Soundness and Principal Contexts for a Shallow
Polymorphic Type System based on Classical Logic

Alexander J. Summers

Department of Computing, Imperial College London, 180 @gd@ate, South Kensington,
London

Abstract

In this paper we investigate how to adapt the well-knownarotif ML-style poly-
morphism(shallow polymorphism) to a term calculus based on a Curoytd
correspondence with classical sequent calculus, narhely tcalculus. We show
that the intuitive approach is unsound, and pinpoint theipeenature of the prob-
lem. We define a suitably refined type system, and prove itsdgsmess. We then
define a notion oprincipal contextdor the type system, and provide an algorithm
to compute these, which is proved to be sound and completerespect to the
type system. In the process, we formalise and prove coesstofgeneric unifi-
cation, which generalises Robinson’s unification to shallow-padyphic types.

Key words: Curry-Howard, classical logic, generic unification, prpal types,
cut elimination

1. Introduction

Polymorphism is a powerful aspect of most modern progrargri@inguages.
It is a mechanism for allowing a program to be applied in vagioontexts which
each expect dierent types, and allows flexibility and reuse of code. In a-non
polymorphic programming language for example, even if afiom’s behaviour
is independent of the type of its argument, it must be redefioeeach such type.
In recent years, there has been a wealth of work sparked Isethaal paper
of Griffin [1], concerning the extension of the Curry-Howard Coroggfence [2,
3, 4] to various classical logics (e.g., [5, 6, 7, 8]). In parar, the reduction

Email addressesalexander. j.summers@imperial.ac.uk (Alexander J. Summers)
URL:http://www.doc.ic.ac.uk/~ajs300m/papers (Alexander J. Summers)

Preprint submitted to Journal of Algorithms in Cognitionférmatics and LogicJanuary 12, 2010

behaviour of calculi based on classical logic has been shovimave strong and
natural correspondences with control operators in funefitanguages (e.g., [9,
10, 11, 12, 13]). In this way, proof reductions can be givetr@g computational
interpretation, and it seems feasible in principle thatlawtas based on a Curry-
Howard correspondence with a classical logic could be usetthe basis for a
practical programming language.

In this paper we investigate how to adapt the well-knownaroof ML-style
polymorphism (which we cabhallow polymorphisnm this paper) to a term cal-
culus based on classical logic, namely, fecalculus [14]. The problems here
are two-fold: firstly what diference does the extension to a classical logic setting
make, and secondly, how should polymorphism be implementdide unusual
setting of the sequent calculus? We will show that the Iddpaais of the sequent
calculus (as opposed to variants of thealculus, which correspond to logic in a
natural deduction style) provides a clearer understanafitige issues involved.

We will first review the key aspects of the Hindley-Milner apach, and then
examine how they can be brought to the more-general settitted'-calculus.
This turns out to be non-trivial; not only do some aspectsirecgextra machinery
to be adapted naturally to the sequent calculus settinghlkuntuitive approach
fails for the general system; witness reduction is violdigdhe more-general
reductions possible in th&'-calculus. This problem was not identified in the
published work by the author [15], in which a withess reduttiesult for this type
system is erroneously claimed. We examine here this protdachidentify three
suficient conditions for such a polymorphic type systerfaibto be sound in this
way. We compare with examples in the literature; in particthe unsoundness
of ML when extended with various non-functional conceptg;hsas exceptions
and control operators. By exploring the exact cause of tlsewmdness, we show
how the type system can be amended in a novel way, which is gesreral than
one of the standard approaches in the context of ML.

Having obtained a suitably general polymorphic type systemthen move
on to the question of principal types. We show that we can definotion of prin-
cipal types (which is more-suitably named “principal comsé for this calculus)
similar to the well-known result for ML. We define a princiggping algorithm,
and prove soundness and completeness of the algorithmdén r define the al-
gorithm correctly, we define the conceptgeneric unificationwhose naive def-
inition is shown to be incomplete. We define this operaticecjgely, and prove
a most-general-unifier property, generalising the classiaification results of
Robinson [16].

Finally, we discuss the definition of a naturally-arisingi&f notion of poly-

2

morphism, using existential quantificatiol) (rather than universal. Although in
a programming setting based on intuitionistic logic {asalculus and indeed ML
can be seen to be) the addition of existential quantificatioes not make any
new programs typeable, in a classical logic setting thezepemgrams which can
be made typeable in this way. We also discuss the idea of afygtem combining
bothkinds of quantification at once. Such a system can type evea programs:
the roles of the quantifiers can be seen to be complimentatyglguires a non-
trivial extension of our principal contexts results, antei$ for future work.

This paper builds on and corrects the work previously presem [15], and
is based on otherwise unpublished material from the awgirD thesis [14].

1.1. Overview

Section 2 covers the background material for the rest of #pep We begin
with a brief overview of some notation and conventions irtisec2.1, which is
followed by a review of the basic definitions of ML and shallpalymorphism in
section 2.2. Section 2.3 discusses principal types. Se2tib provides an intro-
duction to theX'-calculus, which we use as the basis for our work. Sectioritgis
body of the paper. It begins with a discussion of the inteitivnsound approach
to a polymorphic type system in the classical logic settsegion 3.1). We then
discuss the precise source of the unsoundness, and defingeoved type sys-
tem in Section 3.2. Section 3.4 deals with the problem ofqipal contexts for
this new type system. We discuss some possible extensiahtiture work in
section 4 and conclude in section 5. Detailed proofs of alhefimportant results
can be found in Appendix B.

2. Background

2.1. Notation

We give here a brief summary of the notations and conventingloyed
in this paper, particularly regarding the introduction afiders within our type
language, and the handling of substitutions, renamingsweittin types.

The binders we will be employing within types come in the fasfr(second
order) logical quantifiers: specifically (universal quantification). We will usu-
ally refer to types containing these symbolscamntified types We choose to
distinguish between bound and free ‘type variables’, uslifigrent notation and
language to describe each. The ‘free type variables’ aerexf to asatomic
types and are represented byy’, ¢1, ¢, etc.. Thebound type variableare cho-
sen from the latter part of the uppercase Roman alphabétyix v, Z, X;, X, etc..

3

For example, we can write both—¢ andVYX.(X—X) as types. We believe that
maintaining a clear distinction between these two notignsath natural (since
their meanings and behaviours are quitffedtent) and illustrative. We believe
the clear distinction to be necessary for the presentafi@uotechnical results,
which mostly require a careful treatment of quantified types

We use the early part of the uppercase Roman alphabBtC, D, E, F, A’, A,
etc.) to represent Curry typesin order to describe quantified types separately
from Curry types, we use the overlined version of this notati.e., the symbols
A, B,C etc. (note however that we may also wraefor Curry Types). Types
which may be quantified are referred togeneric types

When introducing bindings, we require operations to renfieeeatomic types
¢ with bound type variableX, and we write this operation &{X/¢]. Dually,
we also require the replacement of bound type varialflesith (Curry) types
B, which we write asA[B/X]. Note that these operations are kept distinct from
the usual Curry substitutions, which replace atomic typ#l @urry types. We
assume that all of these operations bind tighter than angdbgonnectives in the
types: for exampley X.A[X/¢] should be read agX.(A[X/¢]).

Since we will frequently be concerned with the question oichlatomic types
occur within a type, it is convenient to define the aimgA) to be the set of all
atomic types in a typé (note: this does not include bound type variables). We
can then writep € atomgA) to state that an atomic type occurs within a (generic)
typeA. For convenience, we allow ourselves to write thigasA when this does
not cause confusion. We extend this notation to contextsarobvious way, e.g.,
¢ € (I'; Ay means that there exists a statementTinA) featuring a typeA such
thaty € A.

When discussing generic types, i.e. types of the fgavX,..... YXq.A, we
find it convenient to introduce thenotation, e.g.,vTi.A. We do not explicitly
guantify over the subscripts, but it is always intended thatubscript,j,k etc.
is bound under the correspondingWe extend this notation slightly informally
to facilitate the statement and proof of our results, by gisiras a shorthand for
repetition in other statements. For example, we wi¢ for the set{¢q, o, . . .},
and we writep; € A to mean {; € Aandg, € Aetc..”

As usual, we assume all binders in types areonverted appropriately to
avoid clashes, and that all substitutions and renamingshwmtrioss binders are
capture-avoiding.

As usual, Curry types are those built from atomic types ardihary— operator.

2.2. The Hindley-Milner Type System for ML

The archetypal example of a shallow-polymorphic type sysgthe Hindley-
Milner [17, 18] type system, which underlies the type systemthe ML pro-
gramming language. The main advantages of this approactttoateof System
F [19, 20], for example, are practical: type checking anektggpsignment (within
certain constraints, as we will explain) are decidable,@rdbe implemented by
relatively straightforward algorithms [21]. In contrasthas been shown that the
corresponding problems are undecidable for System F [22].

We briefly recall here the basic definitions, and refer theleeéo Damas and
Milner’s work [21] for the details.

Definition 2.1 (ML Syntax) The syntax oML termsis defined by:
M,N = X|MN|AXM |Fixg.M |let x= M in N

The construcFix g.M is included to allow typeable recursion in the calculus.
For simplicity in our discussions of polymorphism we chotsstudy the subset
of ML expressions withowtix, and will hereafter only consider ML expressions
within this subset.

ML valuesare defined by: Vi:= x| Ax.M

Definition 2.2 (ML Reductions) The reduction relation in ML is the transitive,
compatible closure of the following two rules:

(AXMV -y M[V/X]
(let x=V in M) —-g. M[V/X]

We choose to present types and type assignment rules usirgpgroach of
Damas and Milner [21], as this gives a clearer treatment thatof [18].

Definition 2.3 (Generic Types [2f). The set ofeneric typess built from the
usual Curry types by allowing any number (possibly zeroy guantifiers to be

2Damas and Milner call these “type schemes” rather than “demges” [21]. We also dis-
tinguish between atomic types and bound type variablesregisehey choose not to. In fact, in
[18] the set of Curry types is also extended with type cortstan represent concrete types such
an integers, booleans, etc. However, this is more a practesideration, and we leave them out
in these discussions for simplicity. Since, as we shall saetype derivations are closed under
substitution on atomic types, we can imagine extendingetbabstitutions to replace atomic types
with concrete types; everything works out in the same way.

5

built on the outside. We recall below the definition of Cuypes AB (extended
with occurrences of type variables X), and then define gerngpiesA:

AB:=¢|X|(A— B)

A= VX VXK. .. VXA (n > O)

A generic type iswell-formedif it contains no free type variables (type variables
X not occurring under a correspondirgX. binding). We will assume all types to
be well-formed in this paper, unless otherwise stated.

Note that in the case = 0 in the definition of generic types, we assert that
any Curry typeA is a generic type itself. We use the symbdb represent a basis
of assumptions, as before. We write,, M : Ato mean ‘there is a type derivation
assigning the type (schema@)to the termM under the basis of assumptidh
The form of these type derivations is defined as follows:

Definition 2.4 ([21]). ML-type assignmenis defined by the following derivation
rules.

'k, M:A T, x:Ar,N:B

F7X'A|_MLX'A F»—MLIethI\/IinNZB ()

I'x:Ar,M:B I'sykM:A-B T'r,N:A
(—1) (=€)
'k, AXM . A—B I's,kMN:B
'k, M A * I's, M : VXA
— (VD) — (VE)
'k M YXA[X/] 'k M A[B/X]

*if ¢ is not free inl.

As a standard example, consider the ternz2(1y.y). This remains unty-
peable in ML, just as it is in tha-calculus, because is bound in a lambda-
abstraction over the self applicatiam The self application requiresto be given
two types, of the formA—B andA (for some Curry type#& andB), whereas the
lambda abstraction forcego take a unique Curry type. Using thet construct, it
is possible to form the terret z= Ay.y in zz which will reduce in the same way
as our original term. However, it is typeable in the ML systé&mcause the type
Y X.(X—X) is derivable forty.y, and diferent instances of this type can be taken
for the two occurrences af(e.g. p—¢)—(p—¢) and (—¢) respectively):

6

— (a9 (ax) (ax)
Vi Ly : ¢ ZYX(X=X) Lz YX(X—=X) ZYX(X=X) 2 YX(X—=X)
I vE

—_ (-
LAY © @' = vr Z VX (X=X e z: (p—9)—=(9—¢) ZYX (X=X hnz: o—¢
LAY : VX (X—X) Z VX (X=X Lz Z: p—¢

(=8)

(let)
hletz=Ayyinz z: p—¢p

Although ML admits less polymorphism than System F doesag tine ad-
vantage of being very practical: in particular, it has a @pal type property.
Milner presents an algorithm (callet’) that takes as input a pair of basis and
term ([, M) and returns a pair of substitution and tyi& A), representing the
most general typing for the term (if one exists) using anansation of the basis.

The formal results concerning the algorithm depend on thewng defini-
tion (essentially from [21]):

Definition 2.5 (Generic Instance)A generic typeA = ¥X;.A has ageneric in-
stanceB = VY A if there_exist types s Band atomic typeg; such that A’ =
AB/X]1[Y/¢il, andg; ¢ A.

We writeA>B in this case, read B is a generic instance d¥”.

Considering the types as logical formulae, in Natural Dé&duacterms this
definition essentially says th&<A if and only if we can deriveB from A using
a series of {&) steps, followed by a series of [) steps. Equivalently in terms
of the sequent calculu8=<A if and only if the sequené r B is derivable using
only theV-fragment of the logic (i.e., the rule§1),(VE) and @x)). This notion
of derivability gives an intuition as to wh may be considered ‘smaller’ or ‘less
general’ tharA.

This is made formal by the following results:

Theorem 2.6(Properties of the algorithiid/).

Soundness:If WK, M)) =(S,A)then(ST) K, M : A.

Completeness:If, for a basisI” and term M, there exist S and A such that
(ST) Ky M : A then there exist substitutiong &nd S, and atype B such
that W', M)) = (S1, By and(ST) = (S,0S;: T') and(S,0S; B)>=A.

3Note that the “types” following are not well-formed typesitle.g.,A" forms a part of a well-
formed type B). The equality we write here just means syntactic equalityhese portions of
types.

2.3. Principal Types and Principal Typings

It is worth making clear at this point what we mean by a “pnuaditype prop-
erty”. Wells [22] wrote a paper specifically addressing agnt, in which defi-
nitions are given for “principal types” and “principal tyms”. For a type system
to have a “principal typing property” there must be an altjon which, given any
term of the syntax, either determines that the term is nadite at all or else de-
rivesall of the information used in a typing judgement for the ternméothan the
term itself), in anost-generalvay. What this information exactly is, and what the
notion of ‘most general’ means depends on the specific aadand type system.
For example, the simply-typed lambda calculus has a prahd¢yping property,
for which ‘most general’ essentially means “can be obtaimgdpplying substi-
tutions and adding extra (redundant) information to thetexir” (weakening)”.
On the other hand, ML, equipped with the shallow polymorgipe assignment
described abovejoes nothave a principal typing property [23]. Informally, this
essentially is because, given a teknwith free variables, it is not possible to de-
termine the most general ‘amount’ of polymorphism to assfanthe types of the
free variables. In most cases, the stronger the assumptiads inl’, the stronger
the derived type foM, and vice versa. Instead, ML has a weaker property, which
is referred to as arincipal typesproperty. Essentially, this says that if ofiees
an initial basis of assumptionis as well as a ternM, then one can compute the
most general pair of substitutidhand generic typé (if such a pair exist) such
that S T) k.M : A. Since a substitutio§ cannot &ect the quantified (bound)
parts of the types iii, it can be understood that the initlatletermines exactly the
polymorphic behaviour which will be assumed for the fregalales ofM. This
is what the algorithni}’ achieves.

2.4. TheX'-calculus

In this paper we will work largely with th&'-calculus, which is an untyped
term calculus based on a Curry-Howard Correspondence \éfsical sequent
calculus. As such, the reduction rules of tNecalculus correspond (in the ty-
peable cases) with the processcat elimination[24]. The calculus is essentially
anuntypedvariant of one of the term representations for sequent kedqaroofs
used in Urban’s PhD thesis [8], and the reduction behavi®tinat described by
Urban’s cut elimination. The calculus is named afterAhealculus of van Bakel
et. al. [25], but is presented with propagation of cuts asimplicit’ operation
(similar to the treatment of substitution in thecalculus). The notation we use is
not based on Urban’s prefix notation, but rather the infix tataof [25], since

this makes more explicit the ingoutput symmetry of the calculus, in particular
in the case of cuts.

Since the sequents of classical sequent calculus havepteuitirmulas on
bothsides of the sequent, when defining a term inhabitation ®tdyic it is nat-
ural to have two alphabets of names to index them. We see tfawses indexing
formulas on the left of the sequent as inputs, and call teecketsand those on
the right as outputs, and call thestugs[25].

