Replace this file wittpr ent csmacr 0. st y for your meeting,
or withent csmacr 0. st y for your meeting. Both can be
found at theENTCS Macro Home Page

On the Computational Representation of Classical
Logical Connectives

Jayshan Raghunandan and Alexander J. Summers

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2RH, UK

Abstract

Many programming calculi have been designed to have a Gtiiowyard correspondence with a classical logic. We investi-
gate the effect that different choices of Io?ical connectiave on such calculi, and the resulting computationalettint

We identify two connectives ‘if-and-only-if’ and ‘exclua or’ whose computational content is not well known, and seho
cut elimination rules are non-trivial to define. In the casehe former, we define a term calculus and show that the
computational content of several other connectives canrbelated. We show this is possible even for connectives not
logically expressible with ‘if-and-only-if’.

1 Introduction

There are many programming calculi which have been desigmédve a Curry-Howard
correspondence with a logical proof system. In recent y@ach calculi have been designed
to explore the computational content of Classical Logig.(§2,4,6,8,11,12,14]). Differ-
ent authors have chosen different sets of logical conrextio treat as primitive in their
logic, and designed the syntax and reduction rules of tteaudi accordingly. Implication
is the most popular choice of connective, since it is wellenstood that its computational
behaviour is related to function abstraction and applicati There are calculi which do
not use implication, for example that of Wadld#]. Calculi exist which employ conjunc-
tion, disjunction, negation, and even more esoteric caivescsuch as differencé] and
constants for truth and falsity.

We consider logics with different primitive connectiveddatiscuss general approaches
to the design of corresponding term calculi. We restrict aitention topropositionallog-
ical connectives; an investigation of various approacbemniploying quantifiers has been
studied in L]

We work in the logical context of the sequent calculus, afbneoduction to which is
given in Sectior2. The style of our term calculi is based on that of tkiecalculus [L2],

L Email: j r200@loc. i c. ac. uk, aj s300m@loc. i c. ac. uk

©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:jr200@doc.ic.ac.uk
mailto:ajs300@doc.ic.ac.uk

RAGHUNANDAN & SUMMERS

which has a Curry-Howard correspondence with a classicplesg calculus for implica-
tion. TheX'-calculus is presented in Secti@n In Sectiond, we generalise the design of
X to that of analogous term calculi based on sequent calcthi different logical connec-
tives. Sectiorb identifies a class of logical connectives to investigate, fan each, shows
how to derive suitable term representations and assodiatkattion rules. We identify that
the computational content of the ‘if-and-only-if-{) and ‘exclusive or’ §£) connectives
are not well understood. Sectid@nis a study of the ‘if-and-only-if’ connective, whose re-
duction rules turn out to be non-trivial to define. We definerant calculus based only on
this connective, which we calk’ <, and investigate its computational expressivity. As a
surprising result we show that this new calculus can, giwtai restrictions, simulate the
reductions of several well-known logical connectives whire not themselves logically
expressible in terms 6f. As an example, we give an interpretation of fhiecalculus into
X

2 Sequent Calculi

In recent years, various programming calculi have beengseg which are based on a
Curry-Howard correspondence with sequent calculus prgstems, rather than natural
deduction systems. In such a proof system for classicat lagie deals with sequents of
the formA,..., A, - B1, ..., B,, which should be read as “if all of, ..., A,,, are all
true, then (at least) one d#,, ..., B, is true”. Proof rules are defined for introducing a
logical connective on both the left and right of a sequerninielation rules are not used, in
contrast to Natural Deduction systems). In this paper wat titee collections of formulas
on the left and right of a sequent as sets, and allow arbitraina formulas to be included
at the leaves (axioms) of a derivation, in the style of Klesje This avoids the need for
the structural rules used in the original sequent cal@}liywhich allows the proof system
to focus on the structure of the formulas themselves.

A special rule called theut is used in sequent calculi to connect two proofs together.
Gentzen showed for his sequent calculi that although theutitmight be useful for brevity,
it is redundant, in the sense that any proof containing atamte of the cut rule can be
transformed into a cut-free proof of the same end sequenhtz8e defined a set of cut-
elimination rules, which are non-confluent, and normagjdout not strongly normalising.

An example of a sequent calculus for a logic with the implaratconnective only is
specified by Figurd.

(Ar) THAA4 ATEA

cut
T, AF A A A (cut)
'-A,A BTHFA A+ B, A
(=) ———— (=
I'A—-BFA I'-A—B,A

Fig. 1. A sequent-calculus for implication

In fact, this particular sequent calculus is the basis oftthealculus, which is described
in the following section.

RAGHUNANDAN & SUMMERS

3 The X-Calculus

Our work is based on th&’-calculus [L2]; an untyped term annotation for classical im-
plicative sequent calculus. We recall here the basic difirst

Definition 3.1 [X-Terms] The terms of th&’-calculus are defined by the following syntax,
where z,y range over the infinite set afocketsand o, 5 over the infinite set oplugs
(sockets and plugs together form the setafinectors

P,Q = (x.a) | §PB-a| PB[y]ZQ | PatzQ | P4 7Q | PAX7Q

capsule export mediator cut left-cut right-cut

The* symbolises that the connector underneath is bound in thehetl subterm—a
bound socket is written as a prefix to the term, whereas a bplutdis written as a suffix.
For example in the mediatd?B [y] ZQ, occurrences of are bound in the subteri and
occurrences of are bound inQ. A connector which does not occur under a binder is said
to be free. We will usdp(P) to denote the free plugs d?, and similarlyfs(P) for free
sockets. We work modula-conversion (issues regardiagconversion have been studied
in [13]). The reduction rules are specified below.

Definition 3.2 [Logical Rules] The logical rules are presented by:

(cap) : (y.)at@(z.8) — (y.5)
(exp) : (GPB-)a & (xy) — GPBy a ¢ fp(P)
(med : (y.a)atZ(PP [z] 2Q) — PB [y 2Q z ¢ 18(P,Q)
- F15(PGt2 aéf ,
(expmed s (jPF-)at3(Q7 [o) — 4 © 1 VTITE A @ FIRE)
(QVtyP)BtZR | x ¢ 1s(Q, R)

The first three logical rules above specify a renaming (reecting) pro cedure, whereas
the last rule specifies the basic computational step: inallive body of the function from
the export to be inserted between the two subterms of theatwedihe resulting cuts may
be bracketed either way, as shown).

