
Modelling Java Requires State

Alexander J. Summers
Imperial College London

180 Queens Gate
South Kensington, London

alexander.j.summers@imperial.ac.uk

ABSTRACT

Interesting questions concerning Java-like languages are of-
ten studied in the context of smaller programming calculi
such as Featherweight Java. The simplicity of the syntax,
and small number of features, and in particular the lack of
state, make it possible to focus on the issues of interest. Al-
though the programming languages are imperative, Feath-
erweight Java and various similar calculi are functional.

We argue that the study of the type system of Java 5.0
and beyond requires a calculus with state. For example, the
treatment of wildcards in Java is tailored to preserve sound-
ness in the presence of stateful computation, a feature that
is not present in functional calculi. A stateful calculus is
necessary before the potential pitfalls of an incorrect pro-
posal can be seen. We illustrate this point by showing that
a traditional treatment of existential types (based on that
historically known for the Lambda Calculus) is unsound for
Java but remains sound for Featherweight Java.

1. BACKGROUND

1.1 Featherweight Java
Featherweight Java and Featherweight Generic Java [1]

are functional (expression-based) calculi, intended to pro-
vide a minimal basis on which to study features and exten-
sions of Java. For the purposes of this paper, it will suffice
to consider only the syntax of expressions in Featherweight
Generic Java (hereafter FGJ) - the aspects of the calculus
concerned with class and method declaration will be elided
in this paper. A slight variation of the expression syntax in
FGJ is given in the following definition. We omit casts and
generic methods for brevity.

Definition 1 (FGJ Expressions [1]). Class types N
are defined below. We use the vector notation Ni to denote
a sequence (of class types) indexed by i.

N := C<Ni>

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP ’09, July 6 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-540-6/09/07 ...$10.00.

Expressions, ranged over by d and e, are defined over an
infinite set of variables, ranged over by x and y, field names
ranged over by f and g, and method names ranged over by
m and n.

d, e := x | e.f | e.m(ei) | new N(ei)

Values, indexed by u and v are defined by the following
syntactic subset:

u, v := new N(vi)

The calculus includes variables (which are place-holders
for method parameters, and the special variable this), field
lookup, method call and object creation. Note that there is
no assignment in the calculus; FGJ is purely functional.

We write e1{e2/x} for the capture-avoiding subsitution of
e2 for x in e1 (and use similar syntax for capture-avoiding
substitutions on type variables later in the paper).

Since we elide the declarations of classes and methods
in this paper, we assume the existence of three functions:
fields (to retrieve all of the (typed) fields declared in a class),
mbody to retrieve the argument names and method body of
a method in a class, and mType to retrieve a type signature
Ti→T . We refer the reader to the FJ paper [1] for details.

Contrary to the usual presentations of the calculus, we
present the reductions with a large-step semantics, since this
avoids some technical difficulties with the interaction be-
tween existential types and small-step reduction rules. We
present the call-by-value version of the calculus, based on
the presentation of Pierce [3], rather than the unrestricted
system of the original work [1]. The reduction relation e → v
for full reduction of expressions e to values v is defined as
follows:

Definition 2 (FGJ Big-Step Semantics).

e → new N(vi)
fields(N) = (Ti fi)
ej → v

(field)
e.fj → v

e → new N(vi)
mBody(m,N) = (xj , eb)
ej → vj

eb{(new N(vi))/this}{vj/xj} → v
(method)

e.m(ej) → v

Note that reduction is only defined for closed expressions.

x : T ∈ Γ
(T-VAR)

Γ ⊢∃ x : T

Γ ⊢∃ e : C<Ti> fields(C<Ti>) = (Tj fj)
(T-FIELD)

Γ ⊢∃ e.fk : Tk

Γ ⊢∃ e : C<Ti> mType(m,C<Ti>) = (Tj→T) Γ ⊢∃ ej : T ′

j T ′

j�Tj

(T-INVK)
Γ ⊢∃ e.m(ej) : T

fields(C<Ti>) = (Tj fj) Γ ⊢∃ ej : T ′

j T ′

j�Tj

(T-NEW)
Γ ⊢∃ new C<Ti>(ej) : C<Ti>

Γ ⊢∃ e : T{T ′/X}
(∃I)

Γ ⊢∃ e :∃X.T

Γ ⊢∃ e1 :∃X.T Γ, y : T{Y/X} ⊢∃ e2 : T ′

(∃E)∗

Γ ⊢∃ e2{e1/y} : T ′

∗ if Y 6∈Γ and Y 6∈T ′.