Definition 2.7 (X'-Termg). The terms of th&'-calculus (ranged over by P,Q,R,
etc.) are defined by the following syntax, wheyg range over the infinite set of
socketaanda, B8 over the infinite set ghlugs(sockets and plugs together form the
set of connectork

PQ:= (xa) |XPa-B|Pa[y]XQ|PaiXQ
capsule export import cut

The“symbolises that the connector underneath is bound in thehetl subterm—
a bound socket is written as a prefix to the term, whereas acholuig is written
as a sffix. For example in the impoi®B[y] XQ, occurrences g are bound in
the subternP and occurrences ofare bound ifQ. A connector which does not
occur under a binder is said to be free. We will fi3¢°) to denote the free plugs
of P, and similarlyfs(P) for free sockets.

The capsuleis the basic building-block of the calculus, which consista
single input-output pair (which may be thought of as two eofdhe same con-
nection). Anexportis a construct reminiscent of function abstraction; it Isiah
input (socket)x and an output (plugy (whose combination may loosely be con-
sidered a function fronx to @), and provides this newly-constructed “function”
on the output plugg. An importis the dual notion to an export, and provides a
pair of terms, one with a bound plug, and one with a bound f2ocKee idea is
that an appropriate export term can be inserted betweemwthétms in an im-
port, providing a way of connecting them together. Theis the active construct
in the syntax, which attempts to connect the output plugsetanin P with the
input sockets namer in Q. In order to understand the reduction behaviour of

4A more-general version of the calculus presented here sdauhe PhD thesis of the author
[14], in which the underlying logic includes negation as Mad implication as primitive con-
nectives. This allows for completeness in a logical sensd,aamore-symmetric computational
content. However, for the purposes of this paper, the distin is not particularly relevant, and
we drop negation in order to simplify the presentation.

9

this calculu8, and also to aid various discussions later on, it is usefoétable to
describe the location of occurrences of a free connectotema. To this end, we
make use of the following definitions:

Definition 2.8 (Exhibiting and Introducing a Connectorffor any X'-term P and
socket x , we say Bxhibitsx if there is an occurrence of x at the top-level of P’s
syntactic structure (i.e., not located within a subterm nf P

We say that HAntroducesx if x € f§(P) but, for all proper subterms "Pof
P, x ¢ fs(P’) (alternatively, x occurainiquelyat the top-level of P’s syntactic
structure).

We define exactly the same notions for plagsstead of sockets x.

For example’)?(x.a>ﬁ-a exhibitsa but does not introduce (since there is a
further occurrence ok within a subterm). Also{x.a) introduces (and therefore
exhibits) bothx anda.

The most important use for these definitions is in understayttie behaviour
of the cut-elimination procedure. A c& 1 XQ in which P introduceser andQ
introducesx can always be removed (and possibly replaced by new cutsbatw
the subterms oP andQ) - this is the ultimate goal of the cut elimination proce-
dure. These rules (which are called tbgical reduction rules) are described as
follows.

Definition 2.9 (Logical Rules) The logical rules are presented by:

(cap) : YT T RXB) = V)

(mpR: (YPB-a)a T Rxy) - YPBy a ¢ p(P)
(mpl): (ya)a i X(PENZQ - PBMZQ _ x¢fsP.Q)
e o, | IVPBIZR) [¢ p(P).
(imp): (YPB-a)a T XQY[XZR {(Qywp)ﬁ ﬁR} {X ¢ QR

The logical rules arenly applicable in the special case of a cut whose sub-
terms both introduce the appropriate connector. In allrathees, a cut is reduced
by ‘seeking out’ the positions in its subterms where the appate connectors
are exhibited. For example, i does not introduce, then a cufPa 1 XQ can be
reduced by pushing copies of the cut wiglthrough the structure d?, depositing
a cut at the level of each occurrenceaofn P. A similar behaviour is possible

SFor a more-detailed explanation, please see citevanBakghandLescanne’05,Summers’08.

10

whenx is not introduced irQ. This reduction behaviour is referred to &ft¢ or
right-)propagation

In contrast to theX-calculus, we present propagation as a meta-operation,
external to the calculus itself, in much the same way as gubsh is treated in
the A-calculu$. We introduce the notatioR{a<+XQ} to denote the result of left-
propagation, which propagates through the structure otdhma P, connecting
each occurrence af with a new cut withQ, via x. The notationQ{Pa<+>Xx} is
used for the analogous right-propagation operation. Nwethis notation is not
a part of the syntax of the calculus; rather it denotesr¢iselt of evaluating the
associated operations. These are defined as follows:

Definition 2.10 (Propagation OperationsJhe operation Rr<+XQ} is defined re-
cursively over the structure of P, as follows:

(y.alawXQ} = (ya)a 1 XQ
(yPassXQ} = (V) B B#a
(VFB-){a=>XQ} = (J(PlarsXQ)B-a)a T XQ
(YPB-ia+>XQ) = Y(Pla+-XQ})B-y, y#a
(PB4 YR{a+=XQ} = (Pla«-XQ}B [4 MR{a+XQY})
(PB T Ry.a)ia++XQ} = (Pla<»XQ})B 1 XQ
(PB1YR{aXQ} = (Pla«>XQ)B T Y(Rla+>XQ}), R+ (ya)

The operation @Pa<++X} is defined recursively over the structure of Q, as
follows:

(XS Pa+x} = Pa X(X,8)
(ypHPa<>x} = (yB), _ y # X
(YQB-y){Pa+>x} = Y(Q{Pa+>Xx})B-y

P@ X(QIP@+>x})B [X] \R(P@+>X}))

= (Q(Pa+>x})B [Y(R{Pa+>X}), z# X

= Pa 1 J(RPa+>X))

= (Q{Pa+x})8 T Y(R(Pa<+x}), Q # (Xf)

Q

(QB[AYR)Pa==x
(XB)B T YRIPT
(QBTYRIPE

S
g

X
X

(PaesX]
(PaeoX]
(TQBy)Pa=sx)
(QBIXNYR(PaX)
(PaeoX)

(PaesX]

(Pa<sX)

S
g

6X can be seen as the ‘explicit’ (i.e., propagation is inclueeglicitly in the reduction rules)
version of theX' calculus, just agx can be seen as the ‘explicit’ version of thealculus. Interms
of Urban’s work, theX' calculus is essentially the untyped version of hig,x cut elimination
procedure, whileX can be equally compared with the ‘localised versienjs: [8].

11

The propagation operations are used to define theptwpagation ruledor
this calculus.

Definition 2.11 (Propagation Rules)\Ve define twaut-propagatiomules.

(prop) : PaiXQ — P{a<«>XQ} if P does not introduce
(propR) : Pa 1XQ — Q{Pa<+-x} if Q does not introduce x

Hereafter, we will write— for the reflexive, transitive, compatible reduction
relation generated by the logical and propagation rules.

2.4.1. Type Assignment fat

Since X' is the untyped analogue of a typed term assignment for séquen
proofs, it comes with a natural notion of type-assignmehe fiype system that we
present in this section corresponds with a simple sequéaloa for the restric-
tion of classical logic to the two connectives implicatior) and negation-).
The sequent calculus on which the type system is based isanvaf Kleene’s
G3, in which structural rules are treated implicitly. Araity weakenings are al-
lowed at the leaves of a derivation (in theex) rules), while contraction is treated
implicitly per rule; if a statement is introduced to a contexwhich it is already
present, it is simply merged. Gentzen’s original formwlatalso includedex-
changerules, for reordering the statements on the left and righat séquent; in
our setting we treat these collections of statements asqdensd) sets.

Definition 2.12 (Types and Contexts)

1. The set ofCurry typess, ranged over by AB, is defined over a set atomic
typesV = {¢1, 2, ¢3, . . .} by the grammar:

AB:=¢|A-B

2. Aleft contextI" is a partial mapping from sockets to types, denoted as a finite
set ofstatementscA, such that thesubjectsof the statements (the sockets)
are distinct. We writd”, x:A for Tu{x:A}. When writing a context a, X:A,
we indicate that eithel" is not defined on x or contains the same statement
x:A. We writel'\x (read as T without x”) for the context from which the
statement concerning X, if any, has been removed.

Right contextsA, and the notationg:A, A and A\« are defined in a similar
way.

12

3. A pair (I'; A) is usually referred to simply as @ontext and is a shorthand
for the sequent (with labelled formulaB)} A. We will sometimes also refer
to lefgright contexts simply as contexts, when it is clear to do so.

Armed with these definitions, we can define the simple typgassent sys-
tem for the calculus.

Definition 2.13 (Typing for X').

1. Type judgementare expressed via a ternary relation:PI" + A, wherel is
a left contextA is a right context, and P is aX'-term. We say that P is the
witnessof this judgement.

2. Type assignmenms defined by the following sequent calculus:

— .AA(aX) PZ-FI—aZA,f Q:-F,x:An—A(CuD
Xa) - T, XAk a A PetXQ:- T'+A

P:I,x:Ara:BA (5R) P:Tra:AA Q:T,y:BrA
_)
XPa-B:-T+pB:A-B,A Pa[X]YQ: I',x:A—»BrA

(=L

We write P:- T+ A if there exists a derivation using the above rules that has
this judgement in the bottom line.

It is easy to show that a judgemdnt- I" + A includes types for (at least) the
free connectors iR. In terms of the Curry-Howard Correspondeneegpresents
the syntactic structure of a proof of the sequémrtA, soP is in fact a witness to
this sequent being provable in the underlying logic. Not there is no notion
of a type forP itself; rather, the whole contexI’; A) describes a consistent way
of assigning types t@’s connectors.

It is important to emphasise that the typing rules includetom of implicit
contraction; if a new statement is introduced on the bottom of a rule, but it
was already present in the context, then it is simply mer§féel.do not consider
duplicate statements, as we consider contexts to be umaordsts. This also
implies that a typing rule cannot be applied if it would reésolthe addition of
a statemenk: A to a context’, say, in whichx was already assigned affiirent

type.

13

; (a9 : (@9
(Xy) o+ X:A->Akpy: A-A (p.a@)y .* p:A-Akpa:A—-A

— @& ——— — - - =5

(ym) o Yipkprig (5R) XYy [Kpa) o+ X (A-A)—=(A-A), X A-Akpa: A-A VD)

WY.m7-0 o+ kspbig—op R XYYy [X] B p.a) -+ X:(A=A)—>(A—=A), X: VX (X—=X) kpa : A-A VL)
Wy.mm-6 o+ kspf: VX (X—>X) XYy [X] P(p.a) -+ X:¥YX(X=X) kpa: A-A

— = o : (cuy)
Ry.m)m-0)0 + X(xy)y [X] ;Kp.a) .- wpatAA

Figure 1: Example of shallow-polymorphic type assignman'i

Example 2.14.1f the judgement P- x: A+ «: B,3: A had been derived, and one
wished to apply thé—R) rule to this statement, binding the connectors x and
it would not be possible for the connector exhibited in thenpise to bes, since
this would meaiB was assigned both type A and type>B. Put more succinctly,
the X'-termX(x,8)a-B is not typeable in the type system presented above.

We have the following result for the simple type system:
Theorem 2.15(Witness Reduction)if P :- T'+ A, and P— Q, then Q:- T+ A.

Proof. X'-terms to which types have been assigned correspond torsguoefs
and can be equivalently represented in the term calculuslmdn this result then
follows from the soundness of the cut elimination procedirdrban [8]. O

3. Universal Shallow Polymorphism forX'

3.1. The Intuitive, Unsound Approach

The key to the use of polymorphism in ML is in thet construct, which is
interpreted as a substitution both syntactically (acewdp its reduction rule)
and semantically (see [18]). The polymorphism present en(lt)-rule essen-
tially gives a way of typing the substitution about to takaga such that multiple
occurrences of the name to replace need not all be typed igatine way. The
let-construct is a necessary extension to the syntax for aoshalblymorphic ap-
proach (short of allowing polymorphism to be used directihvabstractions and
applications, which leads to System F), since there is ngtim the syntax of the
A-calculus to represent these substitutions.

In the X'-calculus, there is a construct already present which caseba to
encode substitution. The cBtr + XQ can, by right-evaluation, approximately sim-
ulate the substitution d? for the occurrences of in Q. This observation led to

14

the investigation of a notion of shallow polymorphic types@nment for theX'-
calculus. Following what seems to be the analogous apprimabtL, one adds
generic types to the type language, which are allowed to bd f@ the typing
of cuts and axioms (but not the other syntax constructs)tlamdtandard logical
rules forV (this time for the sequent calculus) are added to the typgrasent
rules.

Definition 3.1 (Naive Shallow Polymorphic Type Assignment fr[15]). Types
A, B and type-schemesare defined as follows:

AB:=¢|X|(A— B)

A= VX VX VXA (n > O)

The shallow polymorphic type assignmentidiis defined by the following rules
(whereA represents a generic type of Definition 2.3):
P The:AA Q: I,X:AkeA

— — (a) cu!
(Xa) - T, X: AR i AJA P2 XQ i T hepA (cu

P Thea:AA Q: T X:BkspA P: I, Xx:Arga:B,A

= ot (-R)*!
Pay]XQ - I,y: A>BhgA XPa-B - I ke : A—>B
P I, x: AlB/X] e A P: Theo:AA
[_]) @ (IRY?
P: I,X:YXARgsA P I'hgpa: YXA[X/¢], A
Lifx ¢ Tanda ¢ A. 2. if ¢ does not occur i, A.

We include a notion of implicit contraction in the above sylso that if a
derivation rule introduces a statement which was alreadgeptt in the context, it
is simply merged.

Notice that generic types are not used in theR) or (— L) rules. This en-
forces the restriction that thé-symbol may not appear underneath a#' in a
type, and is similar to the way the«(1) and (—E) rules are treated in ML.

A subtle problem occurs in defining a shallow polymorphictggsignmentin
this way, which suggests a possible relaxation of Defini#idi? to allow multiple
statements in a context with the same subject. The mechdmitaking instances
of a generic type employs th& L) rule, which can be seen to allow instances
of the vV formula to be taken further up in a derivation. However, bseathe
instanceA[B/X] appears also on the left-hand side of the sequent, ande#iddb
with the same name (socket), this eliminates the possitfifurther instances

15

being taken further up in the same ‘branch’ of the derivatitive statemert X.A
may not remain in the upper sequent of the rule, since wetimsidefinition 2.12
that thesubjectsof the statements in a context are distinct. Thinking in &eoh
the logical proofs however, the subjects of the statemertsat a consideration
- sequent proofs need not always be annotated (dependirggrdsentation of
the logic) and would certainly allow a use of th&/) rule to include an implicit
contraction. For example, in the following proof thel foriai’ X.(X—X) is used
intwo (VL) rules:

(AX) (AX)
(A—A) F (A—A) (A—A) + (A—A)
(=L
(A—A), (A—>A)—-(A-A) F A-A
v
YX.(X—=X), (A—>A)—(A—A) F ASA

(L)
YX(X—-X) - A—A

This might correspond to a type derivation in a shallow payphic system,
(where we useB as a shorthand for the formul®-GA)), as in the following
derivation:

L)

Example 3.2.

Xa) - X:Bra:B 0 yp):y:Brg:B o
(Xaya [X] WyB) ;- x:B,x:B—»BrpB:B oo
Xaya [X] WY B) - X:¥YX(X—X),x:B—-Brp:B
Xaya [X]KYB) - X:VX(X—>X)FB:B

(VL)

(VL)

This is a type derivation we would like to be legal in this gyst since we can
view this as part of the type derivation for a term analogauUsttx = Ay.y in XX,
which we wish to be able to type (c.f. Figure 1). Itis posstblevork around this
problem, by adjusting the set of rules so that instances edaken implicitly of
a quantified formula. In fact, this solution will be employedthe next section,
for reasons which will become clear. However, for the momenexplore a more
basic solution, which yields a type-system whose undeglgi@rivations are still
standard logical proofs.

To deal with the problem of instantiating quantified typeshis system, we
initially considered relaxing Definition 2.12, allowing ttiple statements in a

16

context with the same subject. This seems at first glancé&a m®ve, but hope-
fully the example above has shown that it allows intuitivebund derivations to
be constructed. In order to retain soundness, we neededdarétil that when-
ever a connector (plysocket) is bound, some statements involving the connector
do not remain in the context. We therefore insisted that whienthe rules-6R),
(—£) and cut) were employed, the connectors mentioned in the top linéef t
rule (which are bound in the construction of the respeci&rens) had a unique
statement in the rule. This enforces that all the types fasranector disappear
from the contexts when the connector is bound. We also etsigtat a deriva-
tion is not complete unless the subjects of the statemerteeifinal sequent are
unique (so the relaxation is only usable temporarily withiderivation). As a
consequence of these restrictions, if several statemetttshve same subject (but
different types) are used in a derivation, it will be necessaryti@V rules to be
applied until the types of these statements match, and tieegamtracted into a
single statement. Until this takes place, it will be impbsgsito either bind the
connector (plugsocket) concerned, or complete the derivation.

