
Formally Validating
a Practical Verification Condition Generator

No Author Given

No Institute Given

Abstract. A program verifier produces reliable results only if both
the logic used to justify the program’s correctness is sound, and the
implementation of the program verifier is itself correct. Whereas it is
common to formally prove soundness of the logic, the implementation of a
verifier typically remains unverified. Bugs in verifier implementations may
compromise the trustworthiness of successful verification results. Since
program verifiers used in practice are complex, evolving software systems,
it is generally not feasible to formally verify their implementation.
In this paper, we present an alternative approach: we validate successful
runs of the widely-used Boogie verifier by producing a certificate which
proves correctness of the obtained verification result. Boogie performs a
complex series of program translations before ultimately generating a veri-
fication condition whose validity should imply the correctness of the input
program. We show how to certify three of Boogie’s core transformation
phases: the elimination of cyclic control flow paths, the (SSA-like) replace-
ment of assignments by assumptions using fresh variables (passification),
and the final generation of verification conditions. Similar translations
are employed by other verifiers. Our implementation produces certificates
in Isabelle, based on a novel formalisation of the Boogie language.

1 Introduction

Program verifiers are tools which attempt to prove the correctness of an imple-
mentation with respect to its specification. A successful verification attempt is,
however, only meaningful if both the logic used to justify the program’s correct-
ness is sound, and the implementation of the program verifier is itself correct. It
is common to formally prove soundness of the logic, but the implementations of
program verifiers typically remain unverified. As is standard for complex software
systems, bugs in verifier implementations can and do arise, potentially raising
doubts as to the trustworthiness of successful verification results.

One way to close this gap is to prove a verifier’s implementation correct.
However, such a once-and-for-all approach faces serious challenges. Verifying
an existing implementation bottom-up is not practically feasible because such
implementations tend to be large and complex (for instance, the Boogie verifier [27]
consists of over 30K lines of imperative C# code), use a variety of libraries, and are
typically written in efficient mainstream programming languages which themselves
lack a formalisation. Alternatively, one could develop a verifier that is correct by

2 No Author Given

construction. However, this approach requires the verifier to be (re-)implemented
in an interactive theorem prover (ITP) such as Coq [13] or Isabelle [23]. This
precludes the free choice of implementation language and paradigm, exploitation
of concurrency, and possibility of tight integration with standard compilers and
IDEs, which is often desirable for program verifiers [3, 4, 12, 24]. Both verification
approaches substantially impede software maintenance, which is problematic since
verifiers are often rapidly-evolving software projects (for instance, the Boogie
repository [1] contains more than 5000 commits). It is, thus, not surprising that
once-and-for-all verification of program verifiers has been restricted to idealised
implementations, omitting for instance challenging optimisations [2, 40]; the gap
between those implementations and the tools used in practice remains significant.

To address these challenges, in this work we employ a different approach.
Instead of verifying the implementation once and for all, we validate specific
runs of the verifier by producing a certificate which proves the correctness of the
obtained verification result. Our certificate generation formally relates the input
and output of the verifier, but does so largely independently of its implementation,
which can freely employ complex languages, algorithms, or optimisations. Our
certificates are formal proofs in Isabelle, and so checkable by an independent
trusted tool; their guarantees for a certified run of the verifier are as strong as
those provided by a (hypothetical) verified verifier.

We apply our novel verifier validation approach to the widely-used Boogie
verifier, which verifies programs written in the intermediate verification lan-
guage Boogie. The Boogie verifier is a verification condition generator : it verifies
programs by generating a verification condition (VC), whose validity is then
discharged by an SMT solver. Certifying a verifier run requires proving that
validity of the VC implies the correctness of the input program. Certification
of the validity-checking of the VC is an orthogonal concern; our results can be
combined with work in that area [10,14,18] to obtain end-to-end guarantees.

Like many automatic verifiers, Boogie is a translational verifier : it performs
a sequence of substantial Boogie-to-Boogie translations (phases), simplifying the
task and output of the final efficient VC computation [5,17]. The key challenges in
certifying runs of the Boogie tool are to certify each of these phases, including final
VC generation. In particular, we present novel techniques for making the following
three key phases (and many smaller ones) of Boogie’s tool chain certifying:

1. The elimination of loops (more precisely, cycles in the CFG) by reducing the
correctness of loops to checking loop invariants (CFG-to-DAG phase)

2. The replacement of assignments by (SSA-style) introduction of fresh variables
and suitable assume statements (passification phase)

3. The final generation of the VC, which includes the erasure and logical encoding
of Boogie’s polymorphic type system [31] (VC phase).

The certification of such verifier phases is related to existing work on compiler
verification [32] and validation [7, 37, 38]. However, the translations and the
certified property we tackle here are fundamentally different from those in
compilers. Compilers typically require that each execution of the target program

Formally Validating a Practical Verification Condition Generator 3

corresponds to an execution of the source program. In contrast, the encoding of
a program in a translational verifier typically has intentionally more executions
(for instance, allows more non-determinism). Moreover, translational verifiers
need to handle features not present in standard programming languages such
as assume statements and background theories. Prior work on validating such
verifier phases has been limited in the supported language and extent of the
formal guarantee; we discuss comparisons in detail in Sec. 8.

Contributions. Our paper makes the following technical contributions.

1. The first formal semantics for a significant subset of Boogie (including axioms,
polymorphism, type constructors), mechanised in Isabelle.

2. A validation technique for two core program-to-program translations occurring
in verifiers (CFG-to-DAG and passification).

3. A validation technique for the VC phase, handling polymorphism erasure and
Boogie’s type system encoding [29], for which no prior formal proof exists.

4. A version of the Boogie implementation that produces certificates for a
significant subset of Boogie.

Making the Boogie verifier certifying is an important result, reducing the
trusted code base for a wide variety of verification tools implemented via encodings
into Boogie, e.g. Dafny [29], VCC [12], Corral [26], and Viper [33]. Moreover, the
technical approach we present here can in future be applied to the certification
of the translations performed by these tools, and those based on comparable
intermediate verification languages such as Frama-C [24] and Krakatoa [16] based
on Why3 [15] and Prusti [3] and VerCors [9] based on Viper [33].

Outline. Sec. 2 explains at a high-level, how our validation approach is structured
for the different phases. Sec. 3 introduces a formal semantics for Boogie. Secs. 4,
5 and 6 present our validation of the passification, CFG-to-DAG, and VC phases,
respectively. Sec. 7 evaluates our certificate-producing version of Boogie. Sec. 8
discusses related work Sec. 9 concludes.

2 Approach

A Boogie program consists of a set of procedures, each with a specification and a
procedure body in the form of a (reducible) control-flow-graph (CFG), whose
blocks contain basic commands; we present the formal details in the next section.
Boogie verifies each procedure modularly, desugaring procedure calls according
to their specifications. Verification is implemented via a series of phases: program-
to-program translations and a final computation of a VC to be checked by an
SMT solver. Our goal is to formally certify (per run of Boogie) that validity of
this VC implies the correctness of the original procedure.

To keep the complexity of certificates manageable, our technical approach is
modular in three dimensions: decomposing our formal goal per procedure in the

4 No Author Given

G1 G2 G3 VC
CFG-to-DAG Passification VC Phase

valid(VC) |= ver(G3)ver(G3) |= ver(G2)ver(G2) |= ver(G1)

valid(VC) |= ver(G1)

Fig. 1. Key phases of verification in Boogie and their certification. The solid edges
show Boogie’s transformations on a procedure body; each node Gi represents a control-
flow-graph. Our final certificate (green edge) is constructed by formally linking the
three phase certificates represented by the blue edges. Each of three phase certificates
additionally incorporates extra smaller transformation phases that we do not show here.

Boogie program, per phase of the Boogie verification, and per block in the CFG
of each procedure. This modularity makes the full automation of our certification
proofs in Isabelle practical. In the following, we give a high-level overview of this
modular structure; the details are presented in subsequent sections.

Procedure decomposition. Boogie has no notion of a main program or an overall
program execution. A Boogie program is correct if each of its procedures is
individually correct (that is, the procedure body has no failing traces, as we make
precise in the next section). Boogie computes a separate VC for each procedure,
and we correspondingly validate the verification of each procedure separately.