Definition 3.3 [Activation Rules] We define twaut-activationrules.
(actL) : Patxz@ — Pa /zQ if P does not introducex
(actR) : Patxz@Q — PaXz(Q if Q does not introduce:

where: P introducesz: Either P = Q3 [x] yR andz €fs(Q, R), or P = (z.c)
P introducesa: Either P = ZQ3-a anda Zfp(Q), or P = (x.a)

An activated cut is processed by ‘pushing’ it systematycedrough the syntactic struc-
ture of the circuit in the direction indicated by the tiltiofithe dagger. Whenever an active
cut meets a circuit exhibiting the connector it is trying toranunicate with, a new (inac-
tive) cut is ‘deposited’, representing an attempt to comicabe at this level. The pushing
of the active cut continues until the level of capsules i€hed, where it is either deacti-
vated or destroyed. Once again, the inactive cut can redacelogical rule, or pushing can

3

RAGHUNANDAN & SUMMERS

continue in the other direction. This behaviour is exprddse the following propagation
rules.

Definition 3.4 [Propagation Ruled]eft Propagation

(71) : (ya)a /2P — (y.a)atzP
(7cap : (y.B)afzP — (y.5) B#a
(fexp-outy: (§QB-a)a /EP — (§(QA fTP)B-7)71EP, v fresh
(fexp-ing: (GQB-)& /TP — §(Qa TP, v#a
(#med : (QB [z] §R)G #EP — (Q& # TP)B [2] §(Ra / TP)
(Fcut-cap : (QB17(y.a))a /TP — (Qa/x P)3t@P
(Feuy: (QBTIR)A /TP — (Qa fZP)B1§(RA f&P), R# (y.a)

Right Propagation
(x1) : Paxz(a. — Patz(z.B)
(\cap : PaX — (y.3), y#w
(xexp : PAXNE(HQB) — GPANTQ)By
(\med-outs : PAXZ(QB [z] JR) — Pat2((PaxzQ)B [z] J(PaXZR)),
z fresh

(\xmed-ing : PaXZ(QB [2] JR) — (PaxzQ)3 [2] J(PAX\ZR), z # a
(\cut-cap : Paxz((z.3)B1JR) — Pat§(PaxZR)

(xeut : PAXE(QBTGR) — (PANIQ)BTH(PANER), Q # (v.0)

We write — for the reduction relation generated by the logical, pratiag and activa-
tion rules. The following are admissible rules (s&&,13]).

Lemma 3.5 (Garbage Collection and Renaming)

(gci) : Pa/z@Q — P, if a & fp(P) (reni) : PgT%\(z.oz}, — Pla/d]
(gcR) : Paxz@Q — Q, if z £ f5(Q) (renR) : (z.a)atzP, — Plz/x]

4 The Computational Representation of a Connective

In this section, we outline some of the techniques used imatieof the paper for deriving
suitable proof rules, corresponding syntax represematénd reduction rules to represent
the inclusion of a particular logical connective.

We useA, B, ... as propositional variables andto represent logical negation, which
binds tighter than any other connective. We usande to represent arbitrary binary con-
nectives (logical connectives which take two argumentsj.férmulasF; and F, we write

4

RAGHUNANDAN & SUMMERS

F=F; (and say the formulas ategically equivaleny if for all assignments of truth values
to propositional variablest; and F;, have the same truth value as each other.

4.1 Sequent Rules

We will assume the rules for the axiom (c.f. capsuletih and the cut are present and
unchanged in all the systems we discuss (see Figjurd-or each logical connective of
interest, suitable proof rules must be provided (or defivfed introducing the connective
on the left and right-hand sides of a sequent (e:f, and— g of Figurel).

One important point is that for various logical connective® has a choice of how
many proof rules to incorporate. This is most easily seerhendifferent treatments of
pairing, typically relating to then connective (although this notion is generalised in Section
5). A term is usually provided to construct a pair, but there different approaches to the
problem of dealing with pairs (making use of their indivilaamponents). One approach
is to provide twaprojections which reduce a pair to one or other of its component elements
Another is sometimes termed a ‘pattern-matching’ apprpachvhich both components
are substituted in to some receiving term. These two appesacan be shown to be inter-
derivable in our framework, and the decision of which to sskaigely a matter of taste. As
an example, for the. connective (conjunction), the left introduction could Ipesified in
either of the following two ways:

I A, BFA T,AF A I,BFA
) S — and ————— (AL2)
I,(AAB)FA T,(AAB)FA

In this paper we choose the ‘pattern-matching’ style; thatie will always choose to
have exactly one left and right introduction rule for a binaonnective.

It may not always be the case that a set of suitable sequeot ques for a particular
connective are obvious. In this case, one can proceed as/fllTo derive suitable sequent
rules for a binary connective, say, choose a formul& such thatF’=AoB and F' uses
connectives for which one already knows suitable proofsiuldow, try to construct what
a ‘general’ sequent derivation which introduces this folemon the left and right of the
sequent might be. Once all of the connectiveditave been introduced, it will not be
possible to proceed further in the derivation. All remagsub-derivations to be completed
translate to sub-proofs in the derived rule, while the folanti is replaced bydo B for the
end sequent. This process will give suitable proof rulesHerconnective. This technique
will be further illustrated and exploited in Sectiobsind6.

T T (A (A1)
TAABFA

4.2 Term Syntax

We work in the style of thet-calculus, since this gives a simple and symmetric treatmen
of the inputs and outputs present within the syntax. Wheividgrthe syntax to represent
a particular proof rule, formulas which occur on the left afequent will become inputs
(sockets)z, y, z, . .. while formulas on the right will be outputs (plugs) 5,~,.... Any
subproofs present in the rule will be represented as subtefiie syntax. Formulas which
disappear from such subproofs by application of the prolaf fiormulas which aréound
by the rule) will correspond to bound connectors on the suige while a new formula
which is introduced by the rule corresponds to a free commexftthe appropriate kind.

With these ideas in mind, it should be clear to see that thl tepresentation of the

5

RAGHUNANDAN & SUMMERS

sequent calculus in Figurke could well be chosen to be the syntax f(see Definition
3.1). For example, the—x rule has one subproof, which corresponds to a sub-tBrm
say. It binds two formulas in this subproof, one on the leftrdf sequent and one on the
right, therefore a socket and a plug Bfshould be bound (say and« respectively). The
rule introduces a new formula on the right of the sequentctviéads to a free plug being
present in the term representation (sgy One can easily see that tke&port of the X'-
calculus, writterit Pa- 3 is such a representation, with thieeing inactive syntax, designed
to make the terms easier to parse.