This is the type system which was presented in [15], in whiaioton of
principal contexts (with respect to an initial context) veéso defined, in the spirit
of the principal types property for ML. As we shall explainxhewhile this type
system seems in many ways analagous to the way polymorpkismreduced
to ML, in our more general setting (and particularly in thegence of classical
logic), this approach is unsound.

3.1.1. Failure of Subject Reduction

Unfortunately, the ‘intuitive’ approach outlined in theeprous section does
not guarantee subject reduction (although it was origyrialieved to do so [15]).
The problem is due to the interaction between the use of aigiie., not rep-
resented syntactically in the calculus) polymorphism i type derivation, and
the ability to perform left propagation reductions. In partar, since the implicit
guantifier rules can occur at any pointin a derivation, a cay tve left-propagated
‘through’ an occurrence of th&{) rule used to type the left-hand subterm. In or-
der to construct a new type derivation for the resulting temmneed to be able to
‘relocate’ the occurrence of th&R) rule, to be applied further up on the deriva-
tion. This is not always possible, because the side-camditf the rule is not
always satisfied in this new position. We can make this cteaith an example.

Example 3.3(Failure of Subject ReductionPefine P= X(Y{x.@)a-y)B-y. This
term can be assigned the same contexts as the identity, typg@system presented

17

above:

(@)
(=R)
(=R)
(YR)

Xaa) - X1, Y i Qhea @B
VX@)@y i+ X phaBle,yip—p
XTX@-Y)B-Y - Dby o4
KX)TY)BY o+ Ohpy - YX(X—X)
Therefore, if we place this term in a cut which ‘applies ittgeif’ (i.e. in an

ML sense, we construct let=zP in z z, cf. Example 3.2), then the resulting term
can be typed as follows:

Pt Ospy: YX(X2X) (28)0 [Wiw.e) -+ Z: YX(X>X) hwspe 1 ¢’ —¢’
PY 1 Z(26)5 [Ww.€)) ©* Oinspe: g’ —¢’

(cut)

However, this term can be shown to reduce as follows:

(RFx.)@-y)B-7)y T 2265 [W(w.e)) R
— (XK xaya-y)y T2Az06)o [Ww.)))B-y)y T A(z6)6 [Ww.€)) (prop+)
— X(X.€)B-€

The resulting term is not typeable in this system. In faa,pgloblem came
rightin the first step, when the cut was propagated to thetlafvugh the structure
of the term P. In the typing derivation for P, the cruc{&R) rule comes right
at the very end. But, when propagating a copy of this cut ensié structure of
P, in order to maintain the same quantified type for the newtlveite must be a
similar occurrence of thévR) rule on this copy; i.e., the rule needs to be moved
upwards in the derivation with the cut. This is not possilliethis point x is still
a free socket in the context, carrying the typehich is to be generalised by the
(YR) rule.

In short, the condition on th@/R) rule is not necessarily preserved by moving
it further up the typing derivation, and so, when cuts arépebpagated ‘past’ an
occurrence of thévR) rule, it is not always possible to rebuild the same quantifier
rule in a suitable new position. In general, this means thdy@e derivation
cannot always be reconstructed.

With hindsight, the failure of subject reduction is not teatprising. It is well-
known that the original ML approach to polymorphism is unsin the presence

18

of various extensions to the language, such as referenaepteons and the con-
trol operator cajkc [26]. Calculi based on classical logic can also be closely
related to functional calculi extended with control operat and we believe that
(for example), the version of ML with cdtlic included could also be encoded into
the X'-calculus. Therefore, the polymorphic type-system preseabove must
almost inevitably be unsound. Furthermore, Fujita has shibwat a similar un-
soundness arises in the context of an alternative calcalsesdoon classical natural
deduction [27]. However, we believe that the source of thr@oundness is actu-
ally much clearer in the sequent calculus setting: it isrdleat the attempted left
propagation of a cut ‘past’ an occurrence @R in the left-hand typing deriva-
tion is the exact source of the problem. In fact, we can desdhe essence of
this problem by observing that the presence of the follovihmge aspects will
guarantee such an unsoundness:

1. Implicit universal quantification.

2. Call-by-value reductions (not necessaahyly these reductions, but their in-
clusion in the calculus).

3. Ability to expresgencode classical structural rules (e.g., contraction)ipaan
ulating statements on the right of a typing sequent.

Our counter-example depends on the presence of these dateieds. Implicit
guantification allows reduction to ‘ignore’ the quantifiées which are violated
in the example. Left-propagation of a cut which could be tHgitopagated (i.e.,
a call-by-value reduction) ensures that such a violatiomoabe ‘fixed’ in the
reduct (i.e., there is in general no way of typing the redyctdr example, resort-
ing to non-quantified types). Finally, (implicit) right-otraction in the typing is
used to cause the failure of the side-condition on #¥) (after left-propagation
is performed.

It is interesting to note that examples exist in the literatof proposed cal-
culi and type systems which include each possible paimofout of the three
ingredients for unsoundness described. The ML calculusrhpbcit universal
guantification, and call-by-value reductions, but no dtzddogic features such
as right-contraction in the type system. Parigot’s presént of thedu-calculus
in [7] includes implicit universal quantification, and thieilgty to (indirectly) ex-
press right-contraction in the type system, however theatoh rules are es-
sentially restricted to call-by-name reductions. Ong ateh@rt’s definition of
call-by-valuedu-calculus [12] includes call-by-value reductions, and pgrmits
right-contraction to be expressed in the type system, buuhes for polymor-

19

phism are included. Therefore, in each of these works, orleeothree ‘ingredi-
ents’ described above is missing, and so the unsoundnesewerecerned with
is avoided.

There are three main approaches described in the literfdudealing with
this unsoundness in the context of ML:

1. Introducing a separate class of (‘imperative’) atomjuety [28], which must
be used whenever an ‘imperative’ feature such agocails to be typed, and
may not be generalised using théR) rule. In our setting it is less obvi-
ous how to understand this solution, but it amounts essinitepermitting
polymorphic types only on cuts where the left-hand subtetisfies certain
properties (we conjecture that these properties amouhgteubterm repre-
senting a proof valid iminimallogic, but this idea is not explored here).

2. Restricting reductions to a call-by-name strategy [28jurns out that the
problematic cases cannot be reached by call-by-name redsctThe rea-
son for this can be fairly clearly seen in the context of Mecalculus and
the counter-example presented above; restricting tobgalflame amounts
to insisting that cuts be propagated preferentially to thlety and only left-
propagated if the socket bound in the right-hand subtermtisduced. In
such a situation, any cut which can be typed with a quantifipd thay also
be typed without quantification; this is because the unigasmof the socket
means that the ability to take multiple instances of the tfied type is ir-
relevant. Therefore, by the time a cut is left-propagated,may depend
essentially on the subject reduction property of the sinygle system.

3. Restricting the form of let-bound terms to bind only valy@0] (i.e., only
allow terms of the fornmlet x = V in M. Again, the soundness of this ap-
proach can be seen clearly in our setting; restricting tae@here amounts
to restricting the left-hand subterm of clR& 1 XQ to the cases where in-
troducese. In such a system, no left-propagation reductions can eker t
place, and so the problematic scenario is avoided.

Unfortunately, given that our original aim was to eventydkfine a type sys-
tem in which both existential and universal quantificatiauld be employed,
none of the solutions above seem very desirable. We willaasplhy this is so
for each in turn:

1. This approach breaks the logical foundation of the tystesy, and, while
practical in the ML setting, it is not clear how it would be atked to deal
with existential quantification, and whether a useful systeould result.

20

2. Unfortunately, just as a call-by-name reduction straisgequired to make
implicit universal quantification safe, a call-by-valussgégy would be needed
to ensure subject reduction for a system with similar erisaé polymor-
phism. Thus, no reduction strategy would work for a systeth woth kinds
of polymorphism.

3. Similarly, in order to ensure that subject reduction Helda system with
both kinds of quantifiers, one would need to restrict theesydb allow both
kinds of quantifiers in the typing of cuBx ¥ XQ only in the case when both
P introducesr andQ introducesx. Ensuring this condition was met and pre-
served by reduction would result in a system with almost reduwigpolymor-
phism - these cuts can be typed just as well in the simple fradymorphic)
type system.

By examining the problematic cases in more detail, we wete &bcome
up with a fourth solution (which is in fact, a generalisatiointhe restriction to
values, above). This is, to restrict the points in a derratvhere polymorphic
generalisation (i.e., thé/R) rule in the previous type system) may be employed.
In order to avoid the unsoundness described, we only allavergdisation of a
statement immediately when it is introduced into the déiova For example,
when the &R) rule is applied, the type for the exhibited plug may be galissd,
but if it is not, then it cannot be later on in the derivationheTadvantages of
our solution are that it imposes fewer restrictions on thgetgystem than the
restriction to values (more terms are typeable), and thébes not eliminate in
principle the possibility of a useful extended system baseboth existential and
universal quantification.

The observation we have gained from the sequent calcultisget that the
unsoundness of the naive system is directly caused byfthgrtgpagation of cuts
Pa 1 XQ past occurrences of th&g) rule in the typing derivation foP. We note
that this can only happen because, in general, it is alloweduch occurrences
to exist in positions far devoid from the points in the detima (and term) where
occurrences af are exhibited. Since it is these points which the left-pgatien
of the cut reaches, the cut can of course pass over occusrentiee {R) rule on
the way. The third solution listed above ([30]) can be unied then as removing
the possibility of such ‘gaps’ between the occurrences ahd the occurrences
of (YR) applied to the type of; by insisting on the strong requirement that
introducesy, i.e., that there is exactly one occurrencexah P, and that it is at
the top-level, anyYR) rules to be used in typing the cut must also occur at this top
level. However, we observe that it wouldfBoe to guarantee the weaker property,

21

that there are no ‘gaps’ between each occurrenceafd the polymorphic rules
applied to the type for the occurrence; this guaranteesathat ‘seeking out’ the
occurrences ok need never cross over such rules.

Consider the followingX'-term, for example (where the subtefhis left un-
specified): R .

(Xxaya-p)e[i] j(KXxa)ya-B))B TZP

The left-hand subterm of the cut contains two copies of tleatitly function
X x.a)a-B, both of which exhibit occurrences of the outgifthe other names
within the terms are also identical, but since these are ¢hatuis only for com-
parison). The two ‘copies’ of the identity are independeinbwe another (the
surrounding import does not bind any plygsckets in the subterms, and acts as a
‘dummy context’ for this example). Since each copy can bemihe polymorphic
type YX.(X—X), it seems reasonable for the cut to employ this type, alsw- F
thermore, since the/R) rule applications needed to derive the ty¢ (X— X)
can be located at each of the points wheiie exhibited, there is no need to risk
the possibility of the cut ‘crossing’ these rules by lefopagation. Essentially,
if the polymorphic generalisation steps in a derivation barocated at the same
syntactic level as the connector whose type they apply tehgéed, the deriva-
tion is safe from the potential unsoundness described aldws notion is tricky
to formalise in a type system with rules for manipulatingmjifeers independent
of the other rules in the type system (e.g., tH&€) and (#R) rules in the system
presented above). However, since we are now proposing tlchtrsiles be em-
ployed only at the points where the corresponding conngetiee introduced, we
can instead present a system with the polymorphism stefi$ iiuto the other
rules. This will be presented next.

3.2. An Improved Shallow Polymorphic Type System

We writetypeof XI" andtypeofa A to denote functions which look up the type
assigned to the connector by the context, and if none is dkfegurn a fresh
atomic type. For example, If = {x:A y:B} thentypeof xI" = A, while, for
y # 2 # X, typeof A" = ¢ for some fresh atomic typge.

We now extend Definition 2.5 to allow the comparison of (r)gtdntexts as
follows:

Definition 3.4 (Generic Instance for Contexts)Ve extend the notion of generic
instance to (right)-contexta;,A, as follows: A;>A, & (@ € Ay = a €
Ay & (typeofa Aj)>(typeofa Ay).

22

It is also useful to have an explicit notation for a ‘closurefation on types,
which characterises the behaviour of # rule. This rule can be used to replace
types with more general (larger, in therelation) forms, provided this is sound
with respect to the context in which it is used. Thus thistretadepends not
only on the types which are changed, but also on the typesmrésthe rest of
the context (c.f. the condition on th#R rule). We introduce a relation on types
which coincides with any number of validR steps being applied to the same
statementr : A say, in a context’; A).

Definition 3.5 (Closures and fresh instances)1. Forany generlctypeA, Band
contex«r; A) we sayA closes taBin (I A) and writeA <., B, if and only
if there exist X and g; @ such thatB = VX A[Xi/¢i], whereg; ¢ (I'; A) and
@i ¢ B.

2. For any generic typd = ¥X.A, we define freshingk) = Alxi/X] where
theg; are fresh atomic types.

We have the following results for these definitions:

Proposition 3.6. 1. <is a preorder on generic types.

2. For any contextsI; A), <, IS a partial order on generic types.

3. For any contextgl’; A) and generic type#, B, C, if A~B andB <., C and
A is the type for some connector(i; A), thenA=C.

4. For any generic type#,B and substitution S, k=B then(S A)=(S B).

5. For any generic type8,B, contex{T"; Ay and substitution S, i <., B then
there exists a substitutior’ Such that dorf8’) < (atomgA)\atomg(I"; AY))
and(S’ B) = B and(SoS’ A) <s s s, (S B).

6. For any type A, generic types andB, and contextT'; A), if A <., A and
A>-B then there is a substitution S with d(8) C (atomgA)\atomg(I'; A)))
and(S A Lo B

7. For any typeA = ¥X..A and Curry type B, if A= freshins(A) = Algi/X]
and A>B then there exists a substitution S such that @m= {@} and
(S K)=8B

Proof. See Proof B.1 in Section B. O

We are now able to define our amended type system. The essktive o
system is to “bake in’the quantifier rules at the points where the corresponding

"Thanks to Gavin Bierman for this terminology!

23

connectors are exhibited in the derivation. This avoidspibesibility for cuts to
propagate through the quantifier rules, since they occuctlgxat the points at
which cuts are deposited and propagation Balts

Definition 3.7 (Improved Shallow Polymorphic Type Assignment). The
(sound) shallow polymorphic type assignmentXoiis defined by the following
rules (whereA represents a generic type of Definition 2.3):

P: I X:Arpa:B,A

——— (@)* R)2
(Xa) - T, X:Arpa: B, A m’ﬂi'rFSP,B:E,A —R)
P:Thea:AA Q:-T,y:BksA P:Thea:AA Q: I X:AkA
— — (—=L)?° (cud
Pa[X]yQ :- I, Xx:Ch, A PatXQ: kA

LA-B. 2 (A—B) <, C. 3 C>(A—B).

In comparison with the previous (unsound) proposal, thie tyystem can be
seen as a restriction in which the (now implicit) uses of duian rules, which
could previously occur at any apparently valid point in aggerivation, are now
restricted to be applied in precise positions. In fact, ahbsquantifier rules are
implicitly applied immediately after the statement whibley dfect is introduced
into the context. For example, an occurrence of th€)(rule in the naive type
system, which bound a statement originally introduced byesurrence of the
(— L) rule, is (in the new type system) implicitly included in thew version of
the (L) rule, by allowing the type fok in the premise to be a generic instance
of the type forxin the conclusion of the rule. This essentially permits amynber
of implicit applications of the{£) rule here.

Note that in the new type system, the problematic term fromngxe 3.3 can
no longer be typed. This is because the t&m X(¥(x.a)@-y)B-y can no-longer
be typed with a polymorphic type far. Any type derivation for this term must

8Note that there exist presentations of ML which “bake in” thantifier rules as well. How-
ever, the analogous system in our work would bake all quantifiles in at the point of a cut
occurrence in a derivation. This does not avoid the poteatisoundness of cuts being propa-
gated past these occurrences (and indeed, doesfact the natural unsoundness of the ML type
system in the presence of control operators [26].

24

have the following form:

(@)
(=R)
(=R)

Xay - Ty:CX: Ak B,5:D, A
Vxaya-y ;- I, X:Ary E,B:D, A
XFxay@-y)B-y - Thpy E, A

whereA>B andC—A <;,.as.ca) E and alscA—D <., .c,, E. SinceA andB are
Curry types,A>B means thafA and B are the same. Sindg—A is “closed to
E” in a context in whichA occurs, none of the atomic typesAnmay be closed,
and soE must be of the form/Yi.(C’—>A) for someC’. However, sinceA—D
is “closed” in a context in whiclE occurs, none of the types lmay be closed
at this point either, and sB must (also) be of the formr\?j.(A—>D’) for some
D’. These constraints can only all be fulfilled if there are nargifiers, and
E = A—A. Without a polymorphic type foy, the term on the right of the cut in
Example 3.3 cannot be typed (the “self-application” fails)

We can show the following properties for this type system:

Proposition 3.8(Basic properties) 1. Forall substitutions S, if P- I' k. A then
P: (SDkK:.(SA).
2. (Weakening) If P- 'k, A, and(I'UI"”; AUA") is a well-formed context, then
then P:- TUI” K, AUA'.
3. (Strengthening) If B- T'ul"” K, AUA’, with no sockets x occurring both Iri
and in f§P), and similarly no plugsr occurring in bothA” and fdP), then
P: I'k,A.