Phase decomposition. We break our overall validation efforts down into per-phase
sub-problems. In this paper, we focus on the following three most substantial and
technically-challenging of these sequential phases, illustrated in Fig. 1. (1) The
CFG-to-DAG phase translates a (possibly-cyclic) CFG to an acyclic CFG (cf.
Sec. 4). This phase substantially alters the CFG structure, cutting loops using an-
notated loop invariants to over-approximate their executions. (2) The passification
phase eliminates imperative updates by transforming the code into static single
assignment (SSA) form and then replacing assignments with constraints on vari-
able versions (cf. Sec. 5). Both of these phases introduce extra non-determinism
and assume statements (which, if implemented incorrectly could make verification
unsound by masking errors in the program). (3) The final VC phase translates the
acyclic, passified CFG to a verification condition that, in addition to capturing
the weakest precondition, encodes away Boogie’s polymorphic type system [31].

We construct certificates for each of these key phases separately (depicted
by the blue lines in Fig. 1). For each phase, we certify that if the target of the
translation phase is correct (a correct Boogie program for the first two phases;
a valid VC for VC phase) then the source (program) of the phase is correct.
This modular approach lets us focus the proof strategy for each phase on its
conceptually-relevant concerns, and provides robustness against changes to the
verifier since at most the certification of the changed phases may need adjustment.
Logically, our per-phase certificates are finally glued together to guarantee the
analogous end-to-end property for the entire pipeline, depicted in green in Fig. 1.

Formally Validating a Practical Verification Condition Generator 5

The certificates of the key phases also incorporate various smaller transforma-
tions between the key phases such as peephole optimisation. Our work covers these
small transformations, but we focus on the key phases in the paper. Boogie also
performs several smaller translation steps prior to the CFG-to-DAG phase. These
include transforming ASTs to corresponding CFGs, optimisations such as dead
variable elimination, and desugaring procedure calls using their specifications (via
explicit assert, assume, and havoc statements). Our approach applies analogously
to these initial smaller phases, but our current implementation certifies only the
pipeline of all phases from the input to the CFG-to-DAG phase onwards.

CFG decomposition. When tackling the certification of each phase, we further
break down validation of a procedure’s CFG in a two-tiered manner:

1. Local block lemmas: We prove independent lemmas per CFG block, relating
the executions through a block in the source program with the corresponding
block(s) in the target program. In particular, these lemmas imply that if the
target block(s) have no failing executions (or the VC generated for that block
holds, for the VC phase), neither did the source block.

2. Global block theorems: We show analogous per-block results concerning all
executions from this block onwards; we build these compositionally by reverse-
topological traversal of either the source or target CFGs, as appropriate.

This decomposition over program structure separates command-level reasoning
(local block lemmas) from CFG-level reasoning (global block theorems). It enables
concise lemmas and proofs in Isabelle and makes each comprehensible to a human.

3 A Formal Semantics for Boogie

Our certificates prove that the validity of a VC generated by Boogie formally
implies correctness of the Boogie program to be verified. This proof relies crucially
on a formal semantics for Boogie itself. Our first contribution is the first such
formal semantics for a significant subset of Boogie, mechanised in Isabelle. Our
semantics uses the Boogie reference manual [27], the presentation of its type
system [31], and the Boogie implementation for reference; none of those provide a
formal account of the language. For space reasons, we explain only the key concepts
of our detailed formalisation here; we will make the full Isabelle mechanisation
available as part of our accompanying artifact.

3.1 The Boogie Language

Boogie programs consist of a set of top-level declarations of global variables and
constants (the global data), axioms, uninterpreted (polymorphic) functions, type
constructors, and procedures. A procedure declaration includes parameter, local-
variable, and result-variable declarations (the local data), a pre- and postcondition,

6 No Author Given

and a procedure body given as a CFG1. CFGs are formalised as usual in terms
of basic blocks (containing a possibly-empty list of basic commands), and edges;
semantically, execution after a basic block continues via any of its successors
non-deterministically.

The types, expressions, and basic commands in our Boogie subset are shown
in Fig. 5 in App. A. We support the primitive types Int and Bool ; types obtained
via declared type constructors are uninterpreted types; the sets of values such
types denote are constrained only via Boogie axioms and assume commands.

Boogie expression syntax is largely standard (e.g. including typical arithmetic
and boolean operations). Old-expressions old(e) evaluate the expression e w.r.t.
the current local data and the global data as it was in the pre-state of the
procedure execution. Boogie expressions also include universal and existential
value quantification, as well as universal and existential type quantification.

Basic commands form the single-steps of traces through a Boogie CFG;
sequential composition is implicit in the lists of basic commands in a CFG basic
block and further control flow (including loops) is prescribed by CFG edges.
Boogie’s basic commands are assumes, asserts, assignments, and havocs; havoc x
non-deterministically assigns a value matching the type of variable x to x.

The main Boogie features not supported by our subset are maps and other
primitive types such as bitvectors. Boogie maps are polymorphic and impredica-
tive, i.e. one can define maps that contain themselves in their domain. Giving
a semantic model for such maps in a proof assistant such as Isabelle or Coq is
non-trivial; we aim to tackle this issue in the future. Modelling bitvectors will be
simpler, although maintaining full automation may require some additional work.

3.2 Operational Semantics and Type Safety

Values and state model. Our formalisation embeds integer and boolean values
shallowly as their Isabelle counterparts; an Isabelle carrier type for all abstract
values (those of uninterpreted types) is a parameter of our formalisation. Each
uninterpreted type is (indirectly) associated with a non-empty subset of abstract
values via a surjective type interpretation map T from abstract values to (single)
types; particular interpretations of uninterpreted types can be obtained via
different choices of type interpretation T .

One can understand Boogie programs in terms of the set of possible traces
through each procedure body. Traces are (as usual) composed of sequences of
steps according to the semantics of basic commands and paths through the CFG;
these can be finite or infinite (representing a non-terminating execution). A trace
may halt in three different cases: (1) the exit block of the procedure is reached
in a state satisfying the procedure’s postcondition (a complete trace)2, (2) an

1 Source-level procedure specifications also include modifies clauses, declaring a set
of global variables the procedure may modify. As we tackle Boogie programs after
procedure calls have been desugared, there are no modifies clauses in our formalisation.

2 The case of the postcondition not holding is subsumed under point (2), since Boogie
checks postconditions by generating extra assert statements.

Formally Validating a Practical Verification Condition Generator 7

assert A; command is reached in a state not satisfying assertion A (a failing
trace), or (3) an assume A; command is reached in a state not satisfying A (a trace
which goes to magic). Our formalisation correspondingly includes three kinds
of Boogie program states: a distinguished failure state F, a distinguished magic
state M, and normal states N((os, gs, ls)). A normal state is a triple of partial
mappings from variables to values for the old global state (for the evaluation of
old-expressions), the (current) global state, and the local state, respectively.

Expression evaluation. An expression e evaluates to value v if the judgement
T , Λ, Γ,Ω ` 〈e,N(ns)〉 ⇓ v holds in the context (T , Λ, Γ,Ω). Here, T is a type
interpretation (as above), Λ is a variable context : a pair (G,L) of type declarations
for the global (G) and local (L) data. Γ is a function interpretation, which maps
each function name to a semantic function mapping a list of types and a list of
values to a return value. The type substitution Ω maps type variables to types.

The rules defining this judgement can be found in App. A.2. For example, the
following rule expresses when a universal type quantification evaluates to true:

∀τ. closed(τ) =⇒ T , Λ, Γ,Ω(t 7→ τ) ` 〈e,ns〉 ⇓ true

T , Λ, Γ,Ω ` 〈∀ty t. e,ns〉 ⇓ true

The premise requires one to show that the expression e reduces to true for every
possible type τ that is closed (i.e. does not contain any type variables). In general,
expression evaluation is possible only for well-typed expressions; we also formalise
Boogie’s type system and (for the first time) prove its type safety.

Command and CFG reduction. The judgement T , Λ, Γ,Ω ` 〈c, s〉 → s′ defines
when a command c reduces in state s to state s′; the rules are in App. A.3. This
reduction is lifted to lists of commands cs to model the semantics of a single trace
through a CFG block (the judgement T , Λ, Γ,Ω ` 〈cs, s〉 [→] s′). The operational
semantics of CFGs is modelled by the judgement T , Λ, Γ,Ω,G ` δ →CFG δ′,
expressing that the CFG configuration δ reduces to configuration δ′ in the CFG
G. A CFG configuration is either active or final. An active configuration is given
by a tuple (inl(bn), s), where bn is the block identifier indicating the current
position of the execution and s is the current state. A final configuration consists
of a tuple (inr(()), s) for state s (and unit value ()) and is reached at the end of a
block that has either no successors, or is in a magic or failure state.