Figure 1: Type Assignment with Existential Types

1.2 Existential Types
The classical work on existential types was developed in

the context of the λ-calculus, which forms the basis of the
functional programming paradigm. In this context, existen-
tial types are used to model data abstraction, in the sense
of modules which can hide details of their implementations
from clients.

It is well-known that existential types can be used to un-
derstand the wildcards of the Java type system [4]. A Java
type which includes wildcards can be understood as an ex-
istential type by replacing each wildcard type of the form
C<?> by an existential type of the form ∃X.C<X>. For
example, the Java type C<?, D<?>> can be understood as
a shorthand for the existential type ∃X.C<X,∃Y.D<Y >>.
For simplicity, in this paper we will only consider unbounded
existential types (and hence, unbounded wildcards), since
the conclusions of the paper are orthogonal to the treatment
of bounds.

The traditional approach to existential types [2] (which
is based on a typed calculus) includes introducing explicit
term syntax corresponding with both the introduction and
elimination of existential types. However, in the setting of
an untyped call-by-value calculus this presentation can be
simplified: it suffices simply to add the logical rules for ex-
istential introduction and elimination to the type system,
without changing the syntax. We consider taking exactly
this approach for FGJ, by adding the following two type-
assignment rules:

Definition 3 (Existential Types Rules).

Γ ⊢ e : T{T ′/X}
(∃I)

Γ ⊢ e :∃X.T

Γ ⊢ e1 :∃X.T Γ, y : T{Y/X} ⊢ e2 : T ′

(∃E)∗

Γ ⊢ e2{e1/y} : T ′

∗ if Y 6∈Γ and Y 6∈T ′.

As is typical for existential types, the introduction rule
allows the use of a new existentially-bound variable to“hide”
a type T ′ called the witness type of the existential type. The
elimination rule is more complex, but can be understood as
follows: e1 has an existentially-quantified type in which a
witness type is hidden. We cannot know exactly what this

type is, so if we want to make use of it temporarily, we should
represent it with a fresh type variable Y (the side-condition
on the rule formalises this notion of “freshness”). However,
Y is only a hypothetical type variable, which does not have
a meaning in the original scope of the rule - therefore Y can
only be used in the sub-derivation for typing e2, and may not
escape in the conclusion of the rule. Computationally, the
implicit argument here is that an expression of existential
type will still contain a value of some non-quantified (but
unknown) type, and if this partial information is enough to
deduce well-typedness of a further expression in which it is
used, the rule will make this possible.

This treatment of existential types is rather different to
the treatment of typing wildcards in Java. In the case of
Java, essentially every time an expression of existential type
is subject to field or method lookup, a fresh name for the un-
known witness type is generated. This could be implemented
using the rules above by restricting the (∃E) rule to only al-
low expressions e2 of the form y.f and y.m(ei) in which y
does not occur free in the expressions ei . This is a true re-
striction, in the sense that many fewer expressions become
typeable for a given context Γ. This restriction seems un-
motivated from the point of view of existential types, since
it breaks the correspondence with the usual logical rules.
However, it does rule out the potential unsoundness in the
type system which we illustrate in this paper. Our point
is that the proposal we outline here could easily have been
(and perhaps was) considered as an alternative to the notion
of wildcards which was added to Java, but its flaws could
not have been exposed in the context of a functional calculus
- the dangers are only apparent in the presence of state.

2. EXISTENTIAL TYPES FOR FGJ
Let us consider the type system for FGJ augmented with

the unrestricted rules of Definition 3. We write Γ ⊢∃ e : T
for typing judgements in this extended system:

Definition 4 (Existential Types for FGJ). Types
are defined as follows :

T := X | C<Ti> | ∃X.T

We elide questions of well-formedness for types (e.g., con-
cerning the treatment of free type variables), since solutions
to these problems are standard and not particularly relevant

Γ ⊢∃ e1 : C<Ti> fields(C<Ti>) = (Tj fj) Γ ⊢∃ e2 : T T�Tk

(T-FIELD-ASS)
Γ ⊢∃ (e1.fk = e2) : Tk

Figure 2: Typing rule for field assignment (supplemental to Figure 1).

here. We assume the definition of subtyping � on (non-
quantified) types as in FJ [1, 3], which is essentially the
reflexive, transitive closure of the declared subclassing rela-
tionship in the program.