As a further example, consider the, rule. This has two subproofs, which become
subtermsP and(@. Each has a single formula bound, on the right and left of drpients
respectively. Thus a plug is bound inP and a sockey is bound inQ. Finally, a free
socketz should be introduced. The notatidt [x] y@ is chosen, with the: occurring
between the two terms simply to provide a better intuitionhfow this term behaves; it acts
as a ‘hole’ between the two subterms, into which a furthentean be inserted to ‘mediate’
betweenP and((this behaviour is seen in trexp-medule).

4.3 Reduction Rules

Whichever logical connectives are employed, we will alwkgsp the followingX’ reduc-
tion rules (which deal with cuts and capsules) in place:

cap acti, actr, /t, /cap /fcut-cap /cut \1, X\ cap X cut-cap X cut

The notion of a plug or socket beirigtroducedcan be generalised to s&yintroduces
x (respectivelyp) iff x is free in P but not in any of its proper subterms.

Propagation rules must be defined for propagating left agitt guts through each syn-
tactic construct. If a new syntax construct corresponds ledtantroduction rule (i.e. its
free connector is a socket), two rules must be given for pyapag a right-cut over it (de-
pending on whether the free connector is that which the attésnpting to connect to), and
one for propagating a left-cut (c.k med-outs\ med-ins /med. The general approach is
to push copies of the cut into the subterms, leaving a coph@ntside if an occurrence of
the desired connector was present at this level {amed-outy. The appropriate rules for
propagation over a construct which introduces a plug maydswetl symmetrically (two
for left cuts, one for right cuts).

This leaves the appropriate extra logical reduction ruteke defined. Each new syn-
tax construct warrants a logical rule to specify a renamihigsantroduced connector, via
a cut with a capsule (see the rulespand med for example). Finally, for each logical
connective employed, a logical rule must be defined to shawdacut between the right
and left introduction of the connective may be reduced (thé rule exp-med. We call
this theprincipal logical rule for the connective, since it is the rule which specifies how
these structures may be removed from a proof, creating nésvimiween their subterms
and simplifying the task of cut-elimination. The principale is the only one which can-
not be methodically derived independent of the particutarmective concerned. For this
reason, when investigating the representation of a p#aticonnective, as far as reduction
rules are concerned we will only concern ourselves with ttiecppal logical rule for the
connective.

RAGHUNANDAN & SUMMERS

5 Comparing Logical Connectives

In this section, we compare various logical connectives,i$tng on relationships between
them and how this affects their inclusion in a term calculisr each connective we are
interested in the following three guestions:

() What is a suitable term representation of its proof r@les
(i) What is its principal reduction rule?
(i) What computational content is gained by its inclusion

5.1 Enumerating the connectives

There are an infinite number of possible logical connectiggxe a connective may apply
to an arbitrary (but usually fixed) number of arguments (beris arity). It is extremely
rare in practice for authors to employ connectives withyagiteater than two (although
for an example, se€r]). To decide on a set of connectives for our study, we foura th
following three questions of interest:

(&) How many logical connectives are there of aritgn > 0)?
(b) How many of these depend on alinputs (we say these hatrie arity n)?
(c) How many of thesalwaysdepend on alh inputs?

To explain the second question, take for example the birampective which has inputs
A and B and always evaluates th (ignoring B). In a sense one could see this as a unary
connective, since it only makes use of one input. This givesg of identifying those
connectives of arity: which we regard as degenerate cases.

The third question regards a stronger notion; that the vafua connective should,
in every input state, depend on all of its inputs. As a nom®la, the evaluation of a
conjunction (\) may be ‘short-cut’; if its first argument turns out to be fathen the second
need not be considered. Thus conjunction does not satisfgriterion outlined in the third
question.

The answer to each of these questions is given by the foltpwaault:

Theorem 5.1 (Enumerating Logical Connectives)For any integern > 0:

(@) There are2?” logical connectives of arity:.
(b) The number of these which depend omaithputs (those of true arity), t(n) is given

n—1
by the following formulaz(n) = 2" — > (ﬁ)t(i).
(3
i=0
(c) There are exactly two connectives of aritywhich always depend on afll inputs;
these are the parity function (which is true exactly whenanenumber of its argu-
ments are), and its negation.

Proof.

(a) Each connective is exactly specified by a ‘truth-tabdifining whether it evaluates
to true or false in each of th&" possible input states. The result follows by counting
all such truth tables.

(b) By counting; start with all connectives of arity and subtract off those which depend
7

RAGHUNANDAN & SUMMERS

on strictly fewer inputs. Since each of these may depend dffexaht subset of the
actual inputs available, one must count them for each apjptepsubset (hence the

(3)-

(c) Let f be some such connective of arity which we represent as a function of

inputs, f (i1, is, . . . ,i,). We write 0 for a false input,1 for true, andi for the nega-
tion on these inputs (i.el = 0 etc.). Our condition ory states that given a set of
input valuesiy, . . ., i,, the value off (i1, is,...,4,) depends on all ofy, ..., i,, or
equivalently, if we change (negate) any one of the inpuesy#tlue off (iy, iz, ..., %,)
must change. Now consider setting all input9tand sayf(0,...,0) = a where

a = 0 ora = 1. By our condition onf, if we now negate any one of the inputs, the
value of f (i1, 42, ..., i,) Must bea. In general, lef be the number of true inputs, i.e.

j= |{ix | 1 <k <nandi, =1} |. Astraightforward induction op shows that:

o , a if jis even
flit,ig, ... i) = T
a if jis odd
Thus f is exactly specified by the choice of Therefore there are exactly two such
functions, the parity function and its negation.
O

Examining the second part of this result, we see tf@t = 2. These two connectives
are the logical constanis and_L, which can be seen as connectives of alifyhey can be
seen as the parity and not-parity connectives of @iyt is easy to see that1l) = 2 also,
and these are the identity connective (which returns wieatienput it receives unchanged)
and negation-t). Furthermore, we sed2) = 10, i.e. there are 10 different logical con-
nectives of true arity 2. These connectives are listed imthé section, although the reader
might find it interesting to try to name them all first!

We will henceforth only interest ourselves in connectivésuity 2 (and below). As
commented, this choice is common in the literature. On atjgalmnote, since the reader
may verify thatt(3) = 218, an exhaustive analysis of all possible connectives of asgtgr
arity would be too cumbersome.

5.2 The Binary Connectives

In this section, we will give the complete set of possibleanynconnectives, and provide an
analysis of them with respect to the three questions outlaiehe start of Sectioh We are
interested in possible relationships between these ctimeecand how these are reflected
by their computational counterparts. For exampigglity is a well-known concept relating
binary logical connectives, and it will be seen that thistiehship carries over into their
computational behaviour (this is related to the result2¢f4]).

