈id, {β :∀X.(X→X)}〉 for any contextΓ
sppc(N, {i : E→F}) = 〈id, {β :∀Z.(Z→Z)}〉 for any Curry types E, F

sppc(O, Γ) = 〈id, {γ : ϕ→ϕ}〉 whereϕ is fresh, for any contextΓ
sppc(R, {z: E→E}) fails, for any Curry type E

sppc(R, {z:∀X.(X→X)}) = 〈id, {γ : ϕ→ϕ}〉 whereϕ is fresh
sppc(Mβ̂ † ẑR, ∅) = 〈id, {γ : ϕ→ϕ}〉 whereϕ is fresh

sppc(Nβ̂ † ẑR, {i : E→F}) = 〈id, {γ : ϕ→ϕ}〉 whereϕ is fresh
sppc(Ôβ † ẑR, Γ) fails, for anyΓ

If we apply our type inference algorithm toM (with any context parameterΓ -
since there are no free sockets inM it will not be used), the algorithm operates as
follows:

calculate sppc(x̂〈x.α〉α̂·β, Γ):
ϕ1 = fresh
〈SP,∆P〉 = sppc(〈x.α〉, {x :ϕ1}) = 〈id, {α :ϕ1}〉

A = (SP ϕ1) = ϕ1

B = freshInstance(typeofα ∆P) = ϕ1

C = ∀-closure A→B 〈(SP Γ);∆P\α〉 = ∀-closureϕ1→ϕ1 〈Γ; ∅〉 = ∀X.(X→X)
〈Su,D〉 = 〈id,C〉 = 〈id,∀X.(X→X)〉
Sr = (Su◦SP ∩ atoms(Γ)) = (id ∩ atoms(Γ)) = id
sppc(M, Γ) = 〈Sr , (Su ∆P\α\β)∪{β : D}〉 = 〈id, {β :∀X.(X→X)}〉

Now let us consider applying the algorithm toN, using a context{i : E→F} for
some typesE andF (their choice is unimportant since we are not interested ini
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for this example):

calculate sppc(Mǫ̂ [i] ĵM , {i : E→F}):
〈SP,∆P〉 = sppc(M, {i : E}) = 〈id, {β :∀X.(X→X)}〉 (by above)
ϕ2 = fresh
〈SQ,∆Q〉 = sppc(M, (SP {i : E})∪{i :ϕ2}) = 〈id, {β :∀Y.(Y→Y)}〉 (by above)
A = freshInstance(typeofǫ SQ ∆P) = ϕ3 (fresh)
B = (SQ ϕ2) = ϕ2

C = freshInstance(typeof i SQ◦SP {i : E→F}) = E→F
Su = unify C A→B = unify E→F ϕ3→ϕ2 = {(ϕ3 7→ E), (ϕ2 7→ F)}
〈Sc,∆c〉 = unifyGenContexts(Su◦SQ ∆P\ǫ) (Su ∆Q)
= unifyGenContexts{β :∀X.(X→X)} {β :∀Y.(Y→Y)}

calculate unifyGen∀X.(X→X) ∀Y.(Y→Y):
A′ = freshInstance∀X.(X→X) = ϕ4→ϕ4

B′ = freshInstance∀Y.(Y→Y) = ϕ5→ϕ5

S′u = unify A′ B′ = {(ϕ4 7→ ϕ5)}
Cu = (S′u A′) = ϕ5→ϕ5

ϕi = atoms(Cu)\(atoms(S′u ∀X.(X→X)) ∪ atoms(S′u ∀Y.(Y→Y))) = {ϕ5}

S′r = (S′u ∩ (atoms(∀X.(X→X)) ∪ atoms(∀Y.(Y→Y)))) = (S′u ∩ ∅) = id
unifyGen∀X.(X→X) ∀Y.(Y→Y) = 〈id,∀Zi .Cu[Zi/ϕi] 〉 = 〈id,∀Z.(Z→Z)〉

〈Sc,∆c〉 = 〈id, {β :∀Z.(Z→Z)}〉
Sr = (Sc◦Su◦SQ◦SP ∩ atoms({i : E→F}))
= ({(ϕ3 7→ E), (ϕ2 7→ F)} ∩ atoms((E→F))) = id (freshness ofϕ2, ϕ3)
sppc(Mǫ̂ [i] ĵM , {i : E→F}) = 〈Sr ,∆c〉 = 〈id, {β :∀Z.(Z→Z)}〉

B. Proofs

Proof B.1 (of Proposition 3.6).

1. Reflexivity is immediate. For transitivity, suppose that∀Xi .A�∀Yj .B and
∀Yj .B�∀Zk.C. By definition, we have for some types Di ,E j and atomic types
ϕ j<A andϕ′k<B that B= A[Di/Xi] [Yj/ϕ j] and C= B[E j/Yj ] [Zk/ϕ

′
k] . Com-

posing these two facts, we have that C= A[Di/Xi] [Yj/ϕ j] [E j/Yj] [Zk/ϕ
′
k] .

Let S be the substitution{(ϕ j 7→ E j) }. Then note that sinceϕ j<A, we know
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that (S A[Di/Xi] ) = A[(S Di)/Xi] . Then we have:

C = A[Di/Xi] [Yj/ϕ j] [E j/Yj] [Zk/ϕ
′
k]

= A[Di/Xi] [E j/ϕ j] [Zk/ϕ
′
k]

= (S A[Di/Xi] )[Zk/ϕ
′
k]

= A[(S Di)/Xi] [Zk/ϕ
′
k]

Finally, we can see thatϕ′k<A since if it were the case thatϕ′k∈A then since
ϕ j<A we would haveϕ′k∈A[Di/Xi] [Yj/ϕ j] = B; a contradiction.

2. Reflexivity and transivity are straightforward. Anti-symmetry follows from
the fact that ifA ⊳〈Γ;∆〉 B andA,B thenB contains strictly more∀ symbols
thanA.

3. Let A = ∀Xi .A. Then, sinceA�B, we know that for some Di ,Yj , ϕ j we must
haveB = ∀Yj .(A[Di/Xi] [Yj/ϕ j] ), with ϕ j<A. In addition, sinceB ⊳〈Γ;∆〉 C,
we must have for some Zk and ϕ′k<〈Γ;∆〉 that C = ∀Zk.B[Zk/ϕ

′
k] . Since

ϕ′k<〈Γ;∆〉 and A∈〈Γ;∆〉, we haveϕ′k<A. From these facts, we can conclude
that C = ∀Zk.∀Yj .(A[Di/Xi] [Yj/ϕ j] [Zk/ϕ

′
k] ) with ϕ j , ϕ

′
k<A, i.e. C�A as re-

quired.
4. Without loss of generality, sayA = ∀Xi .A andB = ∀Yj .(A[Ci/Xi] [Yj/ϕ j] )

(with ϕ j < A). Note thatϕ j < B also, due to the renaming[Yj/ϕ j] . Let
S′ = (S∩{ϕ j }). Then we have(S′ A) = (S A) and(S′ B) = (S B). Therefore,
it suffices to prove that(S′ A)�(S′ B). This can be seen from the fact that
(S A) = ∀Xi .(S A) and the following working:

(S′ B) = (S′ ∀Yj .(A[Ci/Xi] [Yj/ϕ j] )) defn ofB
= ∀Yj .(S′ (A[Ci/Xi] [Yj/ϕ j] )) defn of substitution
= ∀Yj .((S′ A[Ci/Xi] )[Yj/ϕ j] ) defn of S′

= ∀Yj .((S′ A)[(S′ Ci)/Xi] [Yj/ϕ j] )
= ∀Yj .((S′ A)[Di/Xi] [Yj/ϕ j] ) setting Di = (S′ Ci)

5. By definition, there existϕi and Xi such thatB = ∀Xi .A[Xi/ϕi] andϕi < 〈Γ;∆〉 .
Define S′ = {(ϕi 7→ ϕ

′
i ) }, whereϕ′i are fresh atomic types. Then we know

that B = ∀Xi .(S′ A)[Xi/ϕ
′
i ] . Therefore,(S B) = (S (∀Xi .(S′ A)[Xi/ϕ

′
i ] )) =

∀Xi .(S◦S′ A)[Xi/ϕ
′
i ] . By construction,ϕ′i < 〈(S Γ); (S ∆)〉 , and so we con-

clude(S◦S′ A) ⊳〈(S Γ);(S ∆)〉 (S B) as required.
6. By definition, for some Xi andϕi<〈Γ;∆〉, we must haveA = ∀Xi .A[Xi/ϕi] .

Additionally, sinceA�B, there must exist Ci and ϕ j and Yj such that we
can obtainB = ∀Yj .(A[Xi/ϕi] )[Ci/Xi] [Yj/ϕ j] and ϕ j < A. Let S be the
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substitution{(ϕi 7→ Ci) }. ThenB = ∀Yj .(S A)[Yj/ϕ j] . Let S′ = {(ϕ j 7→ ϕ
′
j) }

whereϕ′j are fresh. ThenB = ∀Yj .(S′◦S A)[Yj/ϕ
′
j] and ϕ′ < 〈Γ;∆〉 , i.e.,

(S′◦S A) ⊳〈Γ;∆〉 B. Finally, sinceϕi<〈Γ;∆〉, we have S〈Γ;∆〉 = 〈Γ;∆〉 as
required.

7. SinceA�B, there must exist Ci such that B= A[Ci/Xi] . Let S= {(ϕi 7→ Ci) }.
Then the result immediately follows.

Proof B.2 (of Proposition 3.8). 1. By induction on the structure of the term P.
We give two representative cases (all others are simpler):

〈x.α〉: Then by Lemma 3.9 1,Γ = Γ′, x : A and∆ = α : B,∆′ with A�B. By
Proposition 3.6 4,(S A)�(S B). Therefore, by applying the rule(ax),
we obtain〈x.α〉 ··· (S Γ

′), x : (S A) ⊢spα : (S B),∆′ as required.

x̂P̂α·β: Then by Lemma 3.9 2,∆ = β : C,∆′ and there exist A,B such that

P ··· Γ, x : A⊢spα : B,∆′ (4)

and (A→B) ⊳〈Γ;∆′〉 C. By Proposition 3.6 5, there exists a substitution
S′ such that:

(S◦S′ (A→B)) ⊳〈(S Γ);(S ∆′)〉 (S C) (5)

(S′ 〈Γ;∆〉) = 〈Γ;∆〉 (6)

(S′ C) = C (7)

By induction, using(Eq. 4) with the substitution(S◦S′), we obtain
P ··· (S◦S

′ Γ), x : (S◦S′ A) ⊢spα : (S◦S′ B), (S◦S′ ∆′). Using(Eq. 6)and
(Eq. 7), this becomes P··· (S Γ), x : (S◦S′ A) ⊢spα : (S◦S′ B), (S ∆′). Fur-
thermore, noting that(S◦S′ (A→B)) = (S◦S′ A)→(S◦S′ B), we can
apply(→R) with (Eq. 5) to obtainx̂P̂α·β ··· (S Γ) ⊢spβ : (S C), (S ∆′) as
required.

2. By induction on the structure of the term P. The only cases which are not
straightforward are when ‘closures’ are taken, since we must be careful that
the appropriate conditions can still be fulfilled within thelarger context.
This situation is exemplified by the case of a termx̂P̂α·β, and this is the
only case we show here. As usual, by Lemma 3.9 2, we obtain the state-
ments P··· Γ, x : A⊢spα : B,∆′′ with ∆ = β :C,∆′′ and (A→B) ⊳〈Γ;∆′′〉 C. By
unravelling the definition, we know thatC = ∀Xi .(A→B)[Xi/ϕi] , for some
Xi and someϕi < 〈Γ;∆′′〉 . In order to ensure that we can still ‘close’ the
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type in the larger context, we rename these atomic types: define the substi-
tution S = {(ϕi 7→ ϕ

′
i ) } for freshϕ′i . Note that(S Γ) = Γ and (S ∆′′) = ∆′′.

Then, by part 1, we obtain P··· Γ, x : (S A) ⊢spα : (S B),∆′′. Since x andα
are bound in the original term, we may assume that x< Γ′ and α < ∆′.
Therefore,〈Γ, x : (S A), Γ′;α : (S B),∆′′,∆′〉 is a well-formed context. By in-
duction, P··· Γ, x : (S A), Γ′ ⊢spα : (S B),∆′′,∆′. In order to be able to apply
the(→R) and conclude, it would suffice to show that(S A→B) ⊳〈Γ∪Γ′;∆∪∆′〉 C.
But this follows by construction of S .

3. By straightforward induction on the structure of the derivation.
4. By induction on the structure of the term. We present two representative

cases.

P = 〈x.α〉: By Lemma 3.9 1, there exist X,∆′ such that∆ = α : C,∆′ and
B�C. By Proposition 3.6 1 we haveA�C. Therefore, by applying the
rule (ax), we obtain〈x.α〉 ··· (Γ\x), x : A⊢spα : C,∆ as required.

P = 〈y.α〉, y , x: This case is immediate from Lemma 3.9 1.

P = ŷP1α̂·β: By straightforward induction, using Lemma 3.9 2.

P = Qα̂ [x] ŷR: By Lemma 3.9 3 and Proposition 3.8 2, there exist C,D such
that Q ··· Γ, x : B⊢spα : C,∆ and R··· Γ, x : B, y : D ⊢sp∆ and B�(C→D).
By induction, Q··· (Γ\x), x : A⊢spα : C,∆ and R··· (Γ\x), x : A, y : D ⊢sp∆.
By Proposition 3.6 1, we haveA�(C→D). By the rule(→L), we obtain
P ··· (Γ\x), x : A⊢sp∆ as required.

5. By induction on the structure of the term P. We present two representative
cases.

P = 〈x.α〉: By Lemma 3.9 1, there existC,Γ′ such thatΓ = Γ′, x : C andC�B.
By Proposition 3.6 1,C�A. Therefore, by the rule(ax), we can deduce
that 〈x.α〉 ··· Γ

′, x : C ⊢spα : A, (∆\α) as required.