3.3 Correctness

A procedure is correct if it has no failing traces. This is a partial correctness
semantics; a procedure body whose traces never leave a loop is trivially correct
provided that no intermediate assert commands fail. Procedure correctness
relies on CFG correctness. A CFG G is correct w.r.t. a postcondition Q and a
context (T , Λ, Γ,Ω) in an initial normal state N(ns) if the following holds for all
configurations (r, s′):

T , Λ, Γ,Ω,G ` (inl(entry(G)),N(ns))→∗CFG (r, s′) =⇒
[s′ 6= F ∧ (r = inr(())⇒ ∀ns ′.s′ = N(ns ′) =⇒ T , Λ, Γ,Ω ` 〈Q,N(ns ′)〉 ⇓ true)]

8 No Author Given

assume i != 0
j := 0
while(i != 0)
inv j >= 0 ∧ (i = 0 ⇒ j > 0)
{

if(i < 5) {
j := j+1

}
i := i-1

}
assert j > 0

assume i != 0
j := 0

B0

assert j >= 0 ∧ (i = 0 ⇒ j > 0) B1

assume i != 0 B2

assume i < 5
j := j+1

B3 assume !(i < 5) B4

i := i-1 B5

assume i == 0
assert j > 0

B6

Fig. 2. Running example in source code and CFG representation, respectively.

where entry(G) is the entry block of G and→∗CFG is the reflexive-transitive closure
of the CFG reduction. The postcondition is needed only if a final configuration
is reached in a normal state, while failing states must be unreachable. Whenever
we omit Q, we implicitly mean the postcondition to be simply true. In our tool,
we consider only empty initial mappings Ω, since we do not support procedure
type parameters (lifting our work to this feature will be straightforward).

For a procedure p to be correct w.r.t. a particular context, its body CFG
must be correct w.r.t. the same context and p’s postcondition, for all initial
normal states N(ns) that satisfy p’s precondition and which respect the context.
For ns to respect a context, it must be well-typed and must satisfy the axioms
when restricted to its constants. We say that p is correct, if it is correct w.r.t. all
well-formed contexts, which, among other things, must have a well-typed function
interpretation (see App. A.4).

Running example. We will use the simple CFG of Fig. 2 as a running example,
intended as body of a procedure with trivial (true) pre- and post-conditions.
The code includes a simple loop with a declared loop invariant, which functions
as a classical Floyd/Hoare-style inductive invariant, and for the moment can
be considered as an implicit assert statement at the loop head. The CFG has
infinite traces: those which start from any state in which i is negative. Traces
starting from a state in which i is zero go to magic; they do not reach the loop.
The program is correct (has no failing traces): all other initial states will result
in traces that satisfy the loop invariant and the assert statement. If we removed
the initial assume statement, however, there would be failing traces: the loop
invariant check would fail if i were initially zero.

4 The CFG-to-DAG Phase

In this section, we present the validation for the CFG-to-DAG phase in the
Boogie verifier. This phase is challenging as it changes the CFG structure, inserts

Formally Validating a Practical Verification Condition Generator 9

assume i != 0
j := 0

B0

assert A B1

assume i != 0 B2

assume i < 5
j := j+1

B3 assume !(i < 5) B4

i := i-1 B5

assume i == 0
assert j > 0

B6

assume i != 0
j := 0
assert A

B′
0

havoc i,j
assume A

B′
1

assume i != 0 B′
2

assume i < 5
j := j+1

B′
3 assume !(i < 5) B′

4

i := i-1
assert A
assume false

B′
5

assume i == 0
assert j > 0

B′
6

Fig. 3. The CFG-to-DAG phase applied to the running example (source is left, target is
right). The back-edge (the red edge in the left CFG) is eliminated. The blue commands
are new. A is given by j >= 0 ∧ (i = 0 ⇒ j > 0).

additional non-deterministic assignments and assume statements, and must do so
correctly for arbitrary (reducible) nested loop structures.

4.1 CFG-to-DAG Phase Overview

The CFG-to-DAG phase applies to every loop head block identified by Boo-
gie’s implementation and any back-edges from a block reachable from the loop
head block back to the loop head (following standard definitions for reducible
CFGs [20]). Fig. 3 illustrates the phase’s effect on our simple running example.
Block B1 is the (only) loop head here, and the edge from B5 to it is the only
back-edge in this program (completing looping paths via B2 and B3 or B2 and
B4). An assert A statement starting a loop head (like B1) is interpreted as
declaring A to be the loop invariant3. The CFG-to-DAG phase performs the
following steps:

1. Accumulate a set XH of all (local and global) variables assigned-to on any
looping path from the loop head back to itself. In our example, XH is {i, j}.

2. Move the assert A statement declaring a loop invariant (if any) from the
loop head to the end of each preceding block (in our example: B0 and B5).

3. Insert havoc statements at the start of the loop head block per variable in XH ,
followed by a single assume A statement (preceding any further statements).

4. For each block with a back-edge to the loop head, delete the back-edge; if this
leaves the block with no successors, append assume false to its commands.

The havoc-then-assume sequence introduced in step 3 can be understood
as generating traces for arbitrary values of XH satisfying the loop invariant A,
3 In general, multiple assertions at the beginning of a loop head form the invariant.
We focus on a single assertion here for simplicity.

10 No Author Given

effectively over-approximating the set of states reachable at the loop head in the
original program. In particular, the remnants of any originally looping path (e.g.
B′1,B′2,B′3,B′5) enforce that any non-failing trace starting from any such state
must (due to the assert added to block B′5 in step 2) result in a state which
re-establishes the loop invariant. Such paths exist only to enforce this inductive
step (analogously to the premise of a Hoare logic while rule); so long as the
assert succeeds, we can discard these traces via step 4.

While we illustrate this step on a simple CFG, in general a loop head may have
multiple back-edges, looping structures may nest, and edges may exit multiple
loops. For the above translation to be correct, the CFG must be reducible and
loop heads and corresponding back-edges identified accurately, which is complex
in general. Importantly (but perhaps surprisingly), our work makes this phase of
Boogie certifying without explicitly verifying (or even defining) these notions.

4.2 CFG-to-DAG Certification: Local Block Lemmas

We define first our local block lemmas for this phase. Recall that these prove
that if executing the statements of a target block yields no failing executions,
the same holds for the corresponding source block; this result is trivial for source
blocks other than loop heads and their immediate predecessors, since these are
unchanged in this phase. To enable eventual composition of our block lemmas,
we need to also reflect the role of the assume and assert statements employed in
this phase. The formal statement of our local block lemmas is as follows4:

Theorem 1 (CFG-to-DAG Local Block Lemma). Let csS and csT be
corresponding source and target blocks, respectively, for the CFG-to-DAG trans-
formation. If csS is a loop head, let XH be as defined in CFG-to-DAG step 1
(and empty otherwise) and let Apre be its loop invariant (or true otherwise). If
csS is a predecessor of a loop head, let Apost be the loop invariant of its successor
(and true otherwise). Then, if:

1. T , Λ, Γ,Ω ` 〈csS ,N(ns1)〉 [→] s′1
2. ∀s′2. T , Λ, Γ,Ω ` 〈csT ,N(ns2)〉 [→] s′2 =⇒ s′2 6= F
3. Apre is satisfied in ns1, and ns2 differs from ns1 only on variables in XH

and variables not defined in Λ

then: s′1 6= F and if s′1 is a normal state, then (1) Apost is satisfied in s′1, and
(2) there is a target execution in csT from N(ns2) that reaches a normal state
that does not differ from s′1 on any variables other than those not defined in Λ.

The gist of this lemma is to capture locally the ideas behind the four steps of
the phase. For example, consequence (1) reflects that after the transformation,
any blocks that were previously predecessors of a loop head (B′0 and B′5 in our
running example) will have an assert statement checking for the corresponding
invariant (and so if the target program has no failing traces, in each trace this
invariant will be true at that point).
4 We omit some details regarding well-typedness, handled fully in our formalisation.