We make use of the following relationships between conwesti

Definition 5.2 [Relating connectives] For any two binary connectives
Duality We saye is thedualof o iff Ae B =—(-Ao0—-B).
Negation We saye is thenegationof o iff Ae B =—(Ao B).
Reversal We saye is thereverseof o iff Ae B = Bo A.
8

RAGHUNANDAN & SUMMERS

S S

LAAB - D - AVB/ B-A- p—A-B

I X N

N N N S N

| | N

/ATB —D—AIB B~A- p—-A-B

S _ S

S S

7N D 7D 77N

T \ A —Ss— B) A—B
[N] I /N
N D N N N D
NV | N/

1 r -A —S— B) A®B

VS pe oD

| Note: T = nand,| = nor,® = xor|
Fig. 2. Binary Connectives

I'B,A T,AFA [,BFAA
(—z) ———— (<r)

ILA—BF A '+ A—B,A

Fig. 3. Sequent Rules for reverse implication

Flipping inputs We saye is obtained from by flipping an inputif either Ae B = -Ao B
orAeB=Ao-B.

In all but the last case, these concepts describe selfsaveinctions (e.g. the dual of the
dual of a connective is the connective itself).

The binary connectives include conjunction)(disjunction {), nand () and nor ().
There is implication) and its reverse«(), and the so-called ‘difference’ operator),
where A—B = AA-B. For the reverse connective of (for which there is no standard
symbol) we tend to simply use and swap the arguments, but will shortly be able to
dispense with this slight abuse of notation. As well as thdsae is ‘if-and-only-if’ (),
‘exclusive or’ (®), and the degenerate casés_(and the identity and negation on each
argument, which we will writed A, - A, ID B and—B). Although we call these degenerate
caseshinary connectives, we will treat them as having their true arifeg. when using
negation we only mention the input which it uses). All thesarectives are illustrated
in Figure 2, along with arrows to represent duality (D), negation (NJl aaversal (R) of
connectives.

Firstly, we wish to examine the effect of the ‘reversal’ ofamoective with respect to our
questions of interest. For example, consider the conreetiv A sensible pair of sequent
rules for this connective is shown in FigudeDeriving the syntax needed to represent these
rules, we find that we can use exactly the same as that fordatjh. This is because the

9

RAGHUNANDAN & SUMMERS

(N R P
T ID A <~D— V - PN
oo b N e L
A | N
L - T ~—D— | — ®
) T —

| Note: T =nand,| =nor,® = xor|

Fig. 4. Binary Connectives Modulo Reversals

same inputs and outputs are bound and introduced in the thiesnly difference with the
rules for implication is in the positioning of and B, which is irrelevant once the types are
removed. Similarly, the reduction rules required to repréghis connective will be exactly
the same as those for implication, and therefore so will tregutational content obtained.
These ideas generalise to any connective and its reverse.

As a result of this observation, we choose to examine theaxdives in question mod-
ulo reversals. Since most of the connectives in Figuage symmetrical (remain the same
when reversed), this actually only reduces the number ofiedtives in question by four.
Our notation becomes rather less cumbersome, in that wen@edite formulas to define
any of the connectives (e.gB—A was used to write the reverse df- B); we can now
write an unambiguous symbol for each. This is shown in Figlisehere the arrows indi-
cating duality (D), negation (N) and flipping inputs (F) gpotogether related connectives.
It remains for us to explain the significance of these thrésimmships.

Before examining the effect of negating a connective, itsisful to examine the nega-
tion connective itself. The sequent rules for negation arbows:

r-AA LAEA
(—r)

— (-1) (-

Ir-AFA r+-4A
The first rule binds a formula on the left of the sequent andpces a new one on the right,
while the second does the opposite. The syntax we choose timusegation reflects this
swapping of inputs for outputs in the simplest way possitde;write - Pa andyQ-3 for
the left and right terms respectively. The principal reduttule for negation is as follows:

(@P-a)aty(y-QB) — QBTZP agfp(P),y&fs(Q)

Given the sequent rules for any connective it is straightfod to derive suitable se-
quent rules for the negation of the connective. For exantpke hegation of implication
(—) is the ‘difference’ connective), and by seeking suitable derivations for the formula
—(A—B) on both the left and the right of a sequent, one can derive ipeoariate rules
for ‘difference’, as shown in FigurB. Notice that appropriate syntax to represent ‘differ-
ence’ will have the same subterms, inputs and outputs asriplidation, except that the
free connector introduced appears on the opposite sideadhuent (due to the negation).
For example, the syntax added in the case of the differenueemive might bePB [a] ZQ
for the right-introduction rule and:-yPB for the left. This generalises to any connective
and its negation; the term representations will be idehfmaeach, but with the left and
right terms exchanged. Furthermore, in defining a cut-glaton rule, one can see that the

10

RAGHUNANDAN & SUMMERS

THAA T,BFA 'r4,A T.BFA

= (—r)
—
TFA-B,A ()(2 I'HA-B,A
TF—(A=B),A
I AF B,A
e > Tapra
I'-A—B,A T

T, ~(A=B)F A)

Fig. 5. Deriving the sequent rules for the difference cotinec—

reduct of the key logical rule will be the same in the cases-adind—, and in general for
a connective and its negation.

The relationship between a connective and its dual, in tefiis computational repre-
sentation, can also be seen to induce a relationship betilvegrierm representations. In
this case, as well as the introduced formula ‘swapping sittesformulas which are bound
in the proof rules also do so. For example, compare the roles andVv:

T, A, BFA THA, A TFB, A
— (AL) (AR)
T. ANB- A T- ANB. A

THA B, A I, AFA T, BFA
—— (VR) (Vi)
TFAVB, A T.AVBE A

One can see a striking similarity here. In this sequent dadcsetting, it is reasonable to
view disjunction as another kind of ‘pairing’; the left rukea pair of two proofs (binding a
formula on the left of each), whereas the right rule provittesfacility to interact with the
members of such a pair.

The effect of flipping an input is to negate only one of the tsgo a connective, which
in turn corresponds to the bound occurrences of one of theutas swapping sides in the
rules. For example, implication can be obtained from disfiam by flipping the first input
(A—B = - AvB). One can see this also by comparing the sequent rules.dsé¢hise, it
is possible in the sequent calculus to see even implicasankand of pairing. Examining
the syntax ofX’ (for brevity, compared to dealing in the proof rules), ona cegard the
mediatorQa [x] yR as a pair of two terms) and R, binding an output of one and an
input of another. The expoﬁPB\-y is the term which can ‘deal with the pair’; providing
connectors to connect to both elements of the pair, anakbgauith (for example) the term
corresponding ta\y..