4. If P :- T, X: Bry A andA=B then P:- (I'\X), X: Ak, A.
5. If P :- 'y A, a: AandA=B then P:- T'k, (A\@), a : B.
6. If P :- 'k, AandA>A’ then P:- Tk, A,
Proof. See Proof B.2 in Appendix B. O

The new type system is a proper restriction of the old oneclvban be under-
stood by adding back the explicit quantifier rules in thevadype system wher-
ever the>= and <., relations are employed in the improved type system. We omit
the rather-lengthly details here, since we do not depentismeasult. However, in
brief, in the case of thea§) rule one employs ara) rule followed by a (possibly
empty) sequence of/(£) rules, followed by a (possibly empty) sequencesR)
rules. In all other cases which emplay a (possibly empty) sequence ofL)

25

rules is added. In all cases which emplay.,,, a (possibly empty) sequence of
(YR) rules is added.

In order to deal succinctly with the more-complex inferengles of the im-

proved type system in the following proofs, we employ théoiwing straightfor-
ward lemma:

Lemma 3.9(Generation Lemma) 1. (x.a) :- [k, A if and only if" = I, x: A

andA = a: B, A’ with A>B.

2. XPa-B:-Tr,Aifand only if x¢ T anda ¢ A andA = A’,3:C and there
exist A,B such that AB <.,, C and P:- T, X: A, : B, A’.

3. Pe[X]YQ:- 'k, Aifand only ifa ¢ A and y¢ I'andI’ = I”, x: C and there
exist A,B such thaf>A—B and P:- I" k,a: A, Aand Q:- I, y: Br,A.

4. Pa+XQ: 'k, Aifand only ifa ¢ A and x¢ I" and there existé such that
P:Thea:A Aand Q:- T, X: Ak, A.

Proof. Each case follows from the fact that each syntactic constart be typed
by a unique typing rule, imposing exactly the conditionscdieed. O

We can now show that this new type system amends the unsasdhthe
previous one.

Theorem 3.10(Witness Reduction for Improved Type Assignment)l. If both
of the following hold:

P:Thea:AA (1)
Q: I,X:ArA (2)

then we have:
(@) Q{Pa<«>Xx} :- 'k, A
(b) P{a<«+XQ} :- Tk, A
2. IfP: - Tr,Aand P— Qthen Q:- I'k,A.

Proof. See Proof B.3 in Section B for full details. We duplicate heefew repre-
sentative cases:

1. (a) By induction on the structure of the tefpn

Q = (xB): ThenQ{Pa+>x} = Pa 1 XQ and the result follows by appli-
cation of the ¢ut) rule.

26

Q=(p),y+x ThenQ{Pa<+x} = Q. Sincex ¢ f¥Q), By (Eq. 2)
and Proposition 3.8 3 we obtaip :- 'k, A as required.

Q= QBINZQ: _
QPa«>x} = Pa T Y((Qu{Pa<+x})B [y] ZAQ:{Pa+>X})) in whichy
is fresh. By Eqg. 2) and Lemma 3.9 3, there exiB{C,D,I” such
that D>(B—C) andI" = I",y:D and (by weakening, by apply-
ing Proposition 3.8 2 where necessary) bQih:- T, X: Ak,8:B,A
and Q, :- I, X: A, 2: Ck, A. By induction, twice, we obtain that
both Ql {Pa<sX} - T'k,B: B, A and alsoQ,{Pa<>x} :- T, z: C K, A.
SinceD>(B—C), we can apply the-6.£) rule to obtain the judge-
ment Qx{ P"«»x),B [V] ZAQ.{Pa«>x}) :- I,y: DK, A. Finally, we
apply the ¢uf) rule to obtain the required result.

(b) By induction on the structure of the terth The argument is simi-
lar to the previous part, and we show only the most-intengstase,
whereP = yPB-a. ThenP{a«+XQ} = (Y(Pi{aXQ})B-y)y T XQ,
in which v is fresh. By Eqg. 1) and Lemma 3.9 2, there exiBC
with Py ;- T,y:Bk,8:C,A and B-C <., A By applying Propo-
sition 3.8 2 as necessary, we obtdm :- I', X: A, y:Br:8:C,A and
Q:-I,x:AY:Br,B:C A. Byinduction,Pi{a«XQ} :- I,y: Bk,3:C,A.
By the rule (>R) we obtainy(P:{a++XQ})B-y - Tkey: A, A. Finally,
by the rule ¢uf) we obtain thatY(Pl{aw’iQ})ﬁ-y)’;?T’iQ - I'pA as
required.

2. By inductions on the number of reduction steps, and thetire of the term
P, we need only consider the case wheres the redex itself, and is reduced
in one step t®. Therefore, we show the witness reduction result for each of
the reduction rules in turn:

(cap) : (xaya T YKY.B) = (XpB)
Supposex.aya T KY.B) - Tk A. By Lemma 3.9 4 ¢ Aandx ¢ T
and there exist8 such thatx.a) :- T'k,a: B,Aand(y,8) :- I, y: Bk, A.
By applying Lemma 3.9 1 twice, there exiAL,I",A’ such thaf" =
I",x:AandA = B8:C, A’ with A~B andB>C. By Proposition 3.6 1,
A>C. Therefore, by the rulea§), we obtain(x,8) :- I, x: Ak,3:C, A’
as required.

(impR : (XPa-B)B T Yy.y) — XPa-y (if B ¢ fp(P))
SupposeXPa-B)B T KY.y) i Tk, A. By Lemma 3.945 ¢ Aandy ¢ I’
and there exist€ such thakPa-8 :- T'k,3:C,Aand(y.y) :- I,y:Ck,A.
By Lemma 3.9 2, there exis4,B,A” such that A—B) <., C and

27

P: I,x:Ara:B,A” and §:C,A) = (8:C,A”). SinceB ¢ P, by
Proposition 3.8 3, we may assume without loss of generdiiy e
haves ¢ A”, and therefore that” = A. By Lemma 3.9 1, there exist
D,A’ such thatA = y: D, A’ andC>D. By Proposition 3.6 6, there ex-
ists a substitutio® such that$ (I'; A)) = (I'; Ay and § A-B) <., D.
By Proposition 3.8 1, we have :- T, x: (S Ar,a: (S B,y:D,A’. By
the rule &R), we deduce thakPa-y :- T'k,y: D, A as required.
(propR) : Pa i XQ — Q{Pa<+>x}(if Q does not introduce)x
By Lemma 3.9 4 and part 1a.
(prop1) : Pa XQ — P{a<«>XQ}(if P does not introduce)
By Lemma 3.9 4 and part 1b.

3.3. Encoding ML inX'

Using our previous observation concerning the fact kizdnd a cut can both
explicitly represent a substitution, we define an encoding® language of ML
into X'.

Definition 3.11 (Encoding ML inX').

TxIM = (x.@)
TAXMIM = TMIYB-a
MNLY" = TMIYB + TN [y] Zza)
Met x=M in NIY" = TMU3"B + XTNIM"
where yz, 3,y are fresh connectors.

This is an extension of the encoding &fcalculus given for theX-calculus
[25]. In all cases there is exactly one occurrence of the plug the resulting
X'-term, and this is the only free plig

Lemma 3.12(Cuts simulate substitutions)
1. For all ML-terms M N, TNIY(TM Y Besx) — T(N[M/X]) IM".

9Note that this is consistent with the logical perspectivétmse calculi also: the restriction of
classical sequent calculus to precisely one conclusiohemight of the sequent gives Gentzen’s
sequent calculus for minimal logic, which underpins typftactional programming languages
via the original Curry-Howard Correspondence.

28

2. For all ML-terms M N, TM M3 + XTNIM- — T(N[M/x]) 1M

Proof. 1. By straightforward induction on the structure of the tédm
2. From the previous part.

O

The fact that such a cut behaves like the substitution of tiggnal system
relies on the fact tha® occurs only once in the left-hand subterm of the cut. If
an arbitraryX'-term were to appear here in whigroccurred many times, the cut
might be activated to the left (via the rulact+)), and copies of the right-hand
term made during propagation; then the behaviour might ltte gifterent.

Returning to our encoding of ML, we have the following result

Theorem 3.13(Simulation of ML). For all ML-terms MN, if M —,. N then
TMIY" — TNI™.

Proof. Examining definition 2.2, there are two cases to consider.

(M =(ax.M; My)) ThenN = M;[M;,/x]. Applying Definition 3.11, we can see
that:

TAxMg) Mo = TAXMIY™5 + TTM M€ [y] Zz))
= (XTMul}"¢-6)5 + VITM M€ [y] Zz))
— TMIME T MMM 6 +Zz28))
— M M€+ Y(ﬂ—MlJ]é\sAL[ﬁ/‘ﬁ])
= TM M€ XM

This case is completed by Lemma 3.12.

(M =let x= M, in M;) Again, N= M,[M,/x]. The result follows immediately
from Lemma 3.12, noting that

Met x= M; in MlJ],gAL = [M,IM €+ YWMlJJ,?”L

O

We can show that our type system is at least as flexible as $itwécted type
system for ML which we have generalised:

29

Proposition 3.14(Preservation of TypingsFor all ML-terms M, ifl k, M : Ain
the type system in which polymorphism is restricted todets which bind values
[30], thenTMI}" :- T, B:A.

Itis natural to ask whether our generalisation is usefutedriginal context of
ML. For example, can we define a type system for ML based onlbkergations
of this chapter which allows more typeable terms than [38Y & still sound?
We can answer this question in thfimmative; if we define a type system via
our encoding into th&'-calculus (i.e., we encode ML-terms and then type their
encodings), we obtain a more permissive system. A simplmpbeof this extra
flexibility can be seen as follows:

Example 3.15(Enhanced type assignment for MLonsider the following ML-
term: let x= (lety = Azz in y) in X. This term reduces to the identitg.z, and it
would be nice if this could be reflected by its assignabledyperthermore, since
there are no free variables in the term (and no imperativauess, of course),
it seems as though it must be safe to do so. However, the vedtréction [30]
does not permit the outermost let-construct to employ arpoiphic type, since
lety = Az.z in yis notavalue. Considering the encoding iAo we obtain (using
the pluge as output of the whole term((ZzB)B-y)y T Wy.6))s T Xx.a). The
polymorphic type derivable for the ter’f(zﬁ)ﬁ-y can be ‘carried through’ each
of the cuts, and in particular, when the subte¢y®) is typed, the polymorphic
type can be assigned tammediately, as is required by the system. The first part
of such a typing derivation follows (the outermost cut istypnalogously to the
one shown):

@B zpbiy
() (@)

HzB)By mpy:vx.(XjX) Y6 0 YIVX(XoX) kpd : VX (X—X) (o)
ZzB)B-Y)Y TTY:0) 1+ Orspd: YX.(X—=X)

Therefore the application of our ideas to ML yields a moreapssive type
system than that proposed by Wright [30]. Our type systenh mat allow a
polymorphic type to be given to the result of an applicatibat allows greater
flexibility when typing nested let-bindings (cuts). A mattetailed exploration of
the precise class of programs which are permitted by ouroagp;, and whether
this can be safely extended, remains future work.

3.4. Principal Contexts
It is well known that a notion of principal types for ML termgists (as pre-
sented by Milner), with respect to an initial babisThis result is shown through

30

the definition of the algorithmid’, which takes as input an ML-term and initial
basisI’, and can be used to compute the most general pair of sulmstititand
generic typeA such that$ I') k., M : A.

In the case of Milner’s algorithmy/, the types returned are not quantified,
but in showing the completeness of the algorithm Yhelosure of the type (see
Definition 3.19 below) is taken. The closure can be seen tearta type into its
most general form, and so it can be argued that the pringipalghould be defined
after this closure is taken. This is the idea we follow here;will generalise the
types of our outputs as much as possible, in our definitiongfrecipal context.

In order to formalise our results, we require the usual motibCurry substi-
tution, along with some auxiliary definitions:

Definition 3.16 (Substitutions)

1. A substitutionS is a (possibly empty) set of paifg, A) where eachy is
a distinct atomic type, and each A a type. The pair is meanetwte the
replacement of occurrences@fvith A. Hence, as notational sugar, we write
such pairgp—A).

2. For any substitution S and type A, thetionof S on A, writtenS A is
defined recursively as follows:

A [A if A(p—A) € S
(S¢) = {go otherwise }
(S A—A) £ (S A)— (S A)

3. In the special case where the set of pairs is empty, we usecéasggmbol
id, and call this thadentity substitution

4. We extend this definition to allow substitutions to act ortexts in the obvi-
ous way (i.e. the substitution is performed on all the typebe context).

5. For a substitution S we define dé®) = {¢ | (S ¢) # ¢}.

. For a substitution S we define ran@ = U cqoms) atoMgS ¢).

7. A subsitution S igdempotentf, for all atomic typesp, ((S ¢) ¢) = (S).

(o2}

Principal contexts will be defined using Robinson’s unifma&lgorithm [16].
Unification is also extended to contexts of sockets (andtidalty for plugs) in
the following definition:

Definition 3.17 (Unification) 1. The algorithm unify [16] takes two types as
arguments and returns a substitution (or fails: we do not etdailure cases

31

explicitly, but assume that if none of the definitions belgplya then the
algorithm terminates immediately with failure). It is defthas follows:

unify ¢ ¢ =id
unify ¢ A =(p— A ifpe¢A
unify Ag = unifyp A
Unify A—A, Bi—B, = 5,054
where
S; = unify A B,

Sz = unify (S; A2) (S1 By)

2. Unification is extended to contexts as follows (wh@érdenotes an empty
context):

unifyContext® I', = id
unifyContext$, I', if x ¢ I,
SZOS]_ if x:Be I,
where
S; =unify AB
S, = unifyContextgS; (I';\X)) (S1 (I'2\X))

unifyContextgx: A, I'1) I';

Recall that for a well-formed context (A, I'), it does not automatically follow
thatx is not mentioned i" (so long as it is with the typ#), which is the reason
for explicitly removingx in the recursive call above.

We assume the classical soundness and completeness fesultsfication,
along with their extension to contexts:

Lemma 3.18(Soundness and Completeness of Unification [16])

1. If unify A B succeeds, then it yields an idempotent substit8, satisfying
(SuA) = (Su B).

2. If there exists a substitution S such thigt A = (S B then unify A B suc-
ceeds, yielding an idempotent substitutiqn &d there exists an idempotent
substitution Ssuch that S= S’0S,,.

3. If unifyContextd™; I', succeeds, then it yields an idempotent substitutipn S
satisfying(S, I'1) = (S, Iy).

4. If there exists S such thd® I';)) = (S I';) then unifyContext§';, I', suc-
ceeds, yielding an idempotent substitutiqn &d there exists an idempotent
substitution Ssuch that S= S’0S,,.

32

We can define principal contexts in our shallow polymorphécsion of X',
with respect to a given initial left-contektwhich gives types to the free sockets
in a term. We define an algorithm, based loosely on‘Wealgorithm of [21],
which takes as input a'-term P and a left-contexF, and either fails (in which
caseP is not typeable) or else produces a pair of substituBand right-context
A, representing the least substitution and strongest aghtext possible such that
P: (ST)r,A. Before we are able to define this algorithm, we need to define a
number of ‘helper’ operations.

Firstly, we require an operation to take the ‘strongestsale of a generic type
Ain a contextT; A); essentially this implicitly applies th&/R) to the appropriate
statement as many times as possible. Viewed otherwise pr@ton computes
the ‘largest’ (in the> relation) generic typ®, such thaiA <., B.

Definition 3.19 (V-closure) The V-closureof typeﬂ_with respect to a context
(I'; A), is defined by¥-closureA(I; A) = VX; ... VXq.(A[Xi/¢i]) wherepy,, ¢n
are exactly the atomic types occurringAnbut not in(T"; A).