Formally Validating a Practical Verification Condition Generator 11

4.3 CFG-to-DAG Certification: Global Block Theorems

We lift our certification to all traces through the source and target CFGs; the
statement of the corresponding global block theorems is similar to that of local
block theorems lifted to CFG executions, and for space reasons we do not present
it here, but it is included in our Isabelle formalisation. In particular, we prove for
each block (working in reverse topological order through the target CFG blocks)
that if executions starting in the target CFG block never fail, neither do any
executions starting from the corresponding source CFG block, and looping paths
modify at most the variables havoced according to step 3 of the phase.

The major challenge in these proofs is reasoning about looping paths in
the source CFG, since these revisit blocks. To solve this challenge, we perform
inductive arguments per loop head in terms of the number of steps remaining in
the trace in question5. Our global block theorem for a block B then carries as
an assumption an induction hypothesis for each loop that contains B. Proving a
global block theorem for the origin of a back-edge is taken care of by applying
the corresponding induction hypothesis.

This proof strategy works only if we have obtained the induction hypothesis
for the loop head before we use the global block theorem of the origin of a
back-edge (otherwise we cannot discharge the block theorem’s hypothesis). In
other words, our proof implicitly shows the necessary requirement that loop
heads (as identified by Boogie) dominate all back-edges reaching them without us
formalising any notion of domination, CFG reducibility, or any other advanced
graph-theoretic concept. This shows a major benefit of our validation approach
over a once-and-for-all verification of Boogie itself: our proofs indirectly check
that the identification of loop heads and back-edges guarantees the necessary
semantic properties without being concerned with how Boogie’s implementation
computes this information.

Our approach applies equally to nested loops and more-generally to reducible
CFG structures; all corresponding induction hypotheses are carried through
from the visited loop-heads. The requirement that no more than the havoced
variables XH are modified in the source program is easily handled by showing
that variables modified in an inner loop are a subset of those in outer loops. As
for all of our results, our global block lemmas are proven automatically in Isabelle
per Boogie procedure, providing per-run certificates for this phase.

5 The Passification Phase

In this section, we describe the validation of the passification phase in the
Boogie verifier. Unlike the previous phase, passification makes no changes to the
CFG structure, but makes substantial changes to the program states (via SSA-
like renamings), substantially increases non-determinism, and employs assume
statements to re-tame the sets of possible traces.
5 This may seem insufficient since traces can be infinite, but importantly a failing trace
is always finite, and our theorems need only eliminate the chance of failing traces.

12 No Author Given

assume i != 0 B′
2

assume i < 5
j := j+1

B′
3
assume !(i < 5) B′

4

i := i-1
assert j >= 0 ∧ (i = 0 ⇒ j > 0)
assume false

B′
5

assume i1 != 0 B′′
2

assume i1 < 5
assume j3 = j2+1
assume j4 = j3

B′′
3

assume !(i1 < 5)
assume j4 = j2

B′′
4

assume i2 = i1-1
assert j4 >= 0 ∧ (i2 = 0 ⇒ j4 > 0)
assume false

B′′
5

Fig. 4. The passification phase applied to the branch in the running example with the
result on the right. The green commands are the synchronisation commands. At the
uppermost blocks shown here, the current versions of i and j are i1 and j2, respectively.
The full CFGs are shown in Fig. 13 and Fig. 14 in App. B.

5.1 Passification Phase Overview

The main goal of passification is to eliminate assignments such that a more
efficient VC can be ultimately generated [5, 17, 28]. In the Boogie verifier, this
is implemented as a single transformation phase that can be thought of as two
independent steps. Firstly, the source CFG is transformed into static single
assignment (SSA) form, introducing versions (fresh variables) for each original
program variable such that each version is assigned at most once in any program
trace. In a second step, variable assignments are completely eliminated : each
assignment command x := e is replaced by assume x = e. Havoc statements are
simply removed; their effect is implicit in the fact that a new variable version is
used (via the SSA step) after such a statement.

Fig. 4 shows the effect of this phase on four blocks of our running example
(the full figure of the target CFG is shown in Fig. 14 in App. B). The commands
highlighted in green are inserted just before a join in the CFG structure to
introduce a consistent variable version (here, j4) for use in the subsequent block.
It is convenient to speak of target variables in terms of their source program
counterparts: we say e.g. that j has version 4 on entry to block B′5.

Compared to traces through the source program, the space of variable values
in a trace through the target program is initially much larger; each version
may, on entry to the CFG, have an arbitrary value. For example, j4 may have
any value on entry to B′′2 ; traces in which its value does not correspond to the
constraint of the assume statements in B′′3 or B′′4 will go to magic and not reach
B′′5 . Importantly, however, not all traces go to magic; enough are preserved to
simulate the executions of the original program: each assume statement constrains
the value of exactly one variable version, and the same version is never constrained
more than once. Capturing this delicate argument formally is the main challenge
in certifying this step.

As extra parts of the passification phase, the Boogie verifier performs constant
propagation and desugars old-expressions (using variable versions appropriate to
the entry point of the CFG). We omit their descriptions here for brevity, but our
implementation certifies them.

Formally Validating a Practical Verification Condition Generator 13

5.2 Passification Certification: Local Block Lemmas

To validate the passification phase, it is sufficient to show that each source
execution is simulated by a corresponding target execution, made precise by
constructing a relation between the states in these executions. Such forward
simulation arguments are standard for proving correctness of compilers for
deterministic languages. However, the situation here is more complex due to the
fact that the target CFG has a much wider space of traces: the values of each
versioned variable in the target program are initially unconstrained, meaning
traces exist for all of their combinations. On the other hand, many of these traces
do not survive the assume statements encountered in the target program. Picking
the correct single trace or state to simulate a particular source execution would
require knowledge of all variable assignments that are going to happen, which
is not possible due to non-determinism and would preclude the block-modular
proof strategies that our validation approach employs.

Instead, we generalise this idea to relating each single source state s with a
set T of corresponding target program states. We define variable relations VR at
each point in a trace, making explicit the mappings used in the SSA step between
source program variables and their corresponding versions. For example, on entry
to block B′2 in the source version of our running example (correspondingly B′′2
in the target), the VR relation relates i to i1 and j to j2. All states t ∈ T must
precisely agree with s w.r.t. VR (e.g., s(i) = t(i1), s(j) = t(j2)). On the other
hand, our sets of states T are defined to be completely unconstrained (besides
typing) for future variable versions. For example, for every t ∈ T at the same
point in our example, there will be states in T assigning each possible value (of
the same type) to i2 (and otherwise agreeing with t).

More precisely, for a set of variables X, we say that a set of states T constrains
at most X if, for every t ∈ T , z /∈ X, and value v of z’s type, we have t[z 7→ v] ∈ T .
In other words, the set T is closed under arbitrary changes to values of all variables
not in X. We construct our sets T such that they constrain at most current
and past versions of program variables. It is this fact that enables us to handle
subsequent assume statements in the target program and, in particular, to show
that the set of possible traces in the target program never becomes empty while
there are possible traces in the source program. For example, when relating the
source command j := j+1 in B′3 with the target command assume j3 = j2 + 1
in block B′′3 , we use the fact that our set of states does not constrain j3 to prove
that, although many traces go to magic at this point, for a non-empty set of
states T ′ ⊆ T (those in which j3 has the “right” value equal to j2 + 1), execution
continues in the target.

We now make these notions more precise by showing the definition of our
local block lemmas for the passification phase.

Theorem 2 (Passification Local Block Lemma). Let B be a source block
with commands cs, whose corresponding target block has commands cs ′; let VR
and V ′R be the variable relations at the beginning and end of B, respectively. Let
X be a set of variable versions, and N(ns) be a normal state. Let T be a non-
empty set of normal states such that N(ns) agrees with T according to VR, and T

14 No Author Given

constrains at most X. Furthermore, let Y be the variable versions corresponding
to the targets of assignment and havoc statements in cs. If both

1. A,Λ1, Γ,Ω ` 〈cs,N(ns)〉 [→] s′

2. X ∩ Y = ∅

then there exists a non-empty set of normal states T ′ ⊆ T s.t. T ′ depends only
on X] Y and for each normal state t′ ∈ T ′, there exists a state t′∗ s.t.

1. A,Λ2, Γ,Ω ` 〈cs2, t′〉 [→] t′∗ ∧ (s′ = F =⇒ t′∗ = F)
2. If s′ is a normal state, then s′ and t′ are related w.r.t. V ′R (and t′∗ = t′).