P = x̂Q̂β·α: By Lemma 3.9 2, there exist C,D such that(C→D) ⊳〈Γ;∆〉 A and
Q ··· Γ, x : C ⊢spβ : D,∆. By Proposition 3.6 6, there exists a substitution
S such that(S 〈Γ;∆〉) = 〈Γ;∆〉 and (S C→D) ⊳〈Γ;∆〉 B. By Proposition
3.8 1 we have Q··· Γ, x : (S C) ⊢spβ : (S D),∆. We consider two cases:

α : B ∈ ∆: Then, by induction, Q··· Γ, x : (S C) ⊢spβ : (S D), α : B, (∆\α).
By the rule(→R), we obtain̂xQ̂β·α ··· Γ ⊢spα : B, (∆\α) as required.

α < ∆: Then, by the(→R) rule, we obtain̂xQ̂β·α ··· Γ ⊢spα : B,∆ as re-
quired.

6. By induction on the structure of the term P, similar to the previous part.
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Proof B.3 (of Theorem 3.10). 1. (a) By induction on the structure of the term
Q.
Q = 〈x.β〉: Then Q{Pα̂]x} = Pα̂ † x̂Q and the result follows by appli-

cation of the(cut) rule.

Q = 〈y.β〉, y , x: Then Q{Pα̂]x} = Q. Since x< fs(Q), By(Eq. 2) and
Proposition 3.8 3 we obtain Q··· Γ ⊢sp∆ as required.

Q = ŷQ1̂β·γ: Then Q{Pα̂]x} = ŷ(Q1{Pα̂]x})̂β·γ. By (Eq. 2) and
Lemma 3.9 2, there exist B,C,D and∆′ such that∆ = ∆′, γ : D and
Q1 ··· Γ, x : A, y : B⊢spβ : C,∆ and (B→C) ⊳〈Γ,x : A;∆′〉 D. From the in-
duction hypothesis, Q1{Pα̂]x} ··· Γ, y : B⊢spβ : C,∆. Now we apply
(→R) rule to obtain̂y(Q1{Pα̂]x})̂β·γ ··· Γ ⊢spγ : D,∆′ as required.

Q = Q1̂β [x] ẑQ2:
Q{Pα̂]x} = Pα̂ † ŷ((Q1{Pα̂]x})̂β [y] ẑ(Q2{Pα̂]x})) in which y
is fresh. By(Eq. 2) and Lemma 3.9 3, there exist B,C,D,Γ′ such
that D�(B→C) and Γ = Γ′, y : D and (by weakening, by apply-
ing Proposition 3.8 2 where necessary) both Q1 ··· Γ, x : A⊢spβ : B,∆
and Q2 ··· Γ, x : A, z:C ⊢sp∆. By induction, twice, we obtain that
both Q1{Pα̂]x} ··· Γ ⊢spβ : B,∆ and also Q2{Pα̂]x} ··· Γ, z:C ⊢sp∆.
SinceD�(B→C), we can apply the(→L) rule to obtain the judge-
ment (Q1{Pα̂]x})̂β [y] ẑ(Q2{Pα̂]x}) ··· Γ, y : D ⊢sp∆. Finally, we
apply the(cut) rule to obtain the required result.

Q = Q1̂β [y] ẑQ2, y , x: By straightforward induction, similar to the
previous case.

Q = 〈x.β〉̂β † ŷQ2: Then Q{Pα̂]x} = Pα̂ † ŷ(Q1{Pα̂]x}). By Lemma
3.9 4, there existsB such that both

〈x.β〉 ··· Γ, x : A⊢spβ : B,∆ (8)

Q1 ··· Γ, x : A, y : B⊢sp∆ (9)

By Lemma 3.9 1, we must have

A�B (10)

By applying Proposition 3.8 2 to(Eq. 8), we obtain

P ··· Γ, y : B⊢spα : A,∆ (11)

By applying induction to(Eq. 2) and(Eq. 11), we obtain

Q1{Pα̂]x} ··· Γ, y : B⊢sp∆ (12)
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By applying Proposition 3.8 4 to(Eq. 10)and(Eq. 12), we obtain

Q1{Pα̂]x} ··· Γ, y : A⊢sp∆ (13)

As a final step, by applying the rule(cut) to (Eq. 1) and (Eq. 13)
we obtain P̂α † ŷ(Q1{Pα̂]x}) ··· Γ ⊢sp∆ as required.

Q = Q1̂β † ŷQ2, Q , 〈x.β〉:
Q{Pα̂]x} = (Q1{Pα̂]x})̂β † ŷ(Q2{Pα̂]x}).
Using(Eq. 2) and applying Lemma 3.9 4, there exists a typeB such
that Q1 ··· Γ, x :α ⊢spβ : B,∆ and Q2 ··· Γ, x : A, y : B⊢sp∆. By induc-
tion, Q{Pα̂]x} ··· Γ ⊢spβ : B,∆ and Q2{Pα̂]x} ··· Γ ⊢spy : B,∆. We
conclude by applying the rule(cut).

(b) By induction on the structure of the term P. The argument is simi-
lar to the previous part, and we show only the most-interesting case,
where P = ŷP1̂β·α. Then P{α]x̂Q} = (̂y(P1{α]x̂Q})̂β·γ)̂γ † x̂Q,
in which γ is fresh. By(Eq. 1) and Lemma 3.9 2, there exist B,C
with P1 ··· Γ, y : B⊢spβ : C,∆ and B→C ⊳〈Γ;∆〉 A. By applying Propo-
sition 3.8 2 as necessary, we obtain P1 ··· Γ, x : A, y : B⊢spβ :C,∆ and
Q ··· Γ, x : A, y : B⊢spβ : C,∆. By induction, P1{α]x̂Q} ··· Γ, y : B⊢spβ :C,∆.
By the rule(→R) we obtain̂y(P1{α]x̂Q})̂β·γ ··· Γ ⊢spγ : A,∆. Finally,
by the rule(cut) we obtain that(̂y(P1{α]x̂Q})̂β·γ)̂γ † x̂Q ··· Γ ⊢sp∆ as
required.

2. By inductions on the number of reduction steps, and the structure of the term
P, we need only consider the case where P is the redex itself, and is reduced
in one step to Q. Therefore, we show the witness reduction result for each of
the reduction rules in turn:

(cap) : 〈x.α〉α̂ † ŷ〈y.β〉 → 〈x.β〉
Suppose〈x.α〉α̂ † ŷ〈y.β〉 ··· Γ ⊢sp∆. By Lemma 3.9 4,α < ∆ and x < Γ
and there existsB such that〈x.α〉 ··· Γ ⊢spα : B,∆ and〈y.β〉 ··· Γ, y : B⊢sp∆.
By applying Lemma 3.9 1 twice, there existsA,C,Γ′,∆′ such thatΓ =
Γ′, x : A and∆ = β :C,∆′ with A�B andB�C. By Proposition 3.6 1,
A�C. Therefore, by the rule(ax), we obtain〈x.β〉 ··· Γ

′, x : A⊢spβ :C,∆′

as required.