The process of-closure may be seen as taking the ‘largest’ possible form of
a type, in terms of the ordering imposed By We can show that this operation
does indeed compute the ‘largest’ possible type, by theviafig result:

Proposition 3.20(Y-closure is the most general closurl)B = V-closureA (I’; A)
then:

1. A <. B.

2. If A <, C thenBxC.

3. For all substitutions S(S B)>V-closure(S A) ((ST); (S A)).
4. If A=A’ thenB=V-closureA (I'; A’).

Proof. See Proof B.4 in Section B. O

In our amended type system, whenever a statement is ineeddoto a right-
context it may be ‘closed’ to a stronger type (with matguantification). Fur-
thermore, this is the only point in the derivation at whiclesd kinds of gen-
eralisations may be applied to the statement. For our WyfeFance algorithm
to compute the most general right-context possible, it usk the operation of
Y-closure whenever such closures are permitted by the rules, in oodebtain
the strongest possible type so far. For example, if we werarimur algorithm
on the termX{x.a)a-B, we would expect it to generate a type such@s) for g
but then to also quantify (close) it to the most-general jdssypeVX.(X— X).

33

This approach seems in line with the presentation of our ilyfggence rules;
we are employing them in the most-general way possible. ket leads to
a new problem when the contraction of multiple occurrendea plugg in a
term takes place. In generalfldirent quantified types get computed by the algo-
rithm for the diferent occurrences of a plgand at some stage these need to be
‘merged’ into just one type that works in all positions. Inimpgle type system,
without quantified types, one usually applies Robinsonifieation algorithm to
perform this ‘merging’. However, we need to deal with thet fd@at quantifiers
will, in general, occur in the types. Furthermore, we wisé thsulting type to
itself be quantified as much as possible.

This leads to a desire for an operation which, given two gerigpesA and
B, computes a third generic ty@@ which is the ‘most general’ type which can
be used in place of both andB. This has parallels with unification; indeed we
would expect that if botiA and B contain no quantifiers, then it would perform
exactly the operation of unification. On the other hand\ #nd B contained no
atomic types, it would seem reasonable that the operationldlcompute the
‘biggest’ (in the> sense) generic type which is a generic instance of Bathd
B. In general, we seek the ‘biggest’ generic typend minimal substitutiol®
such that bothg A)>C and S B)>C. Informally, we seek a most general solution
in S andC to the problem:

(SA)>C & (S B)=C

We define an algorithm, which we call ‘generic unificatiom',arder to com-
pute this ‘most general solution’. In order to do so, we neeihtroduce op-
erations to modify the domains of substitutions. This isawse, during the al-
gorithm, fresh instances of the generic types will be taken the substitutions
subsequently defined will (in general) act on the fresh atdypes introduced.
However, these types were not present in the original germypes, and so the
resulting substitution would not be the most general onejight perform the
minimal operations o\ and B but also perform other operations which are re-
dundant from the point of view of the initial problem.

In order to overcome thesefficulties, we define two new operations on sub-
stitutions. Firstly, we define theestriction of a substitutiors to a set of atomic
types®, which is written §N®) and is itself a substitution which acts on elements
of ® exactly asS does, and on all other atomic types as the identity subistitut

As a shorthand, we also define a complementary operg&ion(dom(S)\®))
(i.e. restricting a substitution to everythimmt the set®), which we write as

34

(S\®) and read asS without ®”.

We give formal definitions as follows:

Definition 3.21 (Restriction of a substitution)ror any substitution S and set of
atomic typesb, therestriction ofS to @, written (S N @) is defined by:

SNd)={lg-Allp > A eS&ypecd}

We also define the shorthand:

(S\®) = (SN (domS)\)) = {(¢ = A)ll¢ = A) €S & ¢ ¢ D}

In order to reason formally about th&ect of these operations later on, we

will require a number of properties about their definitions.

Lemma 3.22(Range and domain)

1.

2.

For any substitutions §S, if dom(S;) N rangdS,) = 0 and dongS;) N
ranggS;) = 0 then(S,0S;) = (S10Sy).

If S,0S; = S40S3 and donfS;) NranggS;) = 0 and donS,) Ndom(Sz) = 0
and donfS;) N ranggS3) = 0, then there exists a substitution Such that
Sl = S5OS3.

. For any substitution S, generic typeand atomic type, if ¢ € (S A) then

either:

@) pe atomz{A) andy ¢ dom(S), or,

(b) ¢ ¢ atomgA) and there eX|st$ e atomgA) with ¢ € atomgS ¢’).

For any binding renamlngﬁx /¢i], and any generic typA and atomic type
p, ifpe atom$A[X /¢i]) theng € atomgA) andg ¢ {@i}.

Lemma 3.23(Restrictions) 1. If atomgA) C {z;} then(Sn{g;} A) = (S A).

2.

For any two sets of atomic typég} and {@;}, and for any generic typ8,
we haveA\{ei)\(@;} = (A\lgih\{@i} = A\(Iei} U {g]).

. For any substitution S generic tyﬁeand set of atomic typds}, if it is the

case that ator(®) N {3} = 0 then(S A) = ((S\{g)) A).

For any substltutlon S and set of atomic tyges, if dom(S) < {g} then
S\{g} =
. Forany substitutions Sand S and set of atomic typds}, if {g}Nndom(S,)N

rangg(S1) = 0 then(S,0S)\{@) = (So\{@))o(S1\{@)).

. For any substitutions Sand S, and set of atomic type{s} if {p}ndom(S,) =

0 and{g} N domS,) N rangdS;) = 0 then(S,0S))\{® (Sz\ NoS;.

35

7. For any substitution S, generic typeand set of atomic typd®}, if (S A) =
Athen(S\{p} A) = A.

8. For any substitutions S /Sif it is the case that for allp € dom(S’), we have
(S’ ¢) = (S ¢), then it holds that 5= S N dom(S').

9. For any idempotent substitution S and set of atomic typgsve have:

S = ((SN{®h(S\{@}) = (S\{Bh((S N {¥})

Armed with these definitions and results, we can now presendefinition of
generic unification.

Definition 3.24 (Generic Unification)

unifyGenAB = (S;, VX.Cu[X/¢i])
where
A = freshins(A)
B’ = freshins(B)

Sy = unify A B
Cu = (SuA)
(@i} = atomgC,)\(atomgS, A)uatomgS, B))

S: = (Su N (atomgA)uatomgB)))

Note that this algorithm may fail, in the case where the gaify X B’ results
in failure. As usual, we do not model the failure case exgicbut speak of
success or failure of the algorithm as a whole.

We can give a formal justification for the definition of the@ighm, using the
following results:

Theorem 3.25(Soundness and Completeness of Generic Unificatibo) any
generic type#\ andB:

1. (Soundness:) If unifyGeh B succeeds, resulting in a pa(8,, C) then we
have(S; A)>C and(S, B)=C.

2. (Completeness:) If S is a substitution @d@ generic type such thés A)>D
and (S B)>D, then unifyGerA B succeeds, resulting in a pais;, C), and
there exists a further substitutiorf Such that S= S’0S, and(S’ C)=D.

Proof. See Proof B.5 in Section B. O

36

Just as for the simple type assignment system (DefinitioB)2vie require
the generalisation of unification to contexts, we requinehiikre generalisation of
generic unification to right-contexts. We choose to omitactete definition, but
depend on the following properties, which are relativelgyeto guarantee given
the previous theorem:

Proposition 3.26(Soundness and Completeness of Generic Context Unifigation
There exists an algorithm unifyGenContexts which takesrigid-contextsA,
and A, as arguments, and (if it succeeds) returns a pair of suligiiuS, and
right-contextA,, satisfying:
1. If unifyGenContexta; A, succeeds, then we ha{&, A;)>A, and(S, Ay)=A,.
2. If S is a substitution and a right-context such thd A;)>A and(S Az)>A,
then unifyGenContexts, A, succeeds, and there exists a further substitution
S’ such that S= S’oS, and (S’ Ay)>A.

We are now in a position to define our type-inference algorith

Definition 3.27 (spp9. The proceduresppc ::(X',T) — (S, A) is defined in Fig-
ure 2.

Example 3.28.Consider the following('-terms:

M = X{x.a)a-B

N = Me[i] M N
O = X(Kx.a)a-y)B-y
R = (z26)6 [2] W(w.€)

Then we have (some examples are shown in detail in Appendix A)

sppc M, IN) = (id, {B: YX.(X—X)}) for any contexi”
sppc (\, {i : E—>F}) = (id, {8:YZ.(Z—2)}) for any Curry types EF
sppc O,I) = (id, {y: p—¢}) whereg is fresh, for any context
sppc R {z: E—E}) falils, for any Curry type E
sppc R, {z: YX.(X—=X)}) = (id, {y: ¢—¢}) whereg is fresh
sppc Mg+ ZR 0) = (id, {y : ¢—¢}) wherey is fresh
sppc NB1ZR {i : E-F)) = (id, {y : p—¢}) Wheregp is fresh
sppc OB 1ZRI) fails, for anyl’

Note that the last of these examples is the term from Examftesice this
term runs to untypeable terms, the algorithm is correct jiectet. We can now
give our principal contexts result.

37

sppe({x.a),T) = (id, {a: A}
where
A = typeof X' _
sppc(XPa-B,T) = (Sy, (Sy Ap\a\B)U{B: D})
where

¢ = fresh
(Sp, Ap) = sppd(P,I'U{X: ¢})
A= (Spy)

B = freshinstance typeaef Ap
C = V-closure A»B ((Sp I); Ap\a)
(Su. D) = {unifoenC typeof8 Ap if B € Ap
v (id, C) otherwise
Sy = (SyoSp N atomgI))
Spde[y] YQ, F) =(Sr,A¢)

where
(Sp,Ap) = sppc(P,I)
¢ = fresh

(Sq@,Aq) = spp(Q, (Sp INU{y: ¢})
A = freshinstance typeaf (Sq Ap)
B = (Sq)
C = freshinstance typeof (6qoSp I')
Sy = unify C A-B
(Sc, A¢) = unifyGenContext§S,0Sq Ap\a) (Sy Ag)
Sr = (Sc0Sy0SqoSp N atomgI))
sppc(Pa 1 XQ,T) = (S, Ac)
where
(Sp. Ap) = Sppo(P.T)
A = typeofa Ap
(Sq@,Aq) = sppd(Q, (Sp NU{x: A}
(Sc, A¢) = unifyGenContextSq Ap\a) Ag
Sr (SCOSQOSP N at0m$r))

Figure 2: Principal Contexts for Shallow Polymorphic syste

38

Theorem 3.29(Soundness and Completenessppg. Given anX'-term R and
an initial left-context” such that

fs(R) ¢ dom(I) (3)
we have:

1. If sppc R I') succeeds angppc R, I') = (Sg, Ar) then R:- (SgT) k:Ar.

2. Ifthere exiskS, A) such thatR- (ST) K, A, then a callsppc R I') succeeds,
and ifsppc R, I') = (Sg, Ar) then there exists a further substitution Sich
that S= S’oSg and(S’ Ag)>A.

Proof. See Proof B.6 in Section B. O

4. Extensions and Future Work

Since classical sequent calculus exhibits a natural symyrhetween left and
right contexts (inputs and outputs, in a computational sgnsis natural to con-
sider the asymmetric notion of (universal) polymorphisrasented so far as an
incomplete picture. Universal polymorphism allows an otifplug) type to be
generalised with quantified variables, and then to be cdaddo multiple input
types, each taking aflierent instantiation of the variables. What then, if we allow
this the opposite way around? It seems natural to considegeheralisation of an
inputtype, to be instantiated many times for the multipléputsit is connected
with.

All of the work presented in this paper can be adapted anaklgdor this
alternative quantifier. The resulting type system is soaftdpugh the analogous
naive system would not be (in this case, iright propagation that presents a
potential for unsoundness, but this is eliminated aboverbgrealogous restric-
tion. We can also define a principal typings algorithm, byléeting’ the defi-
nitions employed in the previous section. In particulachsan algorithm would
type a cut by typing first theight-hand subterm, and then using the (potentially
existentially-quantified) type obtained to help type tHe le

Existential polymorphism is traditionally understood retcontext ofinfor-
mation hiding[31], i.e., providing a facility tolose typing information from a
term, rather than providing extra power in terms of typagbiHowever, this is a
guestion of paradigm: in a traditional functional settiogrresponding with min-
imal logic (such as tha-calculus), the addition of existential quantification soe
not extend the typeable terms, while the addition of unafgsantification does.

39

This can be readily understood by moving again to the sequadatilus setting;
when injecting ML (for example) int&', via the translation above, one always
obtains a term in which there is exactly one free plug, andtéxane occurrence
of the plug. Therefore, the additional power in terms of giméty which existen-
tial polymorphism brings, is not applicable, since it catfar the situation when
multiple occurrences of the same plug need to be typediieardnt ways.

To summarise, in the setting of classical sequent calcthgsfwo variants
of polymorphism can be seen exactly as dual to one anoth&ensal polymor-
phism allowing generalisation of outputs and instantraabmultiple inputs, and
vice versa for existential. A possible and natural extemsiahis work which has
not been investigated in depth is the possibility of alloguwothkinds of quantifi-
cation to be exploited in a shallow polymorphic type syst&mnce the cuts in the
X'-calculus can simultaneously bind multiple occurrencesothinputs and out-
puts, it seems reasonable that there may be example terrab whuld be made
typeable by such a system.

The main problem envisaged with such a system is decideglgesssignment.
In particular, the presented approach to typing a cut seett® mdapt to this set-
ting. In the case of universal polymorphism, a cut is typedymng the left-hand
subterm first, and using the information gained to help tymeright. The re-
verse ordering of subcalls is suitable for a system withterigal polymorphism.
But with both quantifiers permitted, there is no obvious apph; it may be that
eachsubterm provides some polymorphic behaviour which allcavevercome
difficulties in typing the other subterm. We leave such issuefifare work.

5. Conclusions

This paper has been concerned with the adaptation of Mle-sty&llow poly-
morphism to the context of a term calculus based on claskigad. We have
shown that the problem is not straightforward, and the ‘r&tapproach is un-
sound. The exact nature of the problem is made particuléebr én the context
of the sequent calculus, and we identified three contriguatures of the type
system which together caused it to arise. By pinpointingpitedlem, we were
able to define a neat refinement to the type system, and prouteess reduction
result.

The question of principal typings was made more challenbynthe restric-
tions in place in our amended type system. Because quarijfied for outputs
(plugs) need to be introduced “early” in our type systemgeitdme necessary to
deal with the case of manyftierent quantified types being derived foffdrent

40

occurrences of the same output. Thus created the need fqreaation to cal-
culate the most general generic type “smaller” than two gertgpes, which we
dubbed generic unification. Although the basic idea behemkegc unification is
simple, the need to restrict the resulting substitutiohsds obvious.

Having defined generic unification, and proved its soundaasiscomplete-
ness with respect to the generic instance and substituperations employed
within the type system, we were able to define a notion of gradcontexts, and
an algorithm to compute them. Our proof that such principaltexts are indeed
principal (given an initial specification of polymorphisim be assumed for free
sockets), makes our result analogous with the classicaltes ML, but in the
context of a calculus with a more general type system andcteatubehaviour.
This was the ultimate goal of the paper.

Acknowledgements

This work would not have been possible without the supesmiand extensive
support of Stéen van Bakel. We would also like to thank Luca Cardelli, Jaysh
Raghunandan, Hugo Herbelin, Gavin Bierman and Mariandgda@azani for their
helpful discussions and comments on previous versiong®Wbrk. Thanks also
to the anonymous referees - this paper has been greatlywegbly their detailed
suggestions.