From the discussions above, it can be seen that once one khewsquent rules (and
hence, an appropriate term representation) for a particolanective, one can easily derive
them for the negation and dual of the connective, and anyamiive which is obtained by

11

RAGHUNANDAN & SUMMERS

flipping an input. In particular, the six connectives which gined to each other by various
arrows in Figured (including A,V and—) all have related sequent rules. Each can in fact be
regarded as a kind of pairing connective; the differenaemlivhether inputs or outputs are
bound in the two subterms which make up the pair, and whelteepair is made available
on an introduced input or output. We will sometimes referttese six connectives as the
pairing connectives

As can be seen from Figurg the remaining connectives come in related groups of
two. The syntax and main rule for the negation connectivestakeady been discussed,
while the identity connective can be seen to have a veryatridmputational content (at
best it provides a kind adliasing where a connector is bound within a subterm and then
immediately exported again with a new name).

The T and_L connectives are rather unusual, since it turns out they leaeh no sensi-
ble proof rule for introducing the connective on one sideh&f sequent (in fact a rule can
be added but it amounts to a special case of weakening). lcetbe of T, there is only a
sensible rule for introduction on the right, and symmethjca. only has an introduction
rule on the left. These rules are given below:

I FT.A (Tr) T.LFA (1)
Since these rules introduce a new formula without binding existing ones, they can be
seen to be inhabited by terms which make available an outpspéctively input) which
isn't connected to anything. As far as reduction rules amecemed, it is impossible to
add the usual principal logical rule, since there is no phlefd and right terms to connect.
When one considers a cut between (for exampl&)garule on the left and some other
term in the right, it is clear that the connector bound on theepside of the cut must
be introduced by weakening (if the cut is typeable). In theywhe terms to represent
T and_L can be used to provide ‘dead-end’ cuts, which when evalusitegly disappear
(c.f. Lemma3.5). As an example of the kind of computational content expioéssif one
adds the syntax for the ;, rule to the existingY-calculus, then one can express direct
manipulation of continuations (since with and_L one can express hegation).

As a separate point, it should be noted that if one employsrit@n one logical con-
nective in a term calculus, it will be possible to create ypetble) cuts between their
respective syntax representations to which no reducti@applies. For example, if one
were to cut the term representation of the rule with a mediator, there would be no sensi-
ble way to evaluate the cut. Therefore, when more than oriedbgonnective is employed,
the notion of normal form is extended; in particular it witt possible to have (untypeable)
normal forms which contain cuts.

There remain only two binary connectives to discuss; bein@if-and-only-if’) and ®
(‘exclusive or’). These two are related in the diagram; itt the two connectives are related
by negation, duality and may each be obtained from the othdigping either input. In a
sense, the (similar) operations they describe are diffiouttlate directly to any of the other
connectives; there are no ‘simple’ equivalent formulaschtexpress these connectives in
terms of the others. It is of course possible to encode theseectives using others, but as
the following result shows, they must be expressed in a mamgpticated way.

Theorem 5.3 (Expressing—, ®) Let S be the set of binary boolean connectives without
— and ®. There is no formulal’ expressible using only the connectivesSirsuch that

12

RAGHUNANDAN & SUMMERS

both:

(@) F islogically equivalent to eithed— B or A®B.
(b) A and B occur in F' only once.

Remark 5.4 In contrast, all of the connectives it can be expressed in terms of other
connectives in5 using A and B only once; in a sense they can be expressed more directly
than the two connectives in question.

The following technical lemma allows us to show the theorem:

Lemma 5.5 (RemovingT, 1. and D) If F'is a formula constructed using the binary con-
nectives, and the propositional variabldsand B, then there exists a formuld such that:

(@ G=F.

(b) A and B each occur inG no more times than they do in.

(c) No other propositional variables occur .

(d) G does not use th® connective.

(e) Either G does not mentioi and L, or eitherG = T or G = L.

Proof. Just the idea of the proof is given here. Firstly, it is cldamttany uses of theo
connective can be simply removed while maintaining an edeiv formula. One can then
define a rewrite system (using equivalences) to eliminatgcalirrences ofl and_L which
are underneath another connective. For example, one eswit T to A, and A—_L to
—A. Itis easy to show the rewrite system is strongly normadjsand that its normal forms
satisfy the criteria listed. a

Proof. [of Theoremb5.3] Suppose that such a formula exists and seek a contradiction.
Clearly F' cannot be equivalent td& or L. Hence, by Lemm#&.5 there exists a formula
G = F which doesn’t mention, L or 1D, and mentionsd and B at most once. Note that
< and® are respectively the parity function on two arguments, asdeégation. Since the
truth value ofA— B depends on the truth values of both argume@tgsust mentiond and

B exactly once. Now remove any double-negations which mawrpte obtain a formula
G'. Without loss of generality?’ is of the formo;((o3A) e (03B)), wheree is one of
AN VLT, L, —, —, while o, 09, 03 @re positions in which- may or may not occur. Without
loss of generality again, by assumpti6h = A~ B (the case for is identical). A~ B
always depends on the values of batland B to evaluate its result, whereas by Theorem
5.1(3), e does not always depend on both the values of its argumestgftiheG’ does not
always depend on the values of botrand B. Contradiction. O

This theorem suggests that the two connectivesind ® may have some interesting
complexity which the other binary connectives do not. Itrseaatural to investigate the
computational content of these two connectives, which aygoeot to have been attempted
so farin the literature. In particular, no cut-eliminatiare (or analogously, proof reduction
rule in a Natural Deduction setting) seems to have been dkforéhese connectives. Itis
these concerns which motivate the next section.

13

RAGHUNANDAN & SUMMERS

6 Interpreting if-and-only-if

In this section we study the computational behaviour of tiggcal connective ‘if-and-only-
if’ ('iff’ for short) that evaluates to true exactly when ita&’o arguments have the same truth
value. We could equally have chosen to study the negatidriofbnnective ‘exclusive-or’,
whoseX -style term representations will be almost the same extegptihe free connector
that is introduced in each term will be of the opposite kimp(it versus output).

We are able to determine the form of the left and right inticighin rules for the iff
connective via the equivalencé—B = —(AVB)V(AAB) for example. From this, we
can construct derivations whose conclusions introducedbimpound formula on the left
and right of a sequent. (Detailed proofs are given in Apperdi

Condensing these derivations gives us the § and ¢ g) introduction rules shown in
Figure 6, which we can inhabit withX’-style terms in the usual way. We write the corre-
sponding ‘iff-left’ and ‘iff-right’ terms as[M jic [y] PN | and[z Pa, 2@3].7 respectively.