(impR) : (x̂P̂α·β)̂β † ŷ〈y.γ〉 → x̂P̂α·γ (if β < fp(P))
Suppose(x̂P̂α·β)̂β † ŷ〈y.γ〉 ··· Γ ⊢sp∆. By Lemma 3.9 4,β < ∆ and y< Γ
and there existsC such that̂xP̂α·β ··· Γ ⊢spβ : C,∆ and〈y.γ〉 ··· Γ, y : C ⊢sp∆.
By Lemma 3.9 2, there exist A,B,∆′′ such that(A→B) ⊳〈Γ;∆〉 C and
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P ··· Γ, x : A⊢spα : B,∆′′ and (β : C,∆) = (β :C,∆′′). Sinceβ < P, by
Proposition 3.8 3, we may assume without loss of generality that we
haveβ < ∆′′, and therefore that∆′′ = ∆. By Lemma 3.9 1, there exist
D,∆′ such that∆ = γ : D,∆′ andC�D. By Proposition 3.6 6, there ex-
ists a substitution S such that(S 〈Γ;∆〉) = 〈Γ;∆〉 and(S A→B) ⊳〈Γ;∆〉 D.
By Proposition 3.8 1, we have P··· Γ, x : (S A) ⊢spα : (S B), γ : D,∆′. By
the rule(→R), we deduce that̂xP̂α·γ ··· Γ ⊢spγ : D,∆ as required.

(impL) : 〈x.α〉α̂ † ŷ(P̂β [y] ẑQ)→ P̂β [x] ẑQ(if y < fs(P,Q))
Suppose〈x.α〉α̂ † ŷ(P̂β [y] ẑQ) ··· Γ ⊢sp∆. By Lemma 3.9 4,α < ∆ and
y < Γ and there existsB such that we have both〈x.α〉 ··· Γ ⊢spα : B,∆
and P̂β [y] ẑQ ··· Γ, y : B⊢sp∆. By Lemma 3.9 1, there existA,Γ′ such that
Γ = Γ′, x : A andA�B. By Lemma 3.9 3, there exist C,D,Γ′′ such that
(Γ, y : B) = (Γ′′, y : B) and B�(C→D) and P ··· Γ

′′ ⊢spβ : C,∆ and also
Q ··· Γ

′′, z: D ⊢sp∆. By Proposition 3.8 3 we can assume without loss
of generality thatΓ′′ = Γ. SinceA�B�(C→D), by Proposition 3.6 1
we can deduceA�(C→D). By applying the rule(→L) we can finally
obtain P̂β [x] ẑQ ··· Γ

′, x : A⊢sp∆ as required.

(imp) : (x̂P̂α·β)̂β † ŷ(Q̂γ [y] ẑR)→

{
(Q̂γ † x̂P)α̂ † ẑR
Q̂γ † x̂(Pα̂ † ẑR)

}
(if β < fp(P),
y < fs(Q,R))

Suppose(x̂P̂α·β)̂β † ŷ(Q̂γ [y] ẑR) ··· Γ ⊢sp∆. By Lemma 3.9 4,β < ∆ and
y < Γ and there existsC such that we have botĥxP̂α·β ··· Γ ⊢spβ :C,∆
and Q̂γ [y] ẑR ··· Γ, y : C ⊢sp∆. By Lemma 3.9 2, there exist A,B,∆′ such
that A→B ⊳〈Γ;∆〉 C and P··· Γ, x : A⊢spα : B,∆′ and(β : C,∆) = (β : C,∆′).
As in previous cases, w.l.o.g.∆′ = ∆ sinceβ < Γ and β < fs(P).
Now, by Lemma 3.9 3 and similar argument, there exist D,E suchthat
C�(D→E) and Q ··· Γ ⊢spγ : D,∆ and R··· Γ, z: E ⊢sp∆. By Proposition
3.6 6, there exists a substitution S such that(S 〈Γ;∆〉) = 〈Γ;∆〉 and
(S A→B) ⊳〈Γ;∆〉 (D→E). In particular, (S A) = D and (S B) = E.
By Proposition 3.8 1, we obtain P··· Γ, x : D ⊢spα : E,∆. Now, by ap-
plying Proposition 3.8 2 and the rule(cut) repeatedly, we first obtain
both Q̂γ † x̂P ··· Γ ⊢spα : E,∆ and P̂α † ẑR ··· Γ, x : D ⊢sp∆, and then ob-
tain both(Q̂γ † x̂P)̂α † ẑR ··· Γ ⊢sp∆ and Q̂γ † x̂(Pα̂ † ẑR) ··· Γ ⊢sp∆ as re-
quired.

(prop-r) : Pα̂ † x̂Q→ Q{Pα̂]x}(if Q does not introduce x)
By Lemma 3.9 4 and part 1a.

(prop-l) : Pα̂ † x̂Q→ P{α]x̂Q}(if P does not introduceα)
By Lemma 3.9 4 and part 1b.
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Proof B.4 (of Proposition 3.20).

1. Immediate from the definition, sinceB[ϕi/Xi] = A.
2. Let C = ∀Yi .A[Yi/ϕi] . Let {ϕ j } be the subset of{ϕi } which actually occur in

A. Without loss of generality, replace all of the other atomic types in{ϕi }with
fresh atomic types. By the definition of closure, we haveϕi < 〈Γ;∆〉 . Now let
{ϕk} be the set of atomic types occurring inA but not in〈Γ;∆〉. Then{ϕ j } ⊆

{ϕk}, and for some{Xk}, B = ∀Xk. .A[Xk/ϕk] . ThenC = ∀Yi .B[ϕk/Xk] [Yi/ϕi]
as required.

3. Write B = ∀Xi .A[Xi/ϕi] , where{ϕ} are the atomic types occurring inA but
not in〈Γ;∆〉. Now letC = ∀-closure(S A) 〈(S Γ); (S∆)〉 = ∀Yj .(S A)[Yj/ϕ j] ,
where{ϕ j} are the atomic types occurring inA but not in〈(S Γ); (S ∆)〉. Then
we aim to show(S B)�C. This follows because(S A) = (S B)[((S ϕi)/Xi]
and so we haveC = ∀Yj .(S B)[((S ϕi)/Xi] [Yj/ϕ j] . Finally, we must be sure
thatϕ j < (S B). Suppose that there is someϕ j ∈ (S B) (and we will show a
contradiction). Then, by Lemma 3.22 3, there are two possible cases:

ϕ j ∈ B and (S ϕ j) = ϕ j: Then, sinceB = ∀-closureA 〈Γ;∆〉, we must have
ϕ j ∈ 〈Γ;∆〉. However, thenϕ j ∈ 〈(S Γ); (S ∆)〉, contradicting the defi-
nition ofC.

∃ϕ ∈ B with ϕ j ∈ (S ϕ): Then, sinceB = ∀-closureA 〈Γ;∆〉, we must have
ϕ ∈ 〈Γ;∆〉. But thenϕ j ∈ 〈(S Γ); (S ∆)〉, contradicting the definition of
C.