A. Examples ofsppcalgorithm

Consider the following\'-terms:
M = XX.a)a-B
N = Me[i] M
O = X(Y(x.a)ay)B-y
R = (Z.6)6 [2] W(w.€)

41

Then we have:

sppc(M,T) = (id, {B8: YX.(X—X)}) for any contexi
sppc(N, {i : E—>F}) = (id, {8:YZ.(Z—2)}) for any Curry types EF
sppdO,I) = (id, {y: p—¢}) whereg is fresh, for any context
sppdR {z:E—E}) fails, for any Curry type E
SpPAR, {z: YX.(X—X)}) = (id, {y: ¢—¢}) Wheregp is fresh
sppc(MB 1+ ZR 0) = (id, {y : ¢—¢}) wherey is fresh
sppc(NB1ZR {i : E-F)) = (id, {y : p—¢}) Wheregp is fresh
sppo(OB1ZRI) fails, for anyl’

If we apply our type inference algorithm fd (with any context parametér -
since there are no free socketdvhit will not be used), the algorithm operates as
follows:

calculate spp€x{x.a)a-B,T):

¢, = fresh

(Sp, Ap) = sppc({X.a), {X:¢1}) = (id, {1 ¢1})

A=(Sp¢1) =1

B = freshinstancétypeofa Ap) = ¢;

C = V-closure A-B ((Sp I); Ap\@) = V-closurep;— ¢y (I;0) = YX.(X—=X)
(Su, D) = (id, C) = (id, YX.(X—X))

Si = (SyoSp Nnatomgl)) = (id natomgI)) = id

SPPAM. T) = (S, (Su Ap\\B)U{B: D}y = (id, {B: ¥YX.(X>X)})

Now let us consider applying the algorithm & using a contexti : E—F} for
some type<€ andF (their choice is unimportant since we are not interested in

42

for this example):

calculate spp¢MeTi] jM, {i : E-F)):
(Sp, Ap) = sppdM, {i : E}) = (id, {B8: YX.(X—X)}) (by above)
@, = fresh
<SQ Aq) = sppaM, (Sp {i: E)U{i : ¢2}) = (id, {8: VY.(Y=Y)}) (by above)
= freshinstancgtypeofe Sq Ap) = 3 (fresh)
B = (Sq ¢2) = ¢2
C = freshinstancétypeof i §0Sp {i : E—-F}) = E—-F
Sy = unify C A-B = unify E-F @3—¢, = {(¢3 = E), (¢ — F)}
(Sc, A¢) = unifyGenContext€S,0Sq Ap\€) (Sy Ag)
= unifyGenContext§ : YX.(X—X)} {B: VY.(Y-Y)}
calculate unifyGev X.(X—X) YY.(Y=Y):
A’ = freshinstanc&/ X.(X—X) = ¢4—¢4
B’ = freshinstanc&/Y.(Y—Y) = ps—¢s
S, = unify A B" = {(¢4 — ¢5)}
Cu = (SLA) = gs—ys
gﬁ. = atomgC,)\(atomgS;, VX.(X—X)) U atomgS;, YY.(Y=Y))) = {¢s}
= (S} N (atomgYX.(X—X)) U atomgVY.(Y—Y)))) = (S; N 0) = id
unlfyGenVX (X—=X) YY.(Y=Y) = (id, YZ .CJ[Z /@]) = (id, VZ.(Z—Z))
(S¢, Ac) = (id, {B:YZ.(Z—2)})
St = (ScoSyoSqoeSe N atomgfi : E—F}))
= ({(¢3 — E), (g2 — F)} natomg(E—F))) = id (freshness of,, ¢s3)
sppdMeTi] jM,{i: E—=F}) =(S;, Ay =(id, {B:VZ.(Z—2)})

B. Proofs
Proof B.1 (of Proposition 3.6)

1. Reflexwlty is immediate. For transitivity, suppose tle(an. A<VY B and
VY B<VZk C. By definition, we have for some type.sHE] and atomic types
goje_fA andgoke_thhat B= A[D/X][Y /¢j] and C= B[EJ/Y][Zk/gok] Com-
posing these two facts, we have that=CA[D;/X][Y;/¢;l [Ej/ Y] [Z/¢i] -
Let S be the substitutidilp; — E;) }. Then note that sincg;¢A, we know

43

that(S AD;/X]) = Al(S D)/X] . Then we have:

C = AIDi/X] Y/l [Ej/ Y] [Z/ ¢l
= AIDi/X][Ej/¢i] [Z/ ¢l
= (S ADi/XIZc/ ¢l
= Al(S D)/X] [&/¢]

Finally, we can see tha,bkeéA since if it were the case thaf€cA then since
@j¢A we would haveakeA[D /Xi] [Y /¢j] = B; a contradiction.

. Reflexivity and transivity are straightforward. Anti-syetny follows from
the fact that ifA <., B andA+B thenB contains strictly more&/ symbols
thanA.

. LetA = VX A. Then, sincé>B, we know that for some D(,,c,oJ we must
haveB = VY. (A[Di/X] [Y /go,]) with g;¢A. In addition, sinceB <., C,
we must have for some, and gok ¢(T;A) thatC = YZ. B[Zk/gok] Since
gake_f(F, AY and Ae(T; A), we havapke_fA. From these facts, we can conclude
thatC = YZ.VY;.(A[Di/X] [Yi/¢;] [Zd/¢(]) with &, o[¢A, i.e. C=A as re-
quired.

. Without loss of generality, sa§ = ¥X..A andB = VY. (A[C /X] [Yi/¢il)
(with ¢; ¢ A). Note thaty; ¢ B also, due to the renamln[g{,/c,o,] Let
S’ = (Sn{g;}). Then we haves’ A) = (S A) and(S’ B) = (S B). Therefore,

it suffices to prove tha(S’ A)>(S’ B). This can be seen from the fact that
(SA) = W(S A and the following working:

(S'B) = (S VYL (AIC/X]LYi/¢i]) defn ofB
= VY (S’ (A[C./X] [Yi/¢il)) defn of substitution
= VY (S’ AIC/X))IYi/¢;]) defn of S
= ﬁ((S’ AI(S" C)/Xi] [Yi/¢il)
= VY;.((S' ADi/X][Y/¢j]) setting D = (S'C)

. By definition, there exigt, and X such thaB = ¥X. A[Xi/¢i] andg; ¢ (T; A) .
Define S = {(¢i — ¢)) }, whereg! are fresh atomic types. Then we know
that B = VX.(S’ A)[Xi/¢/]. Therefore(S B) = (S (VX.(S' AX/¢])) =
\W(SoS’ K)[XiW] . By constructiony! ¢ ((ST); (S A)) , and so we con-
clude(SoS’ A) <is s »y (S B) as required.

. By definition, for some Xand g ¢(I'; A), we must havél = VX A[X /] .
Additionally, sinceA>B, there must exist Cand ¢; and_ Y, such that we
can obtainB = YY,.(A[X/x])[Ci/X][Yj/¢;] andy; ¢ A. Let S be the

44

substitution{(¢; — C;) }. ThenB = ¥Y;.(S A[Y;/¢;]. LetS = {(m}
Wherec,?j are fresh. TherB = VY,.(S'0S A)[Y,-W] and ¢’ ¢ (T; A, i.e.,
(S'ocS A <., B. Finally, sincez;¢('; A), we have T;A) = (I';A) as
required.

7. SinceA>B, there must exist;Guch that B= A[C;/X] . Let S= {(¢; = C)) }.
Then the result immediately follows.

Proof B.2 (of Proposition 3.8) 1. By induction on the structure of the term P.
We give two representative cases (all others are simpler):
(x.): Then by Lemma 3.9 T, = I, x: A andA = «:B, A’ with A~B. By
Proposition 3.6 4(S A)=(S B). Therefore, by applying the rui@x),
we obtain{x.a) :- (ST”), X: (S A) ks : (S B), A’ as required.

XPa-8: Then by Lemma 3.9 2 = 8:C, A’ and there exist A,B such that

P: T,X:Ar,a:B,A 4)
and (A—B) <,.,, C. By Proposition 3.6 5, there exists a substitution
S’ such that:

(SoS’ (A—B)) <Us s ay (S C) (5)
(S’ (I A)) =I5 A) (6)
(SC)=C (7)

By induction, usingEq. 4) with the substitution(SoS’), we obtain
P (SoS'IN), X: (SoS’ A) kyar : (SoS’ B), (SoS’ A’). Using(Eg. 6) and
(Eq. 7), thisbecomes P. (ST), X: (SoS’ A) k. : (SoS’ B), (S A'). Fur-
thermore, noting tha{SoS’ (A—B)) = (SoS’ A)—(SoS’ B), we can
apply (—R) with (Eq. 5) to obtainXPa-B :- (ST) k.8:(SC), (S A’) as
required.

2. By induction on the structure of the term P. The only casestware not
straightforward are when ‘closures’ are taken, since we nigscareful that
the appropriate conditions can still be fulfilled within th&rger context.
This situation is exemplified by the case of a tétRw-3, and this is the
only case we show here. As usual, by Lemma 3.9 2, we obtaindtee s
ments P:- [, X: Ak, 1 B,A” with A = g C,A” \"” and (A—B) <., C. By
unravelllng the definition, we know th@t = VX (A—>B)[X /¢i] , for some
X; and somey; ¢ (I'; A”) . In order to ensure that we can still ‘close’ the

45

type in the larger context, we rename these atomic typesnaldie substi-
tution S = {(¢i = ¢) } for freshy!. Note that(ST) = I"and (S A”) = A”.
Then, by part 1, we obtain PT, x: (S Ar,a:(S B,A”. Since x andr
are bound in the original term, we may assume that X’ anda ¢ A’.
Therefore (T, x: (S A,I";a: (S B,A”,A’) is a well-formed context. By in-
duction, P:- T, x: (S A,I" ke : (S B,A”,A’. In order to be able to apply
the(—R) and conclude, it would gfice to show thatS A-B) <, U aUa, C.
But this follows by construction of S.
. By straightforward induction on the structure of the detiga.

4. By induction on the structure of the term. We present twoesgmtative
cases.

P =(x.a): By Lemma 3.9 1, there existA,such thatA = «:C,A’ and
B>C. By Proposition 3.6 1 we hav&>C. Therefore, by applying the
rule (ax), we obtairKx.a) :- (I'\X), X: Ak, : C, A as required.

P = (y.a),y # x. This case is immediate from Lemma 3.9 1.
P =VyPia-B: By straightforward induction, using Lemma 3.9 2.

P = Qa[X]YR ByLemma 3.9 3 and Proposition 3.8 2, there exist C,D such
that Q:- I, x: Bk, :C,A and R:- I, x: B,y: Dk, A and B=(C—D).
By induction, Q:- (I'\X), X: Ar,a:C,A and R:- (T\X), X: A, y: Dk, A.
By Proposition 3.6 1, we have-(C— D). By the rule(—.£), we obtain
P: (C\X), X: Ak, A as required.
5. By induction on the structure of the term P. We present tweesgmtative
cases.

P = (x.a): By Lemma 3.9 1, there exBt[” such thal” = I, x: C andC>B.
By Proposition 3.6 1C>A. Therefore, by the ruléax), we can deduce
that (x.a) :- I, X:Ckpa : A, (A\@) as required.

P =XQ3-a: By Lemma 3.9 2, there exist C,D such tt@i>D) ew A and
Q:- I,x:Cr,B:D,A. By Proposition 3.6 6, there exists a substitution
S such thafS (I'; A)) = (I'; A) and(S G-D) <., B. By Proposition
3.81wehave Q I',x: (S Okr,B:(S D, A. We consider two cases:
a:Be A: Then, byinduction, @ T, x: (S Or.8:(S D), a:B, (A\a).

By the rule(—R), we obtairkQ3-a - T'kya : B, (A\a) as required.
a ¢ A. Then, by thd—R) rule, we obtainYQ/B\-oz .- T'kya: B, A as re-
quired.

w

6. By induction on the structure of the term P, similar to thevowes part.

46

Proof B.3 (of Theorem 3.1Q) 1. (a) By induction on the structure of the term

Q.
Q:

Q:
Q:

Q=

Q:
Q:

(xB): Then QPa<+>x} = Pa 1 XQ and the result follows by appli-
cation of the(cuf) rule.

(y.8), ¥y # X Then QPa<+>x} = Q. Since ¥ f5(Q), By(Eg. 2) and
Proposition 3.8 3 we obtain Q 'k, A as required.

YQiB-y: Then QPa<>X} = Y(Qi{Pa<>x})B-y. By (Eq. 2) and
Lemma 3.9 2, there exist B[and A’ such thatA = A’,y: D and
Q:: I, x:AY:Bk,S:C,A and(B—C) <.z, D. From the in-
duction hypothesis, QPa<+>x} :- T',y: Br,8:C, A. Now we apply
(—R) rule to obtainy{Q{Pa<>x})B-y :- T,y : D, A’ as required.
QB [N ZQ: _

QPa«>x} = Pa i Y((Qu{Pa+>X})B [y] ZQ.{Pa<>x})) in which y
is fresh. By(Eqg 2) and Lemma 3.9 3, there exist BIL[” such
that D>(B—C) andI' = I',y: D and (by weakening, by apply-
ing Proposition 3.8 2 where necessary) both:QI', x: Ak, 3: B, A
and Q :- T, x:A z:Cr,A. By induction, twice, we obtain that
both Q{Pa<«>X} :- T'k,8:B, A and also Q{Pa<+x} :- I, z: Ck,A.
SinceD>(B—C), we can apply thé— £) rule to obtain the judge-
ment (Q{Pa<+>X})B [V] ZAQ:{Pa<>x}) :- T,y:Dr,A. Finally, we
apply the(cuf) rule to obtain the required result.

Qlﬁ[y] ZQ, y # X. By straightforward induction, similar to the
previous case.

(XB)B TYQ: Then QPa«>X} = Pa 1 Y(Qi{Pa+>X}). By Lemma
3.9 4, there existB such that both

(XB) - T, X:Ak,8:B, A (8)
Qi:I,Xx:AY:BrA (9)

By Lemma 3.9 1, we must have
A>B (10)
By applying Proposition 3.8 2 t(Eq. 8), we obtain
P:T,y:Bra:AA (11)
By applying induction t¢Eq. 2) and(Eq. 11), we obtain
Qu{Pa<>x} - I,y: Bk, A (12)

47

By applying Proposition 3.8 4 t(Eqg. 10)and(Eq. 12), we obtain
Qu{Pa<sx} - I,y: Ak, A (13)

As a final step, by applying the ru{eut) to (Eq. 1) and (Eq. 13)
we obtain By § Y(Q.{Pa<>X}) :- I'k, A as required.

Q=QBTYQ, Q#(xp):
QPa«>x} = (Qu{Pa+>x})B T Y(Qo{Pa<>xj).
Using(Eg. 2) and applying Lemma 3.9 4, there exists a tBosuch
that Q :- I, X:ak,B:B,Aand Q :- I, X: A Y: Bk, A. By induc-
tion, QPa<>X} :- T'keB:B, A and Q{Pa<«sx} - 'k, Y:B,A. We
conclude by applying the rulgut).

(b) By induction on the structure of the term P. The argumentns-si
lar to the previous part, and we show only the most-intengstiase,
where P = JPB-a. Then Ra+»XQ} = (F(Pula+XQ)B-y)y T XQ,
in which y is fresh. By(Eg 1) and Lemma 3.9 2, there exist B,C
with P, :- T,y:Bk,8:C,A and B»C <, A. By applying Propo-
sition 3.8 2 as necessary, we obtain :PF,x:K,y: Br.8:C,A and
Q:-I,x:AYy:BkB:C A. Byinduction, R{a«-XQ} :- I',y: Br,3:C, A.
By the rule(—R) we obtainy(P{a<>XQ})B-y - Tkyy: A A. Finally,
by the rule(cut) we obtain that(J{Pi{a<>XQ})B-y)y 7 XQ :- [k, A as
required.

2. By inductions on the number of reduction steps, and the streiof the term
P, we need only consider the case where P is the redex itseliisaeduced
in one step to Q. Therefore, we show the witness reductiait fies each of
the reduction rules in turn:

(cap : (Xaya T YKyB) — (xf)
Supposéx.aya TYKYB) - Tk, A. By Lemma 3.9 4¢ ¢ A and x¢ I
and there existB such thatx.e) :- ', 1 B,Aand(yB) :- I, y: Bk, A.
By applying Lemma 3.9 1 twice, there eX|$I,€ I",A’” such thatl' =
[",x:A andA = B:C, A’ with A~-B andB>C. By Proposition 3.6 1,
A>C. Therefore, by the rulgax), we obtain(x,8) :- I, x: Ak,3:C, A’
as required.

(impR : (XPa-B)B T Ky.y) — XPa-y (if B ¢ fp(P))
Supposé€xPa-B)B T WY.y) - 'k, A. By Lemma 3.9 ¢ Aandy¢ I’
and there exist€ such thakPa -8 :- ['k,8:C,Aand(y.y) :- I, y:Ck,A.
By Lemma 3.9 2, there exist A8, such that(A—B) <., C and

48

P: I, x:Ara:B,A” and (8:C,A) = (8:C,A”). Since ¢ P, by
Proposition 3.8 3, we may assume without loss of generdldy we
havep ¢ A”, and therefore that\” = A. By Lemma 3.9 1, there exist
D,A’ such thatA = y: D, A’ andC=D. By Proposition 3.6 6, there ex-
ists a substitution S such thég (I"; A)) = T"; Ay and(S A-B) <., D.
By Proposition 3.8 1, we have PI',x: (S Ak, : (S B,y:D,A’. By
the rule(—R), we deduce thatPa-vy :- [k, : D, A as required.

(impl) : (xaya TY(PB[Y]ZQ — PB[XZQ(ify ¢ fs(P, Q))
Supposex.aya T Y(PB[Y]ZQ) :- 'k, A. By Lemma 3.9 49 ¢ A and
y ¢ T and there exist8 such that we have bot{x.a) :- [k, :B, A
and B[y]ZQ: I,y: Bk, A. By Lemma 3.9 1, there exifl” such that
I' = I",x:A andA>B. By Lemma 3.9 3, there exist CID,such that
(I,y:B) = (I”,y:B) and B=(C—D) and P:- I k,8:C, A and also
Q:-I',z:Dkr,A. By Proposition 3.8 3 we can assume without loss
of generality thaf™”” = I'. SinceA>Bx>(C—D), by Proposition 3.6 1
we can deducé>(C—D). By applying the ruld—.£) we can finally
obtain FBB[X]ZQ:- I, X: Ak, A as required.