Type assignment is then defined by the derivation system
of Figure 1.

Crucially, we have the following result for this type system
(modulo the well-formedness considerations, which we are
eliding here).

Theorem 5 (Soundness). For any closed expression e
and type T , if ∅ ⊢∃ e : T then either e diverges, or there exists
a (unique) value v such that e → v then ∅ ⊢∃ v : T .

The most interesting aspect of this result is that it does
not extend to the Java language itself. Indeed, if one takes
an analogous approach to a language or calculus with state,
the approach to existential types presented above is natu-
rally unsound. The reason for this can be understood by
further analysis of the (∃E) rule above. The assumption im-
plicit in this rule is that, while we cannot know the witness
type for e1, it is some (fixed) type, which we give a fresh
name Y to. However, since this name is used to type every
occurrence of e1 in the resulting expression, this is unsound
if the witness type can be different for different occurrences.
In particular, if it is possible to modify the state on which
e1 depends between the evaluations of different occurrences,
then to assume that all such occurrences have a fixed witness
type Y is dangerous.

For a concrete example, we need to informally consider the
extension of the calculus to include a heap, object references
and field assignments of the form (e.f = d). The semantics
of the language must be significantly extended to deal with
such features, but we can illustrate the point at a high level
here. The analogous additional type assignment rule for field
assignment would be that shown in Figure 2.

Consider now the following (Java) class definition, defin-
ing a list whose elements may each be of a different (but
parameterised) type:

class VariedList <X> {
X item;
VariedList <?> next;

}

Recall that the Java type VariedList<?> corresponds with
the existential type ∃X.VariedList<X>. In particular, it is
possible to assign an expression of type VariedList < T > for
any type T , to the next field of an object of this class.

Suppose now that we have a heap containing a “list” of
four elements (i.e., the next field of the first object points
to the second object, etc.), which are alternately of types
VariedList < Integer > and VariedList < String >. Further-
more, assume that every item field of the four objects is
non-null. Let x be a variable referring to the first element
of the list (which is a VariedList < Integer > object).

Let e1 be the expression (x.next = x.next.next) and let Γ
be the typing context {x :VariedList<Integer>}. Using the
typing rules above, it is possible to derive the type judge-
ment Γ ⊢∃ e1 :∃Y.VariedList<Y > Then, crucially using the
(∃E) rule, it it possible to derive the judgement:

Γ ⊢∃ (e1.item = e1.item) :∃Z.VariedList<Z>

In particular, the expanded expression
((x.next = x.next.next).item = (x.next = x.next.next).item) is
typeable. But this is unsound: when this expression is exe-
cuted in the heap described, it will result in the assignment
of a String to an Integer field.

Acknowledgements

We are extremely grateful to Nicholas Cameron, Mariangi-
ola Dezani and especially Sophia Drossopoulou for encour-
agement, generous discussions and invaluable input to this
paper.

This work was funded in part by the IST-2005-015905
MOBIUS project.

3. REFERENCES
[1] Atsushi Igarashi, Benjamin C. Pierce, and Philip

Wadler. Featherweight java: a minimal core calculus for
java and gj. ACM ToPLAS, 23(3):396–450, 2001.

[2] John C. Mitchell and Gordon D. Plotkin. Abstract
types have existential type. ACM Transactions on
Programming Languages and Systems, 10(3):470–502,
1988.

[3] Benjamin C. Pierce. Types and programming languages.
MIT Press, Cambridge, MA, USA, 2002.

[4] Mads Torgersen, Christian Plesner Hansen, Erik Ernst,
Peter von der Ahé, Gilad Bracha, and Neal Gafter.
Adding wildcards to the java programming language. In
SAC ’04: Proceedings of the 2004 ACM symposium on
Applied computing, pages 1289–1296, New York, NY,
USA, 2004. ACM.