4. Follows easily from the observation that for any atomic typeϕ and types
A�B,ϕ ∈ A⇒ ϕ ∈ B.

Proof B.5 (of Theorem 3.25). 1. LetA = ∀Yj .A andB = ∀Zk.B. In accordance
with the definition of the algorithm, let A′ = freshInst(A) = A[ϕ j/Yj] and
B′ = freshInst(B) = B[ϕk/Zk] . Since the call succeeds, we must have that the
call unify A′ B′ succeeds, yielding a substitution

Su = unify A′ B′ (14)

Let Cu = (Su A′). Note that by soundness of unification (Lemma 3.18) we
have(Su B′) = (Su A′) = Cu.
Define a set of atomic typesΨ = {ϕi } = atoms(Cu)\(atoms(Su A)∪atoms(Su B)).
We have thatC = ∀Zi .Cu[Zi/ϕi] while S= (Su ∩ (atoms(A)∪atoms(B))).
We will now show that(S A)�C. The argument that also(S B)�C is analagous
and will be omitted.
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Notice firstly that (using Lemma 3.23 1), we have(Sr A) = (Su A) = ∀Yj .(Su A).
Define a set of types Dj = (Su ϕ j) . Then by construction, we have that:

Cu = (Su A[ϕ j/Yj ] ) = (Su A)[(Su ϕ j)/Yj ] = (Su A)[D j/Yj]

Therefore, Cu[Zi/ϕi] = (Su A)[D j/Yj ] [Zi/ϕi] . Furthermore, by the definition
of the setΨ, we haveϕi < (Su A) . Therefore, by Definition 2.5, we have
∀Yj .(Su A)�C. Since we know(Sr A) = ∀Yj .(Su A), we have(Sr A)�C as
required.

2. Firstly, let us define (in which all of theϕ j , ϕk, ϕl are fresh):

A = ∀Yj .A (15)

B = ∀Zk.B (16)

D = ∀Wl .D (17)

A′ = freshInst(A) = A[ϕ j/Yj] (18)

B′ = freshInst(B) = B[ϕk/Zk] (19)

D′ = freshInst(D) = D[ϕl/Wl] (20)

Since(S A)�D, we know (from Definition 2.5) that, for some E′j and some

ϕ′l < atoms(S A), we have D= (S A)[E′j/Yj] [Wl/ϕ
′
l ] . Define the substitution

SA = {(ϕ′l 7→ ϕl) }, and define the types Ej = (SA E′j) . Then we obtain that
D = (S A)[E j/Yj] [Wl/ϕl] . Notice that

ϕl < atoms(S A) (21)

since theϕl were chosen to be fresh.
In a similar fashion, from the fact that(S B)�D we can deduce that, for some
types Fk we have D= (S B)[Fk/Zk] [Wl/ϕl] , and that

ϕl < atoms(S B) (22)

Since D′ = D[ϕl/Wl] , we deduce from the above that(S A)[E j/Yj ] = D′ =
(S B)[Fk/Zk] . Define next the two substitutions

SE = {(ϕ j 7→ E j) } (23)

SF = {(ϕk 7→ Ek) } (24)

By construction, we have(SF◦SE◦S A′) = (S A)[E j/Yj] = D′ = (SF◦SE◦S B′).
Therefore, the substitution(SF◦SE◦S) is a unifier for the types A′ and B′. By
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completeness of unification (Lemma 3.18), there exist substitutions S1 and
Su such that

(SF◦SE◦S) = (S1◦Su) (25)

Su = unify A′ B′ (26)

In particular, the call unify A′ B′ does not fail, and so neither does the call
unifyGenA B in question. Therefore, there exist(Sr ,C) = unifyGenA B,
where:

Sr = (Su ∩ (atoms(A)∪atoms(B))) (27)

{ϕi } = atoms(Su A′)\(atoms(Su A)∪atoms(Su B)) (28)

C = ∀Xi .(Su A′)[Xi/ϕi] (29)

For convenience, we define C′ = (Su A′), so thatC = ∀Xi .C′[Xi/ϕi] .
We seek next to show that(S1 C)�D, from which we will be able to obtain the
desired result without too much trouble. We would like to begin by showing
that (S1 C) = ∀Xi .(S1◦Su A′)[Xi/ϕi] . However, this is not necessarily true,
since we have no guarantee that theϕis are not affected by the substitution
S1. We choose to work around this, by choosing a new setϕ′i of fresh atomic
types (one for each atomic typeϕi) and employing a renaming substitution

S2 = {(ϕi 7→ ϕ
′
i ) } (30)

We can now see instead that

(S1 C) = ∀Xi .(S1◦S2◦Su A′)[Xi/ϕ
′
i ] (31)

To be able to deduce that(S1 C)�D, then (by Definition 2.5), we require a
set of types Gi such that D= (((S1◦S2◦Su A′)[Xi/ϕ

′
i ] )[Gi/Xi ][Wl/ϕl ], and

to show also thatϕl < (S1 C) .
We claim that if we define the types Gi = (S1 ϕi) then these will do the trick.
Firstly, if we define the substitution SG = {(ϕ′i 7→ S1 ϕi) } then we can show
that (((S1◦S2◦Su A′)[Xi/ϕ

′
i ] )[Gi/Xi ][Wl/ϕl ] = D as follows:
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(((S1◦S2◦Su) A′)[Xi/ϕ
′
i ] )[(S1 ϕi)/Xi] [Wl/ϕl]

= ((SG◦S1◦S2◦Su) A′)[Wl/ϕl] composing[Xi/ϕ
′
i ] , [(S1 ϕi)/Xi]

= ((S1◦SG◦S2◦Su) A′)[Wl/ϕl] Lemma 3.22 1
= ((S1◦(S1 ∩ {ϕi })◦Su) A′)[Wl/ϕl] Lemma 3.23 8
= (((S1\{ϕi })◦(S1 ∩ {ϕi })◦Su) A′)[Wl/ϕl] idempotency of S1, Lemma 3.23 3
= ((S1◦Su) A′)[Wl/ϕl] Lemma 3.23 9
= ((SF◦SE◦S A′)[Wl/ϕl] (SF◦SE◦S = S1◦Su)
= D′[Wl/ϕl] (D′ = SF◦SE◦S A′)
= D

We need to also show thatϕl < (S1 C) , which, combined with the argument
above would justify that(S1 C)�D. We will argue by contradiction; assuming
that for someϕl ∈ {ϕl } we have

ϕl ∈ (S1 C) (32)

we will show that a contradiction inevitably follows. By(Eq. 32)and(Eq. 31),
we deduce that

ϕl ∈ ∀Xi .(S1◦S2◦Su A′)[Xi/ϕ
′
i ] (33)

Then, by Lemma 3.22 4, we must have 3.22 3, we identify two cases:

Case 1:ϕl < dom(S1) and ϕl ∈ (S2◦Su A′) Then since(Eq. 30)ϕl < {ϕ
′
i }, by

Lemma 3.22 3 again, we must have

ϕl ∈ atoms(Su A′) (34)

But from the freshness ofϕl when chosen(Eq. 20) we must have:ϕl <

atoms(A′) andϕl < atoms(B′). Furthermore, by(Eq. 26), we can as-
sume also thatϕl < atoms(Su A′), contradicting(Eq. 34)