This lemma captures our generalised notion of forward simulation appropriately.
The first conclusion expresses that the target does not get stuck and that failures
are preserved, while the second shows that if execution neither fails nor stops
then the resulting states are related. Note that premise 2 is essential in the
proof to guarantee that the assume statements introduced by passification do not
eliminate the chance to simulate source executions; the condition expresses that
the variable versions newly constrained do not intersect with those previously
constrained. To prove these lemmas over the commands in a single block, we are
forced to check that the same version is not constrained twice.

5.3 Passification Certification: Global Block Theorems

As for all phases, we lift our local block lemmas to theorems certifying all
executions starting from a particular block, and thus, ultimately, to entire CFGs.
For the passification phase, most of the conceptual challenges are analogous to
those of the local block lemmas; we similarly employ VR relations between source
variables and their corresponding target versions. To connect with our local
block lemmas (and build up our global block theorems, which we do backwards
through the CFG structure), we repeatedly require the key property that the set
of variable versions constrained in our executions so far is disjoint from those
which may be constrained by a subsequent assume statement (cf. premise 2 of our
local block lemma above). Concretely tracking and checking disjointness of these
concrete sets of variables is simple, but turns out to get expensive in Isabelle
when the sets are large.

We circumvent this issue with our own global versioning scheme (as opposed to
the versions used by Boogie, which are independent for different source variables):
according to the CFG structure, we assign a global version number verG(x) to
each variable x in the target program such that, if x is constrained in a target
block B′ and y is constrained in another target block B′′ reachable from B′, then
verG(x) < verG(y). Such a consistent global versioning always exists in the target
programs generated by Boogie because the only variables not constrained exactly
once in the program are those used to synchronise executions (i.e., j4 in Fig. 4),
which always appear right before branches are merged. We can now encode our
disjointness properties (which imply this fact) much more cheaply: we simply

Formally Validating a Practical Verification Condition Generator 15

compare the maximal global version of all already-constrained variables with
the minimal global version of those (potentially) to be constrained. Since we
represent variables as integers in the mechanisation, we directly use our global
version as the variable name for the target program; there is no need for an extra
lookup table. Note that (readability aside) it makes no difference which variables
names are used in intermediate CFGs; we ultimately care only about validating
the original CFG.

6 The VC Phase

In this section, we present the validation of the VC phase in the Boogie verifier.
This phase has two main aspects: (1) it encodes and desugars all aspects of the
Boogie type system, employing additional uninterpreted functions and axioms to
express its properties [31]; program expression elements such as Boogie functions
are analogously desugared in terms of these additional uninterpreted functions,
creating a non-trivial logical gap between expressions as represented in the VC
and those from the input program. (2) It performs an efficient (block-by-block)
calculation of a weakest precondition for the (acyclic, passified) CFG, resulting
in a formula characterising its verification requirements, subject to background
axioms and other hypotheses.

6.1 VC Structure

The generated VC has the following overall structure (represented as a shallow
embedding in our certificates)6:

∀ VC quantifiers︸ ︷︷ ︸
type encoding parameters,
functions, variable values

. (VC assumptions︸ ︷︷ ︸
type encoding,
func./var./prog. axioms

=⇒ CFG WP)

The VC quantifies over parameters required for the type encoding, as well as VC
counterparts representing the variable values and functions in the Boogie program.
The VC is an implication: the premise contains assumptions that axiomatise the
functions generated in this phase to desugar the type system, including axioms
expressing the typing of variables and functions, as well as assumptions directly
relating to axioms explicitly declared in the Boogie program. The conclusion
of the implication is an optimised version of the weakest (liberal) precondition
(WP) of the CFG7.

6 Note that top-level quantification over functions is implicit in the (first-order) SMT
problem generated by Boogie; we quantify explicitly in our Isabelle representation.

7 One difference in our version of the Boogie verifier is that we switched off the
generation of extra variables introduced to report error traces [30]; these are redundant
for programs that do not fail and further complicate the VC structure.

16 No Author Given

6.2 Boogie’s Logical Encoding of the Boogie Type System

We first briefly explain Boogie’s logical encoding of its own type system. Values
and types are represented at the VC level by two uninterpreted carrier sorts
V and T . An uninterpreted function typ from V to T maps each value to the
representation of its type. Boogie type constructors are each modelled with an
(injective) uninterpreted function C with return sort T and taking arguments
(per type constructor parameter) of sort T . For example, a type constructor
List(t) is represented by a VC function from T to T . Inverse projection functions
are also generated (C−1i for each type argument at position i), e.g. mapping the
representation of a type List(t) to the representation of type t.

This encoding is then used throughout the Boogie program to map all typed
Boogie expressions to untyped VC expressions with types as explicit values.
This can have a non-trivial effect on the corresponding program elements. For
example, a polymorphic Boogie function declared as: function foo<t>(x:List
t): t would, in our semantics for Boogie, be a partial function f of type tyclosed →
val ⇀ val, where f(τ, v) is defined only if v has type List(τ). By contrast, the
corresponding VC-level function hvc is total of type val→ val; it does not take a
type as input (even though this type defines the return type). This modelling
suffices because after this desugaring, the type parameter is technically redundant:
one can recover the return type from the argument value: List−11 (typ(v)).

6.3 Working from VC Validity

Our certificates assume that the generated VC is valid (recall that certifying the
validity-checking of the VC by an SMT solver is an orthogonal concern). However,
connecting VC validity back to block (and command)-level properties about the
specific program requires a number of technical steps.

Firstly, we need to construct Isabelle-level semantic values (e.g. functions) to
instantiate the top-level quantifiers (e.g. over functions) in the VC. We instantiate
the carrier sort for values with the corresponding type val denoting Boogie values
in our formalisation; the carrier sort for types is instantiated to be all closed
Boogie types tyclosed . Constructing explicit models for the functions used to
model Boogie’s type system (satisfying e.g. suitable inverse properties for the
projection functions) is straightforward. For the VC-level variable values, we can
directly instantiate the values in the initial Boogie program state.

VC-level functions representing those declared in the Boogie program are
instantiated as (total) functions which, for input values of appropriate type,
are defined simply to return the same values as the corresponding function in
our model. However, perhaps surprisingly, Boogie’s VC embedding of functions
logically requires properties of these functions even in other cases. For example, for
the foo function above, some value of the type List−11 (typ(v)) must be returned
even for arguments which are not lists! We define the function to return some
such value, which is possible since in well-formed contexts, every closed type has
at least one value in our model.

Formally Validating a Practical Verification Condition Generator 17

Secondly, we need to prove the hypotheses of the VC’s implication; in particular
that all axioms (both those generated by the type system encoding and those
coming from the program itself) are satisfied. The former are standard and
simple to prove (given the work above), while the latter largely follow from the
assumption on executions that each declared axiom must be satisfied in the initial
state restricted to the constants. The only remaining challenge is to relate VC
expressions with the evaluation of corresponding Boogie expressions; an issue
which also arises (and is explained) below.

6.4 Certifying the VC Phase

Boogie’s weakest precondition calculation is made size-efficient by the usage
of explicit named constants for the weakest preconditions wp(B, true) for each
block B, which is defined in terms of the named constants for its successor blocks.
For example, in Fig. 4, wp(B′′2 , true) is given by ivc1 6= 0 =⇒ wp(B′′3 , true) ∧
wp(B′′4 , true). Here ivc1 is the value that we instantiated for the variable i1.

We exploit this modular construction of the generated weakest precondition
for the local and global block theorems. We prove for each block B with commands
cs the following local block lemma:

Theorem 3 (VC Phase Local Block Lemma).
If A,Λ, Γ,Ω ` 〈cs,N(ns)〉 [→] s′ and wp(B, true) holds, then s′ 6= F and if s′ is
a normal state, then ∀Bsuc ∈ successors(B). wp(Bsuc , true).

Once one has proved this lemma for all blocks in the CFG, combining them to
obtain the corresponding global block theorems (via our usual reverse walk of the
CFG) is straightforward. The main challenge is in decomposing the proof for the
local block lemma itself for a block B, for which we outline our approach next.

By this phase, the first command in B must be either an assume e or an
assert e command. In the former case, we rewrite wp(B, true) into the form
evc =⇒ H, where evc is the VC counterpart of e and where H corresponds to the
weakest precondition of the remaining commands. This rewriting may involve
undoing certain optimisations Boogie’s implementation performed on the formula
structure. Next, we need to prove that e evaluates to evc (see below). Hence, if e
evaluates to true (the execution does not go to magic) then H ′ must be true, and
we can continue inductively. The argument for assert e is similar but rewriting
the VC to evc ∧ H (i.e., evc and H must both hold); if e evaluates to evc, we
know that the execution does not fail.