I'-A B, A A, BFA A+ B A I'BEAA

(o1 “R)

T, (A=B)F A [+ (A=B),A

Fig. 6. <1, and« g introduction rules

The principal logical rule for iff should transform a prodfat cuts together an<g)
formula with an &) formula, or inX" notation,

([EPa,2Q0).7)7 1 §([MfiG [y) ijN]) ,~,y are introduced.

The reduct is not straightforward to determine. The ruledlie iff connective each bind
two inputs andtwo outputs, and each rule has two subterms. We observe a gtri&in
semblance between these terms and those used to represdantplication connective
(i.e. the syntax oft’, Definition 3.1). The iff-right term is reminiscent of an export
term, except two ‘functions’ are available over the samerface rather than one (n.b.
A—B=(A—B)\(B—A)). The iff-left term is reminiscent of a mediator with two bliiers
over each of its subterms instead of one.

In the case of a mediatoRy (1] kS, we seek to connect the ternisand S together
via the provided connectors. In general, connectingp £ directly would result in the
restriction that our ‘implications’ must be of the fori— A; instead we allow the body of
an export to be inserted to ‘mediate’ between these two sulstdf we think of the iff-left
term as a kind of mediator, the problem we must solve is adehdf connecting outputs
and inputs between the terms$ and N. However, even in the general cadé,and/NV have
bound connectors with types in common; it would seem that swe leverything we need
to connect these terms together directh/; appears to connect well withv and M&
appears to connect well withv.

In general this cannot be done, since the underlying proqfiesats interpret the types
of the two inputs as formulas that are read conjunctivelyg @ types of the two outputs
as formulas that are read disjunctively. In this conteit,offers a value of typed or a
value of typeB (loosely a value of typedv B) while N requires both a value of typg
and a value of type3 (loosely, requires a value of typéAB). Therefore, the problem
we must solve in trying to join these two proofs is essentitiiat of determining how we
can convert from a value of typdVv B to a value of typedAAB, i.e. we intuitively need

14

RAGHUNANDAN & SUMMERS

/>AZI—|‘EL'\A—>AP

A ~y
M#' s T Jg

' B
e FRB~B{k.0)B \

J B
w1t Bp a(0.0) / A
M Q/)%AST?A
\Ba_\ .’. /z\B*’BQ

Fig. 7. N ConnectiAon diagram for thAeAreduct of (P&, 2Q3].v)3 t H(IMfiz [y] i N]), ie.
(MEtEP)3 thik.a))@t7 (M5 2Q)f T @ (w.8))3 1iN)

N

something of typg AV B)—(AAB). Note that this ‘intuitive’ formula is actually logically
equivalent toA«+ B, which is the kind of functionality provided onby the iff-right term.

We return to the previous method of determining the priricipgical rule as detailed
in Sectionb, i.e. that of considering how one would reduce a cut betwesivations
that introduce a formula logically equivalent #—B. We cut together the proofs that
derive—(AVB)V(AAB) on the left and right of the sequent and reduce them usinguhe ¢
elimination rules for negation, disjunction and conjuanti A possible reduction sequence
is given in AppendixB. Condensing, then annotating the resulting proof yielésréduct:

(MptzP)otk(k.a))atj(Mot2Q)utw(w.0))d TiN)

This is better understood in the diagrammatic form of Figur&he twisting of wires rep-
resents an (implicit) contraction in the proof, which ‘mesjtwo connections (occurrences
of the same formula) into one. We ustto convert the type of one of the outputs &f,
so that both end up with the same type. The cut with a capsulecid to rename the other
output (toa, the same name as the outputffso that they can be contracted into one. In
this way, we can connect the two outputsidfto a single input ofV via a cut. Making a
copy of the termM allows us to simultaneously connect each output to each mipLy;
without two copies, it is difficult to construct cuts that nesddl of these connections.

An alternative (and symmetrical) reduction path to thatramn AppendixB yields the
following reduct.

(Mptz((zm)7 ti(PatjN)))o 1 2((z.7)7 1 j(Q0TiN))

One can see that in this alternative two copiesVofrather than)/) are made and inputs
are renamed rather than outputs. We are able to condensertheation diagram of Figure

7 into a form which focuses on the direct connections madeath eut (see Figurg). We
show this for both the reducts mentioned above.

These can be interpreted &sstyle terms, leading us to the following definition.
Definition 6.1 [Principal iff-reduction rule with copying] The term
([2P@,2Q8)-~)7 1 §([MAG [y] TjN])
where,y, y are introducedreduces to one of the following variants (withw, 7, 7 fresh.
(a) (MA1EP)G {k{k.a))atj((MTT2Q)atD(w.8))51iN)
(b) (MfitZ((xm)71i(PatN)))E T 2(27)715(QI TiN))
15

RAGHUNANDAN & SUMMERS

WA j:B wA j
Mcr:B i:AN Mcr:B i:AN

z:B J:A z:B 0:A
Q

Q@

Fig. 8. Simplified connection diagrams for the reducts of Bigéin 6.1

As mentioned previously, a copy of eith&f or N is used to facilitate the connection
of each output of\/ to each input ofN. The question arises of whether this copying is
necessary. One of the graphs shown in Figlrenames both outputs af while the other
renames both inputs df. We sought to explore other ways in whidth and NV could be
connected and more specifically, whether it would be posdiblobtain a reduct for the
principal logical rule for< which did not require copying. We sought to distribute the
connections in a more symmetrical fashion because we leelithat the copying was only
necessary due to the large number of connections being midd®ne term or the other.
We discovered a solution where we renaom® output in M/ andoneinput in V. This
leads to the diagrams shown in Fig@eThe reader can verify that a path exists from each
output of M to to each input ofV.

z:A a:B x:APOc:B
A / 7:B A \ 7:B
MO' B Z:AN MO':B\ i:AN
z:BQ5:A z:BQ(S:A

Fig. 9. Simplified Connection Diagrams for the Reducts of Digfin 6.2

This leads us to a simpler definition for the principal lodjicde.
Definition 6.2 [Simplified Principal iff-reduction Rule] The term
([2P@,2Q8)-~)7 1 §([MAG [y] TjN])
where,y, y introducedandk, = freshreduces to one of the following variants.
(@) (MAtEP)G 1 k(k.0)at2((zm)7 15(Q1iN))
(b) (M3 12Q)t k(k.8)8 12 ((z.m)7 1i(PatjN))

These reducts will be significantly cheaper to evaluate thase given in Definitio. 1
since an extra copy a¥/ (or N) is not required and fewer cuts are needed to represent all
the necessary connections. From now on, we will use thisores the principal logical
rule for iff.