Case 2:∃ϕ,H with ϕ ∈ atoms(S2◦Su A′) and (ϕ 7→ H) ∈ S1 and ϕl ∈ atoms(H)
We must haveϕ < {ϕ′i } since this set of atomic types was chosen to be
fresh at(Eq. 30). Therefore, by Lemma 3.22 3, we must haveϕ ∈ (Su A′)
andϕ < {ϕi }. By (Eq. 28) it must be the case that eitherϕ ∈ (Su A) or
ϕ ∈ (Su B). But then, by the assumptions of this case, eitherϕl ∈

(S1◦Su A) or ϕl ∈ (S1◦Su B). By (Eq. 25), (Eq. 23) and (Eq. 24), we
have that eitherϕl ∈ (S A) ot ϕl ∈ (S B), contradicting(Eq. 21) and
(Eq. 22), respectively.
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This completes the argument justifying that

(S1 C)�D (35)

We now need to work on the form of the substitutions involved.We will
employ the set of atomic typesΨ = {ϕ j }∪{ϕk}, noting that, by(Eq. 23) and
(Eq. 24), we know

Ψ = dom(SF◦SE) (36)

We can then show:

SF◦SE◦S = S1◦Su (Eq. 25)
∴ (SF◦SE◦S)\Ψ = (S1◦Su)\Ψ
∴ ((SF◦SE)\Ψ)◦S = (S1◦Su)\Ψ Lemma 3.23 6
∴ id◦S = (S1◦Su)\Ψ Lemma 3.23 4
∴ id◦S = (S1\Ψ)◦Su Lemma 3.23 5

If we define the substitution

S3 = (S1\Ψ) (37)

then we have
S = S3◦Su (38)

Furthermore, sinceΨ ∩ atoms(C) = ∅, by (Eq. 35), (Eq. 37) and Lemma
3.23 3, we obtain

(S3 C)�D (39)

We are almost done, but the substitution actually returned from the call is
Sr = (Su ∩ (atoms(A)∪atoms(B))) as defined in(Eq. 27).
We now writeΦ = (atoms(A)∪atoms(B)) and deduce by Lemma 3.23 9 that

S3◦Su = S3◦(Su ∩ Φ)◦(Su\Φ) (40)

Finally, define S4 = S3◦(Su ∩ Φ). We observe that:

(S4 C) = (S3◦(Su ∩Φ) C)
= (S3 C) Lemma 3.23 7
� D (Eq. 39)

Therefore, we have that S= S4◦Sr and(S4 C)�D, as required.
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Proof B.6 (of Theorem 3.29). 1. By induction on the structure of the term R.

R= 〈x.α〉: Let A = typeof xΓ. From the definition of the algorithm, we have
SR = id and∆R = {α : A}. By(Eq. 3), we haveΓ = Γ, x : A. Then, by the
rule (ax), we have〈x.α〉 ··· Γ, x : A⊢spα : A as required.

R= x̂P̂α·β: In accordance with the algorithm, let:

ϕ = fresh (41)

〈SP,∆P〉 = sppc (P, Γ∪{x :ϕ}) (42)

A = (SP ϕ) (43)

B = freshInstance typeofα ∆P (44)

C = ∀-closure A→B 〈(SP Γ);∆P\α〉 (45)

〈Su,D〉 =

{
unifyGenC typeofβ ∆P if β ∈ ∆P

〈id,C〉otherwise
(46)

Sr = (Su◦SP ∩ atoms(Γ)) (47)

sppc (̂xP̂α·β, Γ) = 〈Sr , (Su ∆P\α\β)∪{β : D}〉 (48)

By induction, using(Eq. 42), we have

P ··· (SP Γ∪{x :ϕ}) ⊢sp∆P (49)

. By applying Propositions 3.8 2 and 5 to(Eq. 49) as appropriate, and
using(Eq. 43)and(Eq. 44), we obtain

P ··· (SP Γ), x : A⊢sp (∆P\α), α : B (50)

.
We wish now to apply the type-assignment rule(impR). However, ex-
amining the conclusion of this rule, we need to ensure that the result-
ing right-context will be well-formed, i.e. deal with the possibility that
β ∈ ∆P already. To do this, we consider two cases:

β ∈ ∆P: Then, by(Eq. 46)we have

〈Su,D〉 = unifyGenC typeofβ ∆P (51)

. Since the original call tosppc (R, Γ) was assumed to succeed, this
sub-call to unifyGen must also succeed, so such a pair exists. By
the soundness of unifyGen (Theorem 3.25 1), we have that

(Su C) � D (52)

(Su typeofβ ∆P) � D (53)
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. By Proposition 3.8 1, and(Eq. 50), we have

P ··· (Su SP Γ), x : (Su A) ⊢sp (Su (∆P\α)), α : (Su B) (54)

.
By Proposition 3.8 4, we obtain
P ··· (Su◦SP Γ), x : (Su A) ⊢sp (Su (∆P\α\β)), β : D, α : (Su B) and also
(Su A→B) ⊳〈(Su◦SP Γ);(Su (∆P\α\β)),β : D〉. Therefore, by applying the rule
(→R), we obtain̂xP̂α·β ··· (Su◦Sp Γ) ⊢sp (Su ∆P\α\β), β : D.

β < ∆P: Then, by(Eq. 46), we have Su = id and D = C. Further-
more, sinceβ < ∆P, by applying Proposition 3.20 to(Eq. 45), and
applying the rule(impR) to (Eq. 50), we obtain

x̂P̂α·β ··· (SP Γ) ⊢sp (∆P\α), β : D (55)

Therefore, trivially we havêxP̂α·β ··· (Su◦Sp Γ) ⊢sp (Su ∆P\α\β), β : D.

We conclude the case, noting that(Sr Γ) = (Su◦Sp Γ) by definition of
Sr .

R= Pα̂ [x] ŷQ: In accordance with the algorithm, let:

〈SP,∆P〉 = sppc (P, Γ) (56)

ϕ = fresh (57)

〈SQ,∆Q〉 = sppc (Q, (SP Γ)∪{y :ϕ}) (58)

A = freshInstance typeofα (SQ ∆P) (59)

B = (SQ ϕ) (60)

C = freshInstance typeof x(SQ◦SP Γ) (61)

Su = unify C A→B (62)

〈Sc,∆c〉 = unifyGenContexts(Su◦SQ ∆P\α) (Su ∆Q)(63)

Sr = (Sc◦Su◦SQ◦SP ∩ atoms(Γ)) (64)

sppc (Pα̂ [y] x̂Q, Γ) = 〈Sr ,∆c〉 (65)

By induction, twice (using(Eq. 56) and (Eq. 58) with (Eq. 60)), we
obtain:

P ··· (SP Γ) ⊢sp∆P (66)

Q ··· (Sq◦Sp Γ), y : B⊢sp∆Q (67)
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By Proposition 3.8 1 and(Eq. 66), we obtain

P ··· (SQ◦SP Γ) ⊢sp (SQ ∆P) (68)

Using Proposition 3.8 5 with(Eq. 59) (and applying Proposition 3.8 2
if necessary), we obtain

P ··· (SQ◦SP Γ) ⊢sp (SQ ∆P\α), α : A (69)