Proving that e evaluates to evc arises in both cases and also in our previous
discharging of VC hypotheses. Note that evc is not a Boogie expression, but
a shallowly embedded formula that includes the instantiations of quantified
variables we constructed above. Showing this property works largely on syntax-
driven rules that relate a Boogie expression with its VC counterpart, except for
extra work due to mismatching function signatures (cf. Sec. 6.2) and optimisations
that Boogie made either to the formula structure or via the type system encoding.
We handle some of these cases by making Isabelle prove that we can rewrite the

18 No Author Given

formula back into the unoptimised standard form we require for our syntax-driven
rules and in other cases we use Isabelle to prove the goal directly.

This concludes our discussion of the certification of Boogie’s three key phases.
Combining the three certificates yields an end-to-end proof that the validity of
the generated verification conditions implies the correctness of the input program,
that is, that the given verification run is sound.

7 Implementation and Evaluation

In this section, we evaluate our certifying version of the Boogie verifier, which
produces Isabelle certificates proving the correctness of Boogie’s pipeline for
programs it verifies.

Implementation. We have implemented our validation tool as a new C# module
compiled with Boogie. We instrumented Boogie’s codebase to call out to our
module logging various information that we use to validate the key phases, and
extended parts of the codebase to extract information more easily. Moreover, we
disabled counter-example related VC features and the generation of VC axioms
for any built-in types that we do not support. We added or changed only 143
lines of code across 6 files in the existing Boogie implementation.

Given an input file verified by Boogie, our work produces an Isabelle cer-
tificate per procedure p that certifies the correctness of its CFG as represented
internally in Boogie. In addition to the three key phases we describe in detail,
our implementation also handles several smaller transformations made by Boogie,
such as constant propagation. Our tool currently supports the default options of
Boogie (only) and does not support e.g. advanced source-level attributes (usable
e.g. to selectively force procedures to be inlined).

Experimental Evaluation. We evaluated our work in two ways. Firstly, to evaluate
the applicability of our certificate generation, we automatically collected all input
files with at least one procedure from Boogie’s own test suite [1] which verify
successfully and which either use no unsupported features or are easily desugared
(by hand) into versions without them. This includes programs with procedure
calls since Boogie simply desugars these in an early stage. For programs employing
unsupported attributes, we checked whether the program still verifies without
attributes, and if so we also kept these. In total, this yields 95 programs from
Boogie’s test suite. Secondly, we collected a corpus of ten Boogie programs which
verify interesting algorithms with non-trivial specifications: three from Boogie’s
test suite and seven from the literature [11, 25]. Where needed we manually
desugared usages of Boogie maps (which our work does not yet support) using
type declarations, functions, and axioms.

Of the 95 programs from Boogie’s test suite, we successfully generate certifi-
cates in 89 cases (93%). The remaining 6 cases involve special cases that we do
not handle yet. For 4 of them, extending our work is straightforward: one special

Formally Validating a Practical Verification Condition Generator 19

Name LOC #P Time [s] Size
TuringFactorial 29 1 17.1 1994
Find 27 2 39.7 2168
DivMod 69 2 34.7 4839
Summax [25] 23 1 16.9 1962
MaxOfArray [11] 22 1 17.1 1949
SumOfArray [11] 22 1 17.6 1539
Plateau [11] 50 1 20.8 2024
WelfareCrook [11] 52 1 38.4 2545
ArrayPartitioning [11] 56 2 38.0 3606
DutchFlag [11] 76 2 66.4 4124

Table 1. Selection of algorithmic examples with the lines of code (LOC), the number
of procedures (#P), the time it takes for Isabelle to check the certficate in seconds (the
average of 5 runs on a Lenovo T480 with 32 GB, i7-8550U 1.8 GhZ, Ubuntu 18.04 on
the Windows Subsystem for Linux), and the certificate size expressed as the number of
non-empty lines of Isabelle.

case is that Boogie’s passification transforms a boolean assignment x := e to
assume xi ⇔ e’ instead of assume xi = e’. The other case includes a block with
an edge directly to itself; this unusual case trips up our current implementation,
which will be easily amended. The remaining two fail, because of our incomplete
handling of function calls in the VC phase when combined with coercions between
VC integers or booleans and their Boogie counterparts. Handling this is more
challenging, but is not a fundamental issue.

For the corpus of 10 examples, Tab. 1 shows the generated certificate size
and the time for Isabelle to check their validity8. The ratio of certificate size to
code size ranges from 40 to 89; this rather large ratio emphasises the substantial
work in precisely and formally validating the substantial work which Boogie’s
implementation performs. The validation of certificates takes usually under one
second per line of code. While these times are not short, they are acceptable
since certificate generation needs to run only for a final (verified) version of the
program in question.

8 Related Work

Several works explore the validation of program verifiers. Garchery et al. [19]
validate VC rewritings in the Why3 VC generator [15]. Unlike our work, they do
not connect VCs with programs and do not handle the erasure of polymorphic
types. Strub et al. [35] validate part of a previous version of the F* verifier [36]
by generating a certificate for the F* type checker itself, which type checks
programs by generating VCs. Like us, they assume the validity of the generated
VC itself, but they do not consider program-to-program transformations such as

8 The time to generate the certificate is not included, but is negligible for these
examples.

20 No Author Given

ours. Another approach to validate verification results is taken by Aguirre [2] who
shows how one can map proofs of the VC back to correctness of an F* program,
which could be used in conjunction with the proof-producing capability of modern
SMT solvers [6]; they prove a once-and-for-all result, but the approach could be
directly lifted to validation. However, the work has not been implemented, and
makes various assumptions about the VC proof that are not guaranteed by SMT
solvers such as the proof being constructive and being in a normal form.

There is some work on proving VC generator implementations correct once
and for all, although none of the proven tools are used in practice. Homeier and
Martin [22] prove a VC generator correct in HOL for an executable programming
language and a simpler VC generation technique than Boogie’s. Herms et al. [21]
prove a VC generator inspired by Why3 correct in Coq. However, some more-
challenging aspects of Why3’s VC transformation and polymorphic type system
are not handled. Vogels et al. [41] prove a toolchain for a Boogie-like language
correct in Coq, including passification and VC phases. However, the language
is quite limited: without unstructured control flow, loops (i.e. no need for a
CFG-to-DAG phase), functions, or polymorphism (i.e., no type encoding).

In the related context of compiler correctness, many validation techniques
express a per-run validator in Coq, prove it correct once-and-for-all [7, 37, 39],
and then extract executable code (the extraction must be trusted). One such
work related to our certification of the passification phase is the validation of the
SSA phase in CompCert [7], dealing also with versioned variables in the target
(but not with assume statements that prune executions). In contrast to our work,
they require an explicit notion of CFG domination and they do not use a global
versioning scheme to efficiently check that two parts of the CFG constrain disjoint
versions. Our versioning idea is similar to a technique used for the validation of
a dominator relation in a CFG [8], which assigns intervals to basic blocks (as
opposed to assigning versions to variables) to efficiently determine whether a
block dominates another one. The validation of the Cogent compiler [34] follows
a similar approach to ours in that it directly generates proofs in Isabelle.

9 Conclusion

We have presented and implemented a novel verifier validation approach, and
applied it successfully to three key phases of the Boogie verifier, providing formal
underpinnings for both the language and its verifier for the first time. Our work
demonstrates that it is feasible to provide strong formal guarantees regarding
the verification results of practical VC generators written in modern mainstream
programming languages. In the future, we plan to investigate the extension and
application of our overall validation approach to verification tools which map
verification problems concerning other languages and logics into intermediate
verification languages such as Boogie.