(mp): (RFE0)8 1 QT I ZR — { 70T T (T e

Suppos€xPa-B)B T QY [YIZR - Tk.A. By Lemma 3.9 43 ¢ A and
y ¢ I and there exist€ such that we have botPa-3 :- I'k,3:C, A
and Q/[y]ZR:- I,y:Ck,A. By Lemma 3.9 2, there exist AABsuch
that A»B <., Cand P:- I, X: Ak, : B,A”and(8:C, A) = (3:C, A).
As in previous cases, W.l.0.gA" = A sincep ¢ T andpg ¢ fg(P).
Now, by Lemma 3.9 3 and similar argument, there exist D,E suah
Ez(D-»E) and Q:- I',y:D,A and R:- T', z: Er, A. By Proposition
3.6 6, there exists a substitution S such t{&KI; A)) = (I'; A) and
(S A-B) <y (D—E). In particular,(S A = Dand(S B = E.
By Proposition 3.8 1, we obtain PT',x: Dk,a:E,A. Now, by ap-
plying Proposition 3.8 2 and the rul@ut) repeatedly, we first obtain
both Qy+XP :- I'k,a:E,A and Re 1ZR:- I', X: DK, A, and then ob-
tain both(Qy + XP)a 1 ZR:- 'k, A and Qy ¥ X(Pa 1ZR) :- 'k, A as re-
quired.

(propw) : Pa 1XQ — Q{Pa<++x}(if Q does not introduce)x
By Lemma 3.9 4 and part 1a.

(prop1) : Pa 1XQ — P{a«-XQ}(if P does not introduce)
By Lemma 3.9 4 and part 1b.

49

Proof B.4 (of Proposition 3.20)

1. Immediate from the definition, sin&g;/X] = A.
2. LetC = VY,.A[Y;/¢]. Let{z;} be the subset dfz} which actually occur in
A. Without loss of generality, replace all of the other atotgpes ing;} with
fresh atomic types. By the definition of closure, we hawe(T; A) . Now let
{@x) be the set of atomic types occurringAbut not in(I"; A). Then@g
(@i}, and for soméX}, B = VX AlX/gid . ThenC = VY, Blww/Xid [Yi/ei]
as required.
3. Write B = VX.A[Xi/¢i] , where{y} are the atomic types occurring i but
notin(l’; A). Now letC = V-closure(S A) ((ST); (S A)) = ¥Y;.(SAY /¢l ,
where{yp;} are the atomic types occurring i but not in((ST); (S A)). Then
we aim to showS B)>C. This follows becaus A) = (S B)[((S ¢)/Xi]
and so we hav€ = VY|.(S B)[((S ¢i)/X] [Y;/¢;] . Finally, we must be sure
thatg; ¢ (S B). Suppose that there is somee (S B) (and we will show a
contradiction). Then, by Lemma 3.22 3, there are two possiases:
¢; € Band (S ¢;) = ¢;: Then, sinceB = V-closureA (T; A), we must have
¢j € (I'; A). However, therp; € ((ST); (S A)), contradicting the defi-
nition of C.

Jp € Bwith ¢; € (S ¢): Then, sinceB = Y-closureA (T; A), we must have
¢ €(I'; A). Buttheng; € ((ST); (S A)), contradicting the definition of
C.

4. Follows easily from the observation that for any atomic typand types
A>B,p e A= ¢p € B.

Proof B.5 (of Theorem 3.25) 1. LetA= WA andB = VZ.B. In accordance
with the definition of the algorithm, let’ A= freshins(A) = Algj/Y;] and
B’ = freshins(B) = B[pw/Zd . Since the call succeeds, we must have that the
call unify X B’ succeeds, yielding a substitution

S, = unify A B’ (14)

Let G, = (Sy A'). Note that by soundness of unification (Lemma 3.18) we
have(S, B") = (S, A') = C,.

Define a set of atomic typ&s= {z;} = atomgC,)\(atomgS, A)uatomgS, B)).
We have tha€ = VZ;.C.[Z/¢i] while S = (S, N (atomgA)uatomgB))).

We will now show thatS A)>=C. The argument that al& B)>C is analagous
and will be omitted.

50

Notice firstly that (using Lemma 3.23 1), we h§SgA) = (S, A) = VY,.(Su A).
Define a set of types;D= (S, ¢;) . Then by construction, we have that:

Cu = (SuAlg;/Yi]) = (SuAI(Su¢))/ Y] =(SuAI[D;/Yj]

Therefore, G[Z /¢i] = (SuA)[D;/Y;][Z/¢i]. Furthermore, by the definition
of the set¥, we havey; ¢ (S, A)._Therefore, by Definition 2.5, we have
VY;.(Sy A)=C. Since we knoUs; A) = YY;.(S, A), we haveS, A)>C as
required.

. Firstly, let us define (in which all of thg;, gk, ¢ are fresh):

A=VY.A (15)

B=VZ.B (16)

D =VYW.D (17)

A = freshinstA) = Alg; /Y]] (18)
B’ = freshins(B) = Bly/Z] (19)

D’ = freshins(D) = D[¢, /W] (20)

Since(S A)=D, we know (from Definition 2.5) that, for som?; &nd some
¢ ¢ atomgS A), we have D= (S A[E//Y;] [Wi/¢]] . Define the substitution
Sa = {(¢] & @)}, and define the types;E (S E]) . Then we obtain that
D = (S AI[E;/Y;] [Wi/¢] . Notice that

¢ ¢ atomgS A) (21)

since thep were chosen to be fresh.
In a similar fashion, from the fact th@® B)>D we can deduce that, for some
types Kk we have D= (S B[Fk/Z][W/¢], and that

¢ ¢ atomgS B) (22)

Since D = D[¢/W], we deduce from the above tH{& A[E;/Y;] = D’ =
(S B[Fk/Z(] . Define next the two substitutions

Se ={(¢; — Ej)} (23)
Sk = {(px = B } (24)

By construction, we hay&goSgoS A) = (S A[E;/Y;] = D’ = (SpoSgoS B).
Therefore, the substitutiqi®r o SgoS) is a unifier for the types’Aand B. By

51

completeness of unification (Lemma 3.18), there exist suthshs S, and
S, such that

(SFoSgoS) = (S10Sy) (25)
S, = unify A B’ (26)

In particular, the call unify AB’ does not fail, and so neither does the calll
unifyGenA B in question. Therefore, there ex(§;,C) = unifyGenA B,
where:

S: = (Su N (atomgA)uatomgB))) (27)
(@i} = atomgS, A)\(atomgS, A)uatomgS, B)) (28)
C = VX.(Su A)[X/pl] (29)

For convenience, we defing € (S, A), so thatC = WC’[Xi/goi] .

We seek next to show th&; C)=D, from which we will be able to obtain the
desired result without too much trouble. We would like toitvéry showing
that(S; C) = \W(Slosu A)N[Xi/¢i] . However, this is not necessarily true,
since we have no guarantee that the are not gected by the substitution
S;. We choose to work around this, by choosing a newsef fresh atomic
types (one for each atomic typg and employing a renaming substitution

S; = {(QDi s SD.') } (30)
We can now see instead that
(S1C) = ¥X..(S10S20Su A)[Xi /¢]] (31)

To be able to deduce thés, C)>D, then (by Definition 2.5), we require a
set of types Gsuch that D= (((S10S20S, A)[Xi/¢/1)IGi/X [[Wi/¢], and
to show also thap, ¢ (S; C) .

We claim that if we define the types&(S; ¢i) then these will do the trick.
Firstly, if we define the substitutionsS= {(¢/ — S1 ¢i) } then we can show
that (((S10S20Sy A)[Xi/¢])IGi/ X [[Wi/¢] = D as follows:

52

(((S20S208y) A)IXi/¢{])I(S1 ¢i)/ %] [W/ 1]

= ((Sg0S10S20S,) A)[Wi/¢1] composindXi/¢], [(S1 ¢i)/X]
= ((S10Sc0S20Sy) A)[Wi/¢l] Lemma 3.22 1

= ((S10(S1. N {@i})oSu) A)Wi/¢l Lemma 3.23 8
= (((S1\{@i})o(S1 N {@i})oSy) AW /¢l idempotency of § Lemma 3.23 3

= ((S10Sy) A)[Wi/¢] Lemma 3.23 9

= ((SFoSgoS A)[Wi/¢] (SEoSgoS = S;0S,)
= D'[Wi/¢] (D’ = SpoSgoS K)
=D

We need to also show that ¢ (S; C), which, combined with the argument
above would justify thgS; C)>=D. We will argue by contradiction; assuming
that for somey, € {g} we have

¢ €(S:0) (32)

we will show that a contradiction inevitably follows. Byqg. 32)and(Eq. 31),
we deduce that L
@1 € ¥Xi.(S10S20S, A)[Xi/¢i] (33)

Then, by Lemma 3.22 4, we must have 3.22 3, we identify twe:case

Case 1:¢ ¢ dom(S;) and ¢ € (S;0S, A') ThensincéEq 30)¢ ¢ {¢}, by
Lemma 3.22 3 again, we must have

¢ € atomgS, A) (34)

But from the freshness @f when choseEqg. 20) we must havey, ¢
atomgA’) and ¢, ¢ atomgB’). Furthermore, byEq. 26), we can as-
sume also thap, ¢ atomgS, A’), contradicting(Eq. 34)

Case 2:d¢p, H with ¢ € atoms(S,0S, A’) and (¢ — H) € S; and ¢, € atomsg(H)
We must have ¢ {g?i’} since this set of atomic types was chosen to be
fresh at(Eq. 30). Therefore, by Lemma 3.22 3, we must haee(S, A')
andg ¢ {@;}. By(Eq 28)it must be the case that eithere (S, A) or
¢ € (S, B). But then, by the assumptions of this case, eithee
(S10Sy A) or ¢ € (S10S, B). By (Eq 25), (Eq 23) and (Eq. 24), we
have that eithery € (S A ot ¢, € (S B, contradicting(Eqg. 21) and
(Eq. 22), respectively.

53

This completes the argument justifying that
(S: C)=D (35)

We now need to work on the form of the substitutions involwae. will
employ the set of atomic typ#5= {g;}U{gyk}, noting that, byEq. 23) and
(Eg. 24), we know

Y = dOfT'(SFOSE) (36)
We can then show:

SpoSgoS = S;0S, (Eq 25)
(SFoSgoS)\Y = (S10Su)\¥
.. ((SFoSE)\W)oS = (S10Sy)\Y Lemma 3.23 6

iIdoS = (S10Sy)\¥Y Lemma 3.23 4
idoS = (S1\¥)oS, Lemma 3.23 5

If we define the substitution

Sz =(S1\¥) (37)
then we have

S = S30S, (38)

Furthermore, since? N atomgC) = 0, by (Eq 35), (Eq. 37) and Lemma
3.23 3, we obtain o
(S3C)=D (39)

We are almost done, but the substitution actually returmethfthe call is
Sr = (Su N (atomgA)uatomgB))) as defined i{Eq. 27).
We now writed = (atomgA)uatomgB)) and deduce by Lemma 3.23 9 that

S30S, = S30(Sy N D)o(Sy\P) (40)
Finally, define § = S30(S, N ®). We observe that:

(S4C) = (S3o(Sun) C)
=(S30) Lemma 3.23 7
D (Eq 39)

v 1

Therefore, we have that S S,0S; and(S, C)=D, as required.

54

Proof B.6 (of Theorem 3.29) 1. By induction on the structure of the term R.

R = (xa): LetA = typeof X[. From the definition of the algorithm, we have
Sr =idandAg = {a: A}. By(Eq 3), we havd” =T, x: A. Then, by the
rule (ax), we havex.a) :- I', X: Ak, : A as required.

R =XPa-B: In accordance with the algorithm, let:

¢ = fresh 41
(Sp, Ap) = sppc . TU{X:¢}) (42)
A= (Spy) (43)
B = freshinstance typeaf Ap (44)
C = V-closure A-B ((Sp I); Ap\a) (45)
— [unifyGenC typeof8 Ap if 8 € Ap
SuD) = {(id,E)otherwise (46)
Si = (SyeSp N atomgl)) 47)
sppc &P B,T) = (Sy, (Su Ap\@\B)U{B: D)) (48)
By induction, usindEq. 42), we have
P (SpTU{X:¢}) ke Ap (49)

. By applying Propositions 3.8 2 and 5 (&q. 49) as appropriate, and
using(Eqg. 43)and(Eq. 44), we obtain

P: (Spl), x: Ak (Ap\a),a:B (50)

We wish now to apply the type-assignment (inepR). However, ex-
amining the conclusion of this rule, we need to ensure thatrdsult-
ing right-context will be well-formed, i.e. deal with thegsibility that
B € Ap already. To do this, we consider two cases:

B € Ap: Then, by(Eq. 46)we have
(S, D) = unifyGenC typeof8 Ap (51)

. Since the original call teppc R I') was assumed to succeed, this
sub-call to unifyGen must also succeed, so such a pair ex8sts
the soundness of unifyGen (Theorem 3.25 1), we have that

(SuC) =D (52)
(Su typeofB Ap) = D (53)

55

. By Proposition 3.8 1, an(Eqg. 50), we have

P (SuSpT), X:(SuA) ke (Su (Ar\@)), @ (Su B) (54)

By Proposition 3.8 4, we obtain
P : (SyoSp), X: (Su A) ke (Su (Ap\@\B)),8:D, a : (S, B) and also
(Su A—B) <sy0sp misu mpeysmy- T herefore, by applying the rule
(—R), we obtairxPa-g :- (SyoSp I') ky (Su Ap\a@\B),B: D.

B ¢ Ap: Then, by(Eq 46), we have § = id andD = C. Further-
more, sinces ¢ Ap, by applying Proposition 3.20 t(Eg. 45), and
applying the rulgimpR) to (Eqg. 50), we obtain

mﬁ - (SP F) Fep (Ap\&),ﬁ : B (55)

Therefore, trivially we hav&Pa-S ;- (SyoS, T) ke (Su Ap\a\B),8: D.

We conclude the case, noting ti{& I') = (SyoS, I') by definition of
Sr-

R = Pa[X]YQ: In accordance with the algorithm, let:

(Sp, Ap) = sppcf.T) (56)

¢ = fresh (57)

(Sq.Aq) = sppc Q, (Sp NUly: ¢}) (58)

A = freshinstance typeaf (Sq Ap) (59)

B=(Sq¢) (60)

C = freshinstance typeof (6qoSp I (61)

S, = unify C A>B (62)

(Sc, Ac) = unifyGenContextgS,0Sq Ap\a) (Sy Ag)63)

Sr = (ScoSyeSqoSk N atomgl)) (64)

sppc Pa [y] XQ.I') = (S, Ac) (65)

By induction, twice (usingEq. 56) and (Eg. 58) with (Eq. 60)), we
obtain:

P: (SpTD) ke Ap (66)

Q: (SgeSp), y: Bk Aq (67)

56

By Proposition 3.8 1 an¢Eq. 66), we obtain
P (SQOSP F) Fp (SQ Ap) (68)

Using Proposition 3.8 5 witliEqg. 59) (and applying Proposition 3.8 2
if necessary), we obtain

P (SQOSP F) Fp (SQ Ap\a’), a:A (69)

Now, letC = typeof x typeof XSqoSp I') (and so C= freshins(C),
by (Eq. 61)). By definition of freshinst, we ha@>C. By Proposition
3.6 4 and usindEq. 62), we have

(ScoSy C)>(Sc0S, C) = (ScoSy A—B) = ((ScoSy A)—Sc0S, B)
(70)
By applying Proposition 3.8 1 twice, {&q. 69) and (Eq. 67), we ob-
tain:

P i (Sc0Su0SqoSp I) ke (ScoSyoSq Ap\a), @ 1 (ScoSy A) - (71)
Q - (Sc0S,0SqoSpT),y: (ScoSy B) ke (ScoSy Ag) (72)

By the soundness of unifyGenContexts (Proposition 3.2&/d have
that (Sc0S,0Sq Ap\a@)=Ac and(ScoS, Ag)>Ac. Therefore, by Propo-
sition 3.8 6, we obtain that both P (S¢0S,0SqoSp I') Ky Ac, @ & (ScoS, A)
and Q:- (S¢0S,0SqoSpI),y: (ScoSy B)keAc. Using (Eq 70) and
the rule(—£), we obtain R [X] YQ : (Sc0S;0SqeSp I') ke Ac, and we
conclude by Lemma 3.23 1.