Now, letC = typeof x typeof x(SQ◦SP Γ) (and so C= freshInst(C),
by (Eq. 61)). By definition of freshInst, we haveC�C. By Proposition
3.6 4 and using(Eq. 62), we have

(Sc◦Su C)�(Sc◦Su C) = (Sc◦Su A→B) = ((Sc◦Su A)→Sc◦Su B)
(70)

By applying Proposition 3.8 1 twice, to(Eq. 69) and (Eq. 67), we ob-
tain:

P ··· (Sc◦Su◦SQ◦SP Γ) ⊢sp (Sc◦Su◦SQ ∆P\α), α : (Sc◦Su A) (71)

Q ··· (Sc◦Su◦SQ◦SP Γ), y : (Sc◦Su B) ⊢sp (Sc◦Su ∆Q) (72)

By the soundness of unifyGenContexts (Proposition 3.26 1),we have
that (Sc◦Su◦SQ ∆P\α)�∆C and(Sc◦Su ∆Q)�∆C. Therefore, by Propo-
sition 3.8 6, we obtain that both P··· (Sc◦Su◦SQ◦SP Γ) ⊢sp∆C, α : (Sc◦Su A)
and Q ··· (Sc◦Su◦SQ◦SP Γ), y : (Sc◦Su B) ⊢sp∆C. Using (Eq. 70) and
the rule(→L), we obtain P̂α [x] ŷQ ··· (Sc◦Su◦SQ◦SP Γ) ⊢sp∆C, and we
conclude by Lemma 3.23 1.

R= Pα̂ † x̂Q: By induction, twice, we obtain that both P··· (SP Γ) ⊢sp∆P and
Q ··· (SQ◦SP Γ), x : (SQ A) ⊢sp∆Q. By weakening (Proposition 3.8 2) as
necessary, we obtain P··· (SP Γ) ⊢sp (∆P\α), α : A. Then, by applying
Proposition 3.8 1, twice, P··· (Sc◦SQ◦SP Γ) ⊢sp (Sc◦SQ ∆P\α), α : (Sc◦SQ A)
and Q ··· (Sc◦SQ◦SP Γ), x : (Sc◦SQ A) ⊢sp (Sc ∆Q).

By the soundness of unifyGenContexts (Proposition 3.26 1),and Propo-
sition 3.8 6, we obtain that both P··· (Sc◦SQ◦SP Γ) ⊢sp∆c, α : (Sc◦Su A)
and Q ··· (Sc◦SQ◦SP Γ), x : (Sc◦SQ A) ⊢sp∆c. By applying the rule(cut),
we obtain P̂α † x̂Q ··· (Sc◦SQ◦SP Γ) ⊢sp∆c. We conclude by applying
Lemma 3.23 1, since Sr = (Sc◦SQ◦SP ∩ atoms(Γ)).

2. By induction on the structure of the term R.
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R= 〈x.α〉: By Lemma 3.9 1, we must haveΓ = Γ′, x : A and∆ = α : B,∆′

with (S A)�B. Since∆R = {α : (S A)}, and SR = id, can choose S′ = S
and then we have we have(S′ ∆R)�∆ as required.

R= x̂P̂α·β: From the definition of the algorithm, we have:

sppc (̂xP̂α·β, Γ) = 〈Sr , (Su ∆P\α\β)∪{β : D}〉 (73)

ϕ = fresh (74)

〈SP,∆P〉 = sppc (P, Γ∪{x : ϕ}) (75)

A = (SP ϕ) (76)

B = freshInstance typeofα ∆P (77)

C = ∀-closure A→B 〈(SP Γ);∆P\α〉 (78)

〈Su,D〉 =

{
unifyGenC typeofβ ∆P if β ∈ ∆P

〈id,C〉 otherwise
(79)

Sr = (Su◦SP ∩ atoms(Γ)) (80)

By Lemma 3.9 2, we must have∆ = β : G,∆′ and there exist E,F such
that

P ··· (S Γ), x : E ⊢spα : F,∆′ (81)

E→F ⊳〈(S Γ);∆′〉 G (82)

Define SE = {(ϕ 7→ E)}. Then, by construction,(SE◦S Γ, x : ϕ) =
((S Γ), x : E). By induction, using(Eq. 75), there exists S1 such that

SE◦S = S1◦SP (83)

(S1 ∆P)�(∆′, α : F) (84)

Let B = typeofα ∆P (so that, by(Eq. 77), B = freshInst(B)). By
Proposition 3.6 7, there exists S2 such that dom(S2) consists of only the
fresh atomic types in B= freshInst(B), and (S2◦S1 B) = F. Now we
have

(S2◦S1 A→B) = E→F (85)

(S2◦S1 ∆P\α) = (S1 ∆P\α)�∆
′ (86)

By using(Eq. 78) with Proposition 3.20 3, we are able to show that
(S2◦S1 C)�∀-closure(S2◦S1 A→B) (S2◦S1 〈(SP Γ);∆P\α〉), and, by
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our knowledge of dom(S2) and using(Eq. 85), we can simplify this
to obtain(S1 C)�∀-closure E→F 〈(S1◦SP Γ); (S1 (∆P\α))〉. Now, by
(Eq. 84), we have(S1 (∆P\α))�∆′. Using this,(Eq. 83) and the fact
that dom(SE) = ϕ, we use and using Proposition 3.20 4 to obtain
(S1 C)�∀-closure E→F 〈(S Γ);∆′〉. By Proposition 3.20 1, using(Eq. 82),
we obtain∀-closure E→F 〈(S Γ);∆′〉�G, and so by Proposition 3.6 1
we have

(S1 C)�G (87)

We claim that we can now show that, for some substitution S3 satisfying
S3◦Su = S1, we have(S3 D)�G and(S3 (Su (∆P\α)))�∆′, from which
(as we shall then show) we can complete the case easily. We consider
two cases:

(β ∈ ∆P): Then, by(Eq. 84), we haveβ ∈ ∆′. Since∆ = β : G,∆′, we
must haveβ :G ∈ ∆′. Now, letH = typeofβ ∆P. Then(S1 H)�G.
By (Eq. 87) and Theorem 3.25 2 (and following(Eq. 79)), there
exists S3 such that S3◦Su = S1 and (S3 D)�G, and therefore, by
(Eq. 84), we obtain(S3◦Su (∆P\α))�∆′ as claimed.

(β < ∆P): Then, by(Eq. 79), (Su,D) = (id,C). Let S3 = S1, and then
trivialyl we have S3◦Su = S1 and (S3 D)�G (from (Eq. 87)) and
(S3◦Su (∆P\α))�∆′ (by (Eq. 84)).