6.1 Simulating other connectives

If a logical connective is able to express another connectiven it is straightforward to
simulate the computational content of the latter connegtiva term-calculus corresponding

16

RAGHUNANDAN & SUMMERS

to the former. The only logical connectives expressible &) @re (T) and (D), which
might lead us to believe its simulation capabilities in thémse are limited. However, we
find this is not the case; in fact we are able to simulate theatuhs associated with several
other connectives, i.e. we can encode the syntax for thése obnnectives in such a way
that reductions are preserved. When this is the case, wesagmgomputationally express
the connective (which may or may not be expressible in a &dgiense).

If we look at the iff-terms themselves, we find they provideeaith of input and output
connectors arranged in different combinations over a numbsubterms. We also observe
that the principal logical rule (see Definitidh2) offers a number of interactions between
these different subterms, giving scope for modelling aetgrof computational behaviour,
some of which may be new.

As an example of a connective which can be computationalyessed (but not logi-
cally expressed) by iff, we show how to express the syntaxraddction behaviour of the
X-calculus (based on the implication connective) in a terioutas based on the iff con-
nective (which we callk’). We give the definition of this new calculus below. For brgvi
we omit the activated cuts, which should be treated anakigou

Definition 6.3 [Syntax for the calculusY ']

-~

M,N == (z.o) | [M o [zﬁ}N] | [fFMa,zZNé|.y | MatxzN
axiom iff-left iff-right cut
The typing rules for terms of th& —-calculus are given below.

Definition 6.4 [Typing rules forX <]

M TFaAA N: T z:AF A
(Az)
<(L’.Oé> AR A A ManNI'F}—A

(Cut)

M:TkFuwA a:B,A N . TiiA j:BFA
[M7i5 [2)ijN] ;- T, z:(A=B) F A

(<)

M:T,z:Ara:B,A N .- I')zzBF§:A A

P — (<r)
[Ma,zZNo).y .- T+ v:(A<=B), A

As remarked earlier, the iff-left term is reminiscent of adiaor with two binders over
each of its subterms rather than one, and the iff-right tesrmeminiscent of an export,
except that two ‘functions’ are available over the samerfate rather than one. With this
observation in mind, we move towards an encoding ofthealculus inX <.

We can sensibly assume that when encoding the export teomaimtiff-right term
[ZPa, 2@3].7, we require only one of the two subterms, gayThis leaves the question of
what we should do witld). By making(the capsul€y.d), we can give an encoding that
is sound (no undesired reductions are possible) providiagwe restrict the reduction to
always use the first variant of the principal logical ruleagivin Definition6.2. This does
not seem a severe restriction; one might view this as a girate the reduction (one always

has the choice of which variant of the principal iff rule teeisOur encoding is as follows.
17

RAGHUNANDAN & SUMMERS

Definition 6.5 [Interpretation ofX into X' 7]

[{z.a)]” = (z.a)
TzPa-~|~ = Z[Pl @&, 2(y.6)0]7 2y, fresh
TMa [y) aN]~ = [[M]"aB [y z2[N]7] B, fresh
MatzN|~ = M| atz[N]~
Notice that in the interpretation afPa-+, had we choser) (the right-hand subterm)
to be (z.9), this would have forced the types ferandd, and therefore: and« to be the
same. As a result, our encoding would not preserve typéalsince in the original ternms

anda need not have had the same type.
We have the following result for our encoding:

Theorem 6.6 (Preservation of typeability) For any X-term P, P is typeable iff| P |~ is
typeable.

In fact, the type derivations in the two systems are closelgted; one can define a
further encoding from a type-derivation f@t in the usualX system to a type-derivation
for [P||” in the corresponding’ system. Such details are omitted here.

To show that our encoding is sensible, we must also checkwbatan simulate the
reductions ofY. As pointed out in Sectiod.3, the mechanism provided by the propagation
and renaming rules is generic to afystyle term calculus; it performs the same basic
task of pushing cuts through subterms and renaming comsegardless of the syntax
employed. To show that such rules are simulated is straipird, and we therefore only
concern ourselves with the ruexp-medjiven in Definition3.2

The following (abbreviated) reduction confirms that we camuate the first variant of
the exp-medrule. TheX’ ™ calculus can be extended with rules for garbage collectiah a
renaming similar to those of Lemnga5.

l@Pa-v)y1g(Mp [y] iN)]I~

= ([@IP]7a, 2(c0)d) At H((TML" 5 [y) i3 TN 1)) (2,¢,0,0,i fresh)

— (TMU"At2TPL7)5 tk(ka))atZ((zm7 1 5((c.8)0 1i[N]7)) (Def. 6.2a)
— (M~ mptzlPl)atz[N[z/5]1" (actr, gcR, actRr, renR, acti, gc)
= [Matz(PatjN)]~ (moduloa-conversion)

In fact, our encoding i®nly able to simulate this variant of thexp-medrule. The
differently-bracketed alternatives of tlexp-medule do not reduce to each other and also
do not always share the same normal forms. However, it is rstated that the set of
normal forms reachable from the two variantseafp-medliffer only in some special cases,
and even then only by permutations of structure within tlegewhich do not affect their
computational behaviour. If one were to employ a suitabténmf proof-nets for classical
logic (see for example9]), then these terms could be identified formally. In thissserour
encoding captures all of the essential computations threbegerformed withirk’.

The principal logical rule for iff manipulates four subtesnwhile the principal logical
rule for any pairing connective involves three. We encodeglication by choosing one of
the four subterms to be a suitable capsule. Since the ifigdrsind many combinations of

18

RAGHUNANDAN & SUMMERS

inputs and outputs, we can suitably restrict them to contjmunally express other pairing
connectives in a similar way. We are able to do this for théclalgzonnectiveg\ and? up to
the same limitations as discussed above for implicatiorditahally, this can be achieved
for the negation connective without limitations.

While the iff connective is unable to logically express tlmmgectives—, A, T, -, we
are able to simulate the significant computational behaviduheir corresponding term
calculi. Similarly, thex connective is able to simulate the computational behavimuhe
dual pairing connectives, Vv, | and again for the connective

7 Conclusions and Future Work

This work has provided an analysis of the issues involvedeiivohg term calculi to cor-
respond with arbitrary choices of logical connective. Weehshown various general tech-
niques for deriving suitable syntax, reduction rules amdsggme extent) computational
content corresponding with the inclusion of a logical cartive of interest.