R = Pa 1 XQ: By induction, twice, we obtain that both:P(Sp I') 1, Ap and
Q : (SgoSpT), X: (Sq A) k. Ag. By weakening (Proposition 3.8 2) as
necessary, we obtain P (SpI)k,(Ap\a),a:A. Then, by applying
Proposition 3.8 1, twice, P- (Sc0SqoSp I') k, (Sc0Sq Ap\a@), @ : (Sc0Sq A)
and Q:- (Sc0SqoSp I, X: (ScoSq A) k (Se Ag)-
By the soundness of unifyGenContexts (Proposition 3.z6h&)Propo-
sition 3.8 6, we obtain that both P (S0SqoSp I') ke Ac, @ & (ScoSy A)
and Q:- (S¢oSqoSpT), X: (ScoSq A) k. Ac. By applying the rulécut),
we obtain R {XQ :- (ScoSqoSpT) KA. We conclude by applying
Lemma 3.23 1, since;S (Sc0SqoSp N atomgl)).

2. By induction on the structure of the term R.

57

R=(xa): By Lemma 3.9 1, we must haVe= I, x: A andA = a:B,A’
with (S A)>B. SinceAg = {: (S A)}, and & = id, can choose S= S
and then we have we ha{® Agr)>A as required.

R =XPa-B: From the definition of the algorithm, we have:

SppcRPa-B.T) = (Sy, (Su Ap\@\B)U(B: D)) (73)
¢ = fresh (74)
(Sp, Ap) = sppc @, TU{X: ¢}) (75)
A= (Spy) (76)
B = freshinstance typeaf Ap (77)
C = ¥-closure A-B ((SpI); Ap\a@) (78)
— [unifyGenC typeofs Ap if € Ap
(Sw D) = {(id,E) otherwise (79)
St = (SyoSp N atomgl)) (80)
By Lemma 3.9 2, we must hae= 8:G, A’ and there exist E,F such
that
P:(SI),X:Erpa:FA (81)
E—F < nw) G (82)

Define & = {(¢ — E)}. Then, by constructionSgoS I', X:¢) =
((ST), x: E). By induction, usindEqg. 75), there exists $such that

SEOS = S]_OSP (83)
(S1 Ap)=(A,a: F) (84)

Let B = typeofa Ap (so that, by(Eq. 77), B = freshins(B)). By

Proposition 3.6 7, there existsSuch that dorf5;) consists of only the
fresh atomic types in B- freshins(B), and (S,0S; B) = F. Now we

have

(S20S; A—B) = E-F (85)
(S20S1 Ap\a) = (S1 Ap\a)=A’ (86)

By using(Eqg. 78) with Proposition 3.20 3, we are able to show that
(S20S; C)=V-closure(S;0S; A—B) (S20S; ((Sp I); Ap\a)), and, by

58

our knowledge of do(f®,) and using(Eqg. 85), we can simplify this
to obtain(S; C)>V-closure E»F ((S10Sp IN); (S1 (Ap\@))). Now, by
(Eq. 84), we have(S; (Ap\a))=A’. Using this,(Eqg 83) and the fact
that donfSg) = ¢, we use and using Proposition 3.20 4 to obtain
(S; C)>=V-closure EsF ((ST); A’). By Proposition 3.20 1, usin@q. 82),
we obtainv-closure E»F ((ST); A’)>G, and so by Proposition 3.6 1
we have

(S1 C)=G (87)

We claim that we can now show that, for some substitutipsa8sfying
S30S, = Sy, we havgS; D)>=G and(Ss (Sy (Ap\@)))=A’, from which
(as we shall then show) we can complete the case easily. V¥edeon
two cases:

(8 € Ap): Then, by(Eq. 84), we haves € A’. SinceA = 8:G, A/, we
must haves: G € A’. Now, letH = typeofs Ap. Then(S; H)>G.
By (Eg. 87) and Theorem 3.25 2 (and followir(&ag. 79)), there
exists $§ such that $0S, = S; and(S; D)=G, and therefore, by
(Eqg. 84), we obtain(Sz0S, (Ap\@))>A’ as claimed.

(8 ¢ Ap): Then, by(Eq. 79), (Su, D) = (id,C). Let S; = S;, and then
trivialyl we have SoS, = S; and(S; D)>=G (from (Eq. 87)) and
(SsoSy (Ar\@))=A" (by (Eq 84)).

Therefore, in both cases, we have:

(S3; D)=G (88)
(S3 (Su (Ap\@)))=A’ (89)
S3OSU = S]_ (90)

Therefore, we can dedud&; (S, (Ap\a@\B)))=(A"\B), and so it fol-
lows that(Ss (Su (Ap\@\B)),8:D)=A’ as needed. Finally, by combin-
ing (Eg 83) with (Eg. 90), and applying Lemma 3.23 9, we obtain
SgoS = S10Sp = S30S,0Sp = (S30((SyoSp)\atomgI)))o((SyoSp) N
atomgI’)). Now, noting that doi®e) = {¢}, we apply Lemma 3.22 2
and deduce that there exists a substitutigrsGch that S= Sso((SyoSp)N
atomgl)), as required.

59

R = Pa[X]YQ: In accordance with the algorithm, we have:

(Sp, Ap) = sppc P, T) (91)
¢ = fresh (92)
(Sq.Aq) = sppc Q, (Sp NUly: ¢}) (93)
A = freshinstance typeaf (Sq Ap) (94)
B = (Sq¢) (95)
C = freshinstance typeof (6qoSp I (96)
Sy = unify C A-B (97)
(Sc, A¢) = unifyGenContext€S,0Sq Ap\a) (Sy Ag)98)
St = (ScoSy0SqoSk N atomgl)) (99)
sppc Pa [y] XQ.I') = (S, Ac) (100)
By Lemma 3.9 3, we have, for soffieD,E and F, that
r=r,x:D (101)
(S D)=(E—F) (102)
P: (ST ka:EA (203)
Q: (ST),y:Fr,A (104)
For reference, we explicitly write
D = ¥X.D (105)
By induction, usingdEq. 91) and(Eqg. 103), there exists $such that:
S= S]_OSP (106)
(S1Ap)=(a:E, A) (207)

By (Eq 101) (Eg. 104)and weakening (Proposition 3.8 2) as neces-
sary, we obtain
Q: (SI)y:FrA (108)
Now, let
Se={(¢— F)} (109)
Then(SgoS; ((Sp I,y:¢)) = ((ST),y:F) by construction. Using
(Eq. 93)and(Eg. 108), by induction, there exists,Such that:
SFOS]_ = SzOSQ (110)
(S2 Ag)=A (1112)

60

Now define (respectindeg. 94)):

A = typeofa (Sq Ap) (112)
A = freshins(A) (113)

By (Eq 105)amd(Eq. 96), C = (SqoSp D[¢i/Xi]) for freshg;. Now,
using(Eq 110)and(Eg 106), we have

SZOSQOSP = SFOS]_OSP = SFOS (114)

and so(S; C) = (Sz SqoSp D[wi/Xi]) = (S Dl¢i/Xi] given(Eq. 109)
By (Eg. 102)and Proposition 3.6 7, there exists Such that

dom(Ss) = {@i} (115)
(S30S, C) = (E—F) (116)

By (Eq. 107)(Eqg. 92) and (Eq. 111)we have(SgoS; Ap)>(a: E, A).

By (Eqg 110) this means thafS,0Sq Ap)>=(e : E, A), and in particular,

by (Eq 112), we haveg(S, A)>=E. By Proposition 3.6 7 an(Eq. 113)

(in which, say{g;} are the fresh atomic types chosen), there exigts S
such that

dor(Sy) = (#}) (117)
(S40S, A) = E (118)

(note that(Eq. 113) implies that, up to choice of fresh atomic types,
(S, A) = freshins(S, A), given that $ does not clash with the atomic
types chosen).
Due to(Eqg. 115), (Eqg. 117)and(Eg. 118), we deducgS,0S30S, A) =
E. Also, by(Eq 95), (84083082 B) = (S4OS3OSZOSQ QD) = F. By
(Eq 116), we have(S4OS3OSZ C) = E-F = (S4OS3OSZ A—>B) By
completeness of unification (Lemma 3.18 2), there existbstitution
Ss such that

84083082 = S5OSU (119)

Now, usingEg. 119), (Eq. 110), (Eq. 115)and(Eq. 117), we obtain:

(S50Su0Sq Ap\a) = (S40S30S20S0 Ap\a) (Eg. 119)
= (S40S30SF0S; Ap\a) (Eq 110)
= (S1 Ap\a) (Eq 115) (Eq 117) (Eq 109)
> A (Eq 107)

61

Similarly, we deduc€SsoS, Ag) = (S2 Ag)>=A using(Eq 111) There-

fore, by(Eq. 98), there exists Swith S5 = SgoSs and(Sg Ac)>=A. Now,
S4OS3OS|:OS = 84083OSZOSQOSP = S5OSUOSQOSP = SGOSCOSUOSQOSP.
Therefore, 0S30SE0S = Sgo((ScoSu0SqoSe)\atomgI))o((ScoSyeSqeSe)N
atomgl)), by Lemma 3.23 9. By applying Lemma 3.22 2, uditg 115),

(Eg. 117)and (Eq. 109), there exists $such that S= S;0S, as re-
quired.

R = Pa 1XQ: In accordance with the algorithm, we have:

(Sp, Ap) = sppc . T) (120)

A = typeofa Ap (121)

(Sq, Ag) = sppc Q, (Sp NU(x: A) (122)

(Sc, A¢) = unifyGenContext€Sq Ap\a) Aq (123)

Si = (Sc0SqoSp N atomgI)) (124)

sppc Pa T XQ,I) = (S, Ac) (125)

By Lemma 3.9 4, there exidBssuch that

P: (ST k.:B,A (126)
Q: (ST),x:Bk,A (127)

By induction, usindEqg. 120), there exists $

S =S;0Sp (128)
(S1 Ap)=(a: B, A) (129)

By (Eq. 121), (S; A)>B. By(Eq 127)and Proposition 3.8 4, we obtain
Q: (SD),x:(S1 A) kA (130)

. Note that . _
(S ((Sp 1), x:A) = ((ST). (S1A):) (131)

Therefore, by induction, usingg. 122) there exists $such that

Sl = SZOSQ (132)
(S2 Ag)=A (133)

62

By (Eq 129), (S; Sq Ap\@)>A. By (Eq 129),(Eq 133)(Eq 123)and
Theorem 3.25 2, there existg ®ith S, = S30S,. Using(Eqg. 128)and
(Eq 132), we obtain as required:

S = S3OSCOSQOSP
= (S30((ScoSqoSp)\atomgI)))o((ScoSqoeSp) N atomgI))

References

[1]

[2]

[3]

T. Griffin, A formulae-as-types notion of control, in: Conf. Recorithl
Annual ACM Symp. on Principles of Programming LanguagesPPQ0,
ACM Press, 1990, pp. 47-57.

H. B. Curry, Functionality in Combinatory Logic, in: PtoNat. Acad. Sci.
U.S.A., Vol. 20, 1934, pp. 584-590.

H. B. Curry, R. Feys, Combinatory Logic Vol. I, North-Hahd, Amsterdam,
1958.

[4] W. A. Howard, The formulae-as-types notion of constioct in: To H. B.

[5]

[6]

[7]

Curry: Essays on Combinatory Logic, Lambda Calculus andngbsm,
Academic Press, 1980, pp. 479-490.

F. Barbanera, S. Berardi, A symmetric lambda-calculusdassical pro-
gram extraction, in: Proceedings of TACS '94, Vol. 789 of tutee Notes in
Computer Science, Springer-Verlag, 1994.

P.-L. Curien, H. Herbelin, The duality of computatiom; iProc. ICFP’00,
ACM, 2000, pp. 233-243.

M. Parigot, Proofs of strong normalisation for secondesrclassical natural
deduction, Journal of Symbolic Logic 62 (4) (1997) 1461-947

[8] C. Urban, Classical logic and computation, Ph.D. thddrgversity of Cam-

bridge (October 2000).

[9] Z. M. Ariola, H. Herbelin, Minimal classical logic and otrol operators, in:

Proc. ICALP '03, Vol. 2719 of LNCS, Springer, 2003, pp. 87858

63

[10] Z. M. Ariola, H. Herbelin, A. Sabry, A type-theoreticdadation of continu-
ations and prompts, in: ICFP '04: Proceedings of the nintiVARIGPLAN
international conference on Functional programming, AGMw York, NY,
USA, 2004, pp. 40-53. doi:httfdoi.acm.orgl0.114%1016850.1016860.

[11] P. de Groote, On the relation between the lambda-meutied and the syn-
tactic theory of sequential control, in: LPAR '94: Proc. Stiternational
Conference on Logic Programming and Automated Reasonipgnger-
Verlag, London, UK, 1994, pp. 31-43.

[12] C.-H. L. Ong, C. A. Stewart, A Curry-Howard foundatioarffunctional
computation with control, in: Proc. 24th Symp. on Princgptéd Program-
ming Languages, ACM Press, New York, 1997, pp. 215-227.

URL citeseer.ist.psu.edu/ong97curryhoward.html

[13] T. Streicher, B. Reus, Classical logic, continuati@msntics and abstract
machines, Journal of Functional Programming 8 (6) (19983)-542.
URL citeseer.ist.psu.edu/streicher98classical.html

[14] A.J. Summers, Curry-howard term calculi for gentzéylesclassical logics,
Ph.D. thesis, Imperial College, University of London (Noumer 2008).

[15] A.J. Summers, S. van Bakel, Approaches to polymorphisntassical se-
guent calculus, in: ESOP, 2006, pp. 84-99.

[16] J. Robinson, A machine-oriented logic based on theluéiso principle,
Journal of the ACM 12 (1) (1965) 23-41.

[17] J. Hindley, The principal type scheme of an object in bomatory logic,
Transactions of the American Mathematical Society 146 91 28—60.

[18] R. Milner, A theory of type polymorphism in programminfpurnal of Com-
puter and System Sciences 17 (1978) 348-375.

[19] J.-Y. Girard, Une extension de l'interprétation dedgl a I'analyse et son
application I'€limination des coupures dans I'analysk¢héorie des types,
in: Proceedings of the Second Scandinavian Logic Sympogilmv. Oslo,
Oslo, 1970), Vol. 63, North-Holland, 1971, pp. 63-92.

[20] J. Reynolds, Towards a Theory of Type Structures, in:RBbinet (Ed.),
Proceedings of ‘Colloque sur la Programmation’, Parisnéea \Vol. 19 of
Lecture Notes in Computer Science, Springer-Verlag, 1p4408—-425.

64

[21] L. Damas, R. Milner, Principal type-schemes for funofl programs, in:
Proceedings ® ACM Symposium on Principles of Programming Lan-
guages, 1982, pp. 207-212.

[22] J. B. Wells, The essence of principal typings, in: Pr2@th Int’l Coll. Au-
tomata, Languages, and Programming, Vol. 2380 of LNCSn8priVerlag,
2002, pp. 913-925.

[23] J. B. Wells, Typability and type checking in System F arpivalent and
undecidable, Ann. Pure Appl. Logic 98 (1-3) (1999) 111-156.

[24] G. Gentzen, Untersuchungen uber das logische sdmljel@athematische
Zeitschrift 39 (1935) 176-210, 405-431.

[25] S.van Bakel, S. Lengrand, P. Lescanne, The langXagercuits, computa-
tions and classical logic, in: Proc. ICTCS’05, Vol. 3701 NCS, Springer-
Verlag, 2005, pp. 66-80.

[26] R. Harper, M. Lillibridge, MI with callcc is unsound, resage sent to
the “types” mailing list. Archived at: http://www.seas.upenn.edu/
~sweirich/types/archive/1991/msg00034.html (1991).

[27] K.-e. Fujita, Explicitly typed lambda-calculus for polymorphism an call-
by-value, in: TLCA '99: Proceedings of the 4th Internatib@anference
on Typed Lambda Calculi and Applications, Springer-Verlagndon, UK,
1999, pp. 162-176.

[28] M. Tofte, Type inference for polymorphic referencest. IComput. 89 (1)
(1990) 1-34. doi:httpg/dx.doi.org10.10160890-5401(90)90018-D.

[29] X. Leroy, Polymorphism by name for references and cuadtions, in:
POPL '93: Proceedings of the 20th ACM SIGPLAN-SIGACT sympos
on Principles of programming languages, ACM, New York, N'GAJ 1993,
pp. 220-231. doi:httgydoi.acm.orgl0.1143158511.158632.

[30] A. Wright, Polymorphism for imperative languages vath imperative
types, Tech. Rep. TR93-200 (21, 1993).
URL citeseer.ist.psu.edu/wright93polymorphism.html

[31] J. C. Mitchell, G. D. Plotkin, Abstract types have egistial
type, ACM Trans. Program. Lang. Syst. 10 (3) (1988) 470-502.
doi:httpy/doi.acm.orgl0.114344501.45065.

65