Formally Validating a Practical Verification Condition Generator 21

References

1. Boogie verifier repository. https://github.com/boogie-org/boogie
2. Aguirre, A.: Towards a provably correct encoding from

F* to SMT. Inria Internship Report (Aug 2016),
http://prosecco.gforge.inria.fr/personal/hritcu/students/alejandro/report.pdf

3. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for
modular specification and verification. In: Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA). vol. 3, pp. 147:1–147:30. ACM (2019)

4. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: The Spec# experience. Communications of the ACM
54(6), 81–91 (June 2011)

5. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
Workshop on Program Analysis for Software Tools and Engineering (PASTE). p.
82–87. PASTE ’05 (2005). https://doi.org/10.1145/1108792.1108813

6. Barrett, C., de Moura, L., Fontaine, P.: Proofs in satisfiability modulo theories.
In: Delahaye, D., Woltzenlogel Paleo, B. (eds.) All about Proofs, Proofs for All,
Mathematical Logic and Foundations, vol. 55, pp. 23–44. College Publications
(2015)

7. Barthe, G., Demange, D., Pichardie, D.: Formal verification of an SSA-based middle-
end for compcert. Transactions on Programming Languages and Systems (TOPLAS
36(1) (2014)

8. Blazy, S., Demange, D., Pichardie, D.: Validating dominator trees for a fast, verified
dominance test. In: Urban, C., Zhang, X. (eds.) Interactive Theorem Proving (ITP).
pp. 84–99 (2015)

9. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: Verifica-
tion of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.)
Integrated Formal Methods (IFM). Lecture Notes in Computer Science, vol. 10510,
pp. 102–110. Springer (2007)

10. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) Interactive Theorem Proving (ITP). Lecture Notes in
Computer Science, vol. 6172, pp. 179–194. Springer (2010)

11. Chen, Y., Furia, C.A.: Triggerless happy – intermediate verification with a first-
order prover. In: Polikarpova, N., Schneider, S. (eds.) Proceedings of the 13th
International Conference on integrated Formal Methods (iFM). Lecture Notes in
Computer Science, vol. 10510, pp. 295–311. Springer (September 2017)

12. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher
Order Logics. pp. 23–42. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

13. Coq Development Team, T.: The Coq Reference Manual, version 8.10 (2019),
available electronically at http://coq.inria.fr/documentation

14. Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., Barrett,
C.W.: Smtcoq: A plug-in for integrating SMT solvers into coq. In: Majumdar, R.,
Kuncak, V. (eds.) Computer Aided Verification (CAV). Lecture Notes in Computer
Science, vol. 10427, pp. 126–133. Springer (2017)

15. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Programming Languages and Systems. pp. 125–128. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

22 No Author Given

16. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) Computer Aided Verifi-
cation (CAV). Lecture Notes in Computer Science, vol. 4590, pp. 173–177. Springer
(2007)

17. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact veri-
fication conditions. In: Principles of Programming Languages (POPL). p. 193–205
(2001)

18. Fleury, M., Schurr, H.: Reconstructing veriT proofs in Isabelle/HOL. In: Reis,
G., Barbosa, H. (eds.) Sixth Workshop on Proof eXchange for Theorem Proving
(PxTP). EPTCS, vol. 301, pp. 36–50 (2019)

19. Garchery, Q., Keller, C., Marché, C., Paskevich, A.: Des transformations logiques
passent leur certificat. In: Journées Francophones des Langages Applicatifs (JFLA)
(2020)

20. Hecht, M.S., Ullman, J.D.: Flow graph reducibility. SIAM J. Comput. 1(2), 188–202
(1972)

21. Herms, P., Marché, C., Monate, B.: A certified multi-prover verification condition
generator. In: Verified Software: Theories, Tools, Experiments VSTTE (2012)

22. Homeier, P.V., Martin, D.F.: A mechanically verified verification condition generator.
The Computer Journal 38(2), 131–141 (1995)

23. Isabelle Development Team, T.: The Isabelle Documentation, version June 2019
(2019), available electronically at https://isabelle.in.tum.de/documentation.html

24. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c: A
software analysis perspective. Formal Aspects of Computing 27(3), 573–609 (2015)

25. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st verified software competition:
Experience report. In: Butler, M., Schulte, W. (eds.) FM 2011: Formal Methods.
pp. 154–168. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

26. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:
Madhusudan, P., Seshia, S.A. (eds.) Computer Aided Verification (CAV). Lecture
Notes in Computer Science, vol. 7358, pp. 427–443. Springer (2012)

27. Leino, K.R.M.: This is Boogie 2 (June 2008), https://www.microsoft.com/en-
us/research/publication/this-is-boogie-2-2/

28. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288
(2005)

29. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR). Lecture Notes in Computer Science, vol. 6355, pp. 348–370.
Springer (2010)

30. Leino, K.R.M., Millstein, T.D., Saxe, J.B.: Generating error traces from verification-
condition counterexamples. Science of Computer Programming 55(1-3), 209–226
(2005)

31. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
Design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes
in Computer Science, vol. 6015, pp. 312–327. Springer (2010)

32. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Principles of Programming Languages POPL. pp. 42–54
(2006)

Formally Validating a Practical Verification Condition Generator 23

33. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) Verification,
Model Checking, and Abstract Interpretation (VMCAI). Lecture Notes in Computer
Science, vol. 9583, pp. 41–62. Springer (2016)

34. Rizkallah, C., Lim, J., Nagashima, Y., Sewell, T., Chen, Z., O’Connor, L., Murray,
T., Keller, G., Klein, G.: A framework for the automatic formal verification of
refinement from Cogent to C. In: Blanchette, J.C., Merz, S. (eds.) Interactive
Theorem Proving (ITP). pp. 323–340. Springer (2016)

35. Strub, P.Y., Swamy, N., Fournet, C., Chen, J.: Self-certification: Bootstrapping
certified typecheckers in F* with Coq. In: Principles of Programming Languages
(POPL). p. 571–584 (2012)

36. Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindohoué, J.K., Zanella-
Béguelin, S.: Dependent types and multi-monadic effects in F*. In: Principles of
Programming Languages (POPL). pp. 256–270 (2016)

37. Tristan, J.B., Leroy, X.: Formal verification of translation validators: A case study on
instruction scheduling optimizations. In: Necula, G.C., Wadler, P. (eds.) Principles
of Programming Languages (POPL). pp. 17–27. ACM (2008)

38. Tristan, J.B., Leroy, X.: Verified validation of lazy code motion. In: Hind, M.,
Diwan, A. (eds.) Programming Language Design and Implementation (PLDI). pp.
316–326. ACM (2009)

39. Tristan, J.B., Leroy, X.: A simple, verified validator for software pipelining. In:
Principles of Programming Languages (POPL). pp. 83–92 (2010)

40. Vogels, F., Jacobs, B., Piessens, F.: A machine checked soundness proof for an
intermediate verification language. In: Nielsen, M., Kucera, A., Miltersen, P.B.,
Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) Theory and Practice of Computer
Science (SOFSEM). Lecture Notes in Computer Science, vol. 5404, pp. 570–581.
Springer (2009)

41. Vogels, F., Jacobs, B., Piessens, F.: A machine-checked soundness proof for an
efficient verification condition generator. In: Shin, S.Y., Ossowski, S., Schumacher,
M., Palakal, M.J., Hung, C. (eds.) Symposium on Applied Computing (SAC). pp.
2517–2522. ACM (2010)

24 No Author Given

bop ::= = | 6= |+ | − | ∗ | ≤ | < | ≥ | ∧ | ∨ | −→ | ←→ uop ::= −|¬
τ ::= t | Int | Bool | C (~τ)

e ::= x | false | true | i | e1 bop e2 | uop(e) | f [~τ](~e) | old(e) |
∀x : τ. e | ∃x : τ. e | ∀ty t. e | ∃ty τ. e

s ::= assume e | assert e | x := e | havoc x

Fig. 5. The syntax of the Boogie subset that we formalise, where τ , e, and s, denote the
types, expressions, and basic commands respectively; control-flow is handled via CFGs
over the basic commands. bop and uop denote binary and unary operations, respectively.
We assume that procedure calls have been desugared into basic commands.

A A Formal Semantics for Boogie

A.1 The Boogie Language: Syntax

The types, expressions and basic commands in our Boogie subset are shown
in Fig. 5. We support the primitive types Int and Bool ; other types (obtained via
declared type constructors) are uninterpreted types ; the sets of values such types
may denote are constrained only via Boogie axioms and assume commands.

Expressions include variables, boolean/integeral literals, unary/binary expres-
sions. We also supports function calls f [~τ](~e). The arguments ~τ to a function
call f [~τ](~e) instantiate any type parameters and are inferred by the type-checker;
in our formalization type parameters are always explicit. The remaining expres-
soins are old expressions, value quantification (∀x : τ. e/∃x : τ. e), and type
quantification (∀ty t. e/∃ty t. e).

The commands are given by assumptions, assertions, assignments and havoc
commands. Sequential composition is represented by basic blocks that contain a
list of commands.