Therefore, in both cases, we have:

(S3 D)�G (88)

(S3 (Su (∆P\α)))�∆
′ (89)

S3◦Su = S1 (90)

Therefore, we can deduce(S3 (Su (∆P\α\β)))�(∆′\β), and so it fol-
lows that(S3 (Su (∆P\α\β)), β : D)�∆′ as needed. Finally, by combin-
ing (Eq. 83) with (Eq. 90), and applying Lemma 3.23 9, we obtain
SE◦S = S1◦SP = S3◦Su◦SP = (S3◦((Su◦SP)\atoms(Γ)))◦((Su◦SP) ∩
atoms(Γ)). Now, noting that dom(SE) = {ϕ}, we apply Lemma 3.22 2
and deduce that there exists a substitution S5 such that S= S5◦((Su◦SP)∩
atoms(Γ)), as required.
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R= Pα̂ [x] ŷQ: In accordance with the algorithm, we have:

〈SP,∆P〉 = sppc (P, Γ) (91)

ϕ = fresh (92)

〈SQ,∆Q〉 = sppc (Q, (SP Γ)∪{y :ϕ}) (93)

A = freshInstance typeofα (SQ ∆P) (94)

B = (SQ ϕ) (95)

C = freshInstance typeof x(SQ◦SP Γ) (96)

Su = unify C A→B (97)

〈Sc,∆c〉 = unifyGenContexts(Su◦SQ ∆P\α) (Su ∆Q)(98)

Sr = (Sc◦Su◦SQ◦SP ∩ atoms(Γ)) (99)

sppc (Pα̂ [y] x̂Q, Γ) = 〈Sr ,∆c〉 (100)

By Lemma 3.9 3, we have, for someΓ′,D,E and F, that

Γ = Γ′, x : D (101)

(S D)�(E→F) (102)

P ··· (S Γ
′) ⊢spα : E,∆ (103)

Q ··· (S Γ
′), y : F ⊢sp∆ (104)

For reference, we explicitly write

D = ∀Xi .D (105)

By induction, using(Eq. 91)and(Eq. 103), there exists S1 such that:

S = S1◦SP (106)

(S1 ∆P)�(α : E,∆) (107)

By (Eq. 101), (Eq. 104) and weakening (Proposition 3.8 2) as neces-
sary, we obtain

Q ··· (S Γ), y : F ⊢sp∆ (108)

Now, let
SF = {(ϕ 7→ F)} (109)

Then (SF◦S1 ((SP Γ), y :ϕ)) = ((S Γ), y : F) by construction. Using
(Eq. 93)and(Eq. 108), by induction, there exists S2 such that:

SF◦S1 = S2◦SQ (110)

(S2 ∆Q)�∆ (111)
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Now define (respecting(Eq. 94)):

A = typeofα (SQ ∆P) (112)

A = freshInst(A) (113)

By (Eq. 105)amd(Eq. 96), C = (SQ◦SP D[ϕi/Xi] ) for freshϕi . Now,
using(Eq. 110)and(Eq. 106), we have

S2◦SQ◦SP = SF◦S1◦SP = SF◦S (114)

and so(S2 C) = (S2 SQ◦SP D[ϕi/Xi] ) = (S D)[ϕi/Xi] given(Eq. 109).
By (Eq. 102)and Proposition 3.6 7, there exists S3 such that

dom(S3) = {ϕi } (115)

(S3◦S2 C) = (E→F) (116)

By (Eq. 107),(Eq. 92) and (Eq. 111) we have(SF◦S1 ∆P)�(α : E,∆).
By (Eq. 110), this means that(S2◦SQ ∆P)�(α : E,∆), and in particular,
by (Eq. 112), we have(S2 A)�E. By Proposition 3.6 7 and(Eq. 113)
(in which, say{ϕ j } are the fresh atomic types chosen), there exists S4

such that

dom(S4) = {ϕ j } (117)

(S4◦S2 A) = E (118)

(note that(Eq. 113) implies that, up to choice of fresh atomic types,
(S2 A) = freshInst(S2 A), given that S2 does not clash with the atomic
types chosen).

Due to(Eq. 115), (Eq. 117)and(Eq. 118), we deduce(S4◦S3◦S2 A) =
E. Also, by(Eq. 95), (S4◦S3◦S2 B) = (S4◦S3◦S2◦SQ ϕ) = F. By
(Eq. 116), we have(S4◦S3◦S2 C) = E→F = (S4◦S3◦S2 A→B). By
completeness of unification (Lemma 3.18 2), there exists a substitution
S5 such that

S4◦S3◦S2 = S5◦Su (119)

Now, using(Eq. 119), (Eq. 110), (Eq. 115)and(Eq. 117), we obtain:

(S5◦Su◦SQ ∆P\α) = (S4◦S3◦S2◦SQ ∆P\α) (Eq. 119)
= (S4◦S3◦SF◦S1 ∆P\α) (Eq. 110)
= (S1 ∆P\α) (Eq. 115), (Eq. 117), (Eq. 109)
� ∆ (Eq. 107)
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Similarly, we deduce(S5◦Su ∆Q) = (S2 ∆Q)�∆ using(Eq. 111). There-
fore, by(Eq. 98), there exists S6 with S5 = S6◦S5 and(S6 ∆C)�∆. Now,
S4◦S3◦SF◦S = S4◦S3◦S2◦SQ◦SP = S5◦Su◦SQ◦SP = S6◦Sc◦Su◦SQ◦SP.
Therefore, S4◦S3◦SF◦S = S6◦((Sc◦Su◦SQ◦SP)\atoms(Γ))◦((Sc◦Su◦SQ◦SP)∩
atoms(Γ)), by Lemma 3.23 9. By applying Lemma 3.22 2, using(Eq. 115),
(Eq. 117) and (Eq. 109), there exists S7 such that S= S7◦Sr as re-
quired.

R= Pα̂ † x̂Q: In accordance with the algorithm, we have:

〈SP,∆P〉 = sppc (P, Γ) (120)

A = typeofα ∆P (121)

〈SQ,∆Q〉 = sppc (Q, (SP Γ)∪{x : A}) (122)

〈Sc,∆c〉 = unifyGenContexts(SQ ∆P\α) ∆Q (123)

Sr = (Sc◦SQ◦SP ∩ atoms(Γ)) (124)

sppc (Pα̂ † x̂Q, Γ) = 〈Sr ,∆c〉 (125)

By Lemma 3.9 4, there existsB such that

P ··· (S Γ) ⊢spα : B,∆ (126)

Q ··· (S Γ), x : B⊢sp∆ (127)

By induction, using(Eq. 120), there exists S1

S = S1◦SP (128)

(S1 ∆P)�(α : B,∆) (129)

By (Eq. 121), (S1 A)�B. By(Eq. 127)and Proposition 3.8 4, we obtain

Q ··· (S Γ), x : (S1 A) ⊢sp∆ (130)

. Note that
(S1 ((SP Γ), x : A)) = ((S Γ), (S1 A) : ) (131)

Therefore, by induction, using(Eq. 122), there exists S2 such that

S1 = S2◦SQ (132)

(S2 ∆Q)�∆ (133)
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By (Eq. 129), (S2 SQ ∆P\α)�∆. By (Eq. 129),(Eq. 133),(Eq. 123)and
Theorem 3.25 2, there exists S3 with S2 = S3◦Sc. Using(Eq. 128)and
(Eq. 132), we obtain as required:

S = S3◦Sc◦SQ◦SP

= (S3◦((Sc◦SQ◦SP)\atoms(Γ)))◦((Sc◦SQ◦SP) ∩ atoms(Γ))
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