The analysis of logical connectives purely in terms of thevemoent of their inputs and
outputs seems to yield interesting results, and this shbaltboked at more closely. For
example, we hypothesise that a term calculus can expresterinating terms if and only
if it contains a connective which can ‘swap’ an input for arpuit.

Our investigation into the— connective has shown that much more can be expressed
than we first thought, and this directly relates to the inf@rid outputs present. A more
general investigation of the computational content of goanective (in particular, any
examples which are not neatly expressed with other cornvesjtis the subject of future
work. Our simulation result foX would also be strengthened by the formalisation of a
suitable notion of equivalence cti-terms, which is likely to relate to Kleene permutations
and/or proof-nets.

8 Acknowledgements

We would like to thank Steffen van Bakel, Luca Cardelli, BoriGaertner, David Gross,
Pierre Lescanne and Dragiganic for many interesting discussions on the subject isf th
paper.

References

[1] Tristan Crolard. A formulae-as-types interpretatidrsobtractive logic.Journal of Logic and Computatioi4(4):529—
570, 2004.

[2] Pierre-Louis Curien and Hugo Herbelin. The duality ofrquutation. InProc. ICFP’0Q pages 233-243. ACM, 2000.

[3] Gerhard Gentzen. Untersuchungen uber das logischéeSsén. Mathematische Zeitschrif89:176-210, 405431,
1934.

[4] Hugo Herbelin. A lambda-calculus structure isomorpioicGentzen-style sequent calculus structurePrioc. CSL '94
volume 933 ofLNCS pages 61-75. Springer, 1994.

[5] S.C. Kleene.ntroduction to MetamathematicéNorth-Holland, 1952.

[6] Stéphane Lengrand. Call-by-value, call-by-name, atrdng normalization for the classical sequent calculus. |
ENTCS volume 86 ofentcs Elsevier, 2003.

[7] P.B. Levy. Jumbo lambda-calculus. Rroc. ICALP’06 LNCS. Springer-Verlag, 2006.

19

RAGHUNANDAN & SUMMERS

[8] M. Parigot. An algorithmic |nterpretat|on of classigatural deduction. IRProc. LPAR'92volume 624 oL NCS pages
190-201. Springer-Verlag, 199

[9] Edmund Robinson. Proof nets for classical logit. Logic Comput.13(5):777-797, 2003. Special issue: Semantic
foundations of proof-search.

[10] Alexander J. Summers and Steffen van Bakel. Approatdpslymorphism in classical sequent calculusEBOP’06
pages 84-99, 2006.

[11] Christian UrbanClassical Logic and ComputatioPhD thesis, University of Cambridge, 2000.

[12] S. van Bakel, S. Lengrand, and P. Lescanne. The lang&aggrcuits, computations and classical logic. Fmoc.
ICTCS’05 2005.

[13] Steflfen van Bakel and Jayshan Raghunandan. Explgitaatonversion and garbage collectiontn Unpublished,
April 2006.

[14] Philip Wadler. Call-by-value is dual to call-by-namie. ICFP’03, pages 189-201. ACM Press, 2003.

A Deriving iff rules using A—~B = =(AVB) V (AAB)

Proof of ", =(AVB) V (AAB)

'+ AVB, A I'A,BF A
<m> kb)\
T, ~(AVB)F A LANSEA
vV
T, ~(AVB) V (AAB) F A r

Proof ofI' - =(AVB) Vv (AA

@ NI

FAl—AA I,BFAA I,AFB,A T,B+B,A
(Vi) (Vi)
T,AVBF A, A F,AvBl—B,A(|
A
T,(AVB) F (AAB), A f
- —(AVB), (AAB), A
\/R)

F—=(AVB)V (AAB), A

20

T¢

v P
T,AFAA I BFAA T,AFB,A T,BFB,A

T,AVBF A, A T,AVBF B,A (v I't A B A
(AR) —— (VR)

T, (AVB) F (AAB), A | rravea T LABEA

-/ -/ _— /\
T F —(AVB), (ANB), A | T, ~(AVB) F A LANBFA L)

V V
T F —(AVB)V(AAB),A = T, ~(AVB)V(AAB) F A g

A (Cut)

J1 10} S9Ny uoeuIwlT IND BuiAed g

'w P
— (A) (Az)
T,AF A A I,B+-A A I AFB,A T,BFB,A

(VL) (Vi)

T, AVBF A, A T, AVBF B,A Y rrABA
(AR) —————— (VR)
I',(AvB) F (AAB), A I'-AvB,A)

-R ~L
I'+ —(AVB), (AAB), A) T,~(AVB) - A EC I A,BFA
t

Tk (AAB), A) T, AABF A
TFA

SHIININNGS 2y NVANVNNAHOVY

ac

:
)

(A (Ax)
TAFAA I BF A A IAFB,A T,BFB,A
(Vi) (VL)
I'FAB,A I,AVBF A, A I,AVBF B,A
——— (VR) (AR)
T+ AVB,A T,(AVB) F (AAB), A cun F,A,BI—A(|
ut A
T (AAB), A T, ANBEA
Cut)
I'HA
— (Ax) (Ax)
kA B,A T A A A I,BF A A I'FAB,A I AFB,A T,BF B,A
— (Vg) (Vo) ————(Vr) Vi)
I'FAVB, A I, AVBF A,A ['FAVB, A I, AVBF B,A
(Cut) ut)
T.FAA FFB,A(| I A BFA
A
TF (AAB), A f T, ANBF A

'EA

SHIININNGS 2y NVANVNNAHOVY

€¢

M Q
I'+ABA I',BFAA

M P

T'FABA T,AFB,A

(Cut) —— (Ax) (Cut) (Ax)
THAA T,AF A A T+ B,A I,BF B,A
(Cut) (Cut)
T-AA T+ B,A I A, BFA
(AR) (AL)
' (AAB), A IANBE A
(Cut)
I'kEA
M Q
M P T'-AB,A T,BFAA
(Cut) (Az)
T+A,BA T,AFB,A THAA AR A A
(Cut) ——— (Ax) (Cut)
T+ B,A T,BF B, A THAA A, BFA
(Cut) (Cut)
T+ B,A ,BFA
(Cut)

r-A

SHIININNGS 2y NVANVNNAHOVY

	Introduction
	Sequent Calculi
	The X-Calculus
	The Computational Representation of a Connective
	Sequent Rules
	Term Syntax
	Reduction Rules

	Comparing Logical Connectives
	Enumerating the connectives
	The Binary Connectives

	Interpreting if-and-only-if
	Simulating other connectives

	Conclusions and Future Work
	Acknowledgements
	References
	Deriving iff rules using AB(AB)(AB)
	Deriving Cut Elimination Rules for iff