Boogie source programs contain richer expressions and commands that can be
desugared straightforwardly into our subset, such as havocs of multiple variables
and combined type/value quantification with multiple binders. Some, such as
procedure calls are already desugared by Boogie in pre-processing phases.

A.2 Expression evaluation.

The rules for expression evaluation are given in Fig. 6 (basic expressions), Fig. 7
(quantified expressions), and Fig. 8 (lists of expressions). The rule for variable
lookup is defined in terms of the function lookup((G,L), gs, ls, x), which returns
ls(x) if x is a local variable (i.e., x is recorded in the local variable declarations
L) and gs(x) otherwise. This models the fact that local variables shadow global
variables.

In the rule for literals le and lv denote literal expressions and the corresponding
literal values respectively. The rules for value quantification are defined in terms
of typT (v), which maps a value v to its type w.r.t. the type interpretation A.

Formally Validating a Practical Verification Condition Generator 25

lookup(Λ, gs, ls, x) = v

T , Λ, Γ,Ω ` 〈x,N((os, gs, ls))〉 ⇓ v T , Λ, Γ,Ω ` 〈le,N(ns)〉 ⇓ lv

T , Λ, Γ,Ω ` 〈e1,N(ns)〉 ⇓ v1
T , Λ, Γ,Ω ` 〈e2,N(ns)〉 ⇓ v2

v1 bop v2 = v

T , Λ, Γ,Ω ` 〈e1 bop e2,N(ns)〉 ⇓ v

T , Λ, Γ,Ω ` 〈e,N(ns)〉 ⇓ v′ uop(v′) = v

T , Λ, Γ,Ω ` 〈uop(e),N(ns)〉 ⇓ v

A,Λ, Γ,Ω ` 〈~e,N(ns)〉 [⇓] ~v′
Γ (f) = f f(Ω(~τ), ~v′) = v

T , Λ, Γ,Ω ` 〈f [~τ](~e),N(ns)〉 ⇓ v

T , Λ, Γ,Ω ` 〈e,N((os, os, ls))〉 ⇓ v
T , Λ, Γ,Ω ` 〈old(e),N((os, gs, ls))〉 ⇓ v

Fig. 6. Expression reduction for basic expressions

A.3 Command and CFG reduction.

The rules for the reduction of commands and lists of commands is given in Fig. 9
and Fig. 10. Assignment reduces only if the value to be assigned has the right
type, i.e., assignment preserves well-typed states. This restriction is not required
for well-typed programs, but it nevertheless makes some reasoning easier. The
rules for assignment and havoc rely on lookupT (Λ, x) that maps x to its type
w.r.t. the variable context Λ (if x is defined), and on update(Λ,ns, x, v), which
returns the state ns where x is updated to v (ensuring that the local state is
updated if x is local and the global state otherwise).

The rules for the CFG reduction are given in Fig. 11. cmds(G, b) gives the
list of commands for block b in CFG G.

A.4 Procedure Correctness

As already discussed in Sec. 3.3, a procedure is correct w.r.t. a context if it
is correct w.r.t. to all well-formed contexts relative to the program. A context
(T , Λ, Γ,Ω) is well-formed relative to a Boogie program if the following holds:

– The type interpretation T maps some abstract value to every closed type
obtained via a type constructor (i.e., closed types are inhabited by non-empty
sets of values). A type is closed if it does not contain type variables.

– Γ interprets each declared function f consistently with its signature.

B The Phases For the Running Example

For our running example in Fig. 2, the full CFG is shown in Fig. 12. The full
CFG after the CFG-to-DAG phase is shown in Fig. 13. Finally, the full CFG after
the passification phase is shown in Fig. 14. In practice, Boogie applies a constant

26 No Author Given

Value quantification

∀w. typT (w) = Ω(τ) =⇒ T , (G,L, Γ,Ω ` 〈e,N((os, gs, ls(x 7→ w)))〉 ⇓ true
T , (G,L), Γ,Ω ` 〈∀x : τ. e,N((os, gs, ls))〉 ⇓ true

typT (w) = Ω(τ) T , (G,L), Γ,Ω ` 〈e,N((os, gs, ls(x 7→ w)))〉 ⇓ false
T , (G,L), Γ,Ω ` 〈∀x : τ. e,N((os, gs, ls))〉 ⇓ false

typT (w) = Ω(τ) T , (G,L, Γ,Ω ` 〈e,N((os, gs, ls(x 7→ w)))〉 ⇓ true
T , (G,L), Γ,Ω ` 〈∃x : τ. e,N((os, gs, ls))〉 ⇓ true

∀w. typT (w) = Ω(τ) =⇒ T , (G,L, Γ,Ω ` 〈e,N((os, gs, ls(x 7→ w)))〉 ⇓ false
T , (G,L), Γ,Ω ` 〈∃x : τ. e,N((os, gs, ls))〉 ⇓ false

Type quantification

∀τ. closed(τ) =⇒ T , Λ, Γ,Ω(t 7→ τ) ` 〈e,N(ns)〉 ⇓ true
T , Λ, Γ,Ω ` 〈∀ty t. e,N(ns)〉 ⇓ true

closed(τ) T , Λ, Γ,Ω(t 7→ τ) ` 〈e,N(ns)〉 ⇓ false
T , Λ, Γ,Ω ` 〈∀ty t. e,N(ns)〉 ⇓ false

closed(τ) T , Λ, Γ,Ω(t 7→ τ) ` 〈e,N(ns)〉 ⇓ true
T , Λ, Γ,Ω ` 〈∃ty t. e,N(ns)〉 ⇓ true

∀τ. closed(τ) =⇒ T , Λ, Γ,Ω(t 7→ τ) ` 〈e,N(ns)〉 ⇓ false
T , Λ, Γ,Ω ` 〈∃ty t. e,ns〉 ⇓ false

Fig. 7. Expression reduction for quantifiers.

A,Λ, Γ,Ω ` 〈nil,N(ns)〉 [⇓] nil

A,Λ, Γ,Ω ` 〈e,N(ns)〉 ⇓ v
A,Λ, Γ,Ω ` 〈es,N(ns)〉 [⇓] vs

A,Λ, Γ,Ω ` 〈(e : es),N(ns)〉 [⇓] (v : vs)

Fig. 8. Expression reduction for lists of expressions

Formally Validating a Practical Verification Condition Generator 27

T , Λ, Γ,Ω ` 〈e,N(ns)〉 ⇓ true
T , Λ, Γ,Ω ` 〈assert e,N(ns)〉 → N(ns)

T , Λ, Γ,Ω ` 〈e,N(ns)〉 ⇓ false
T , Λ, Γ,Ω ` 〈assert e,N(ns)〉 → F

T , Λ, Γ,Ω ` 〈e,N(ns)〉 ⇓ true
T , Λ, Γ,Ω ` 〈assume e,N(ns)〉 → N(ns)

T , Λ, Γ,Ω ` 〈e,N(ns)〉 ⇓ false
T , Λ, Γ,Ω ` 〈assume e,N(ns)〉 → M

T , Λ, Γ,Ω ` 〈e,N(ns)〉 ⇓ v
lookupT (Λ, x) = τ typT (v) = Ω(τ)

ns′ = update(Λ,ns, x, v)

T , Λ, Γ,Ω ` 〈x := e,N(ns)〉 → N(ns ′)

lookupT (Λ, x) = τ typT (v) = Ω(τ)
ns′ = update(Λ,ns, x, v)

T , Λ, Γ,Ω ` 〈havoc x,N(ns)〉 → N(ns ′)

T , Λ, Γ,Ω ` 〈c,M〉 → M T , Λ, Γ,Ω ` 〈c,F〉 → F

Fig. 9. Command reduction

T , Λ, Γ,Ω ` 〈nil, s〉 [→] s

T , Λ, Γ,Ω ` 〈c, s〉 → s′′

T , Λ, Γ,Ω ` 〈cs, s′′〉 [→] s′

T , Λ, Γ,Ω ` 〈(c : cs),N(ns)〉 [→] s′

Fig. 10. Reduction for lists of commands

cmds(G, b) = cs b′ ∈ successors(G, b)
T , Λ, Γ,Ω ` 〈cs,N(ns)〉 [→] N(ns ′)

T , Λ, Γ,Ω,G ` (inl(b),N(ns))→CFG (inl(b′),N(ns ′))

cmds(G, b) = cs successors(G, b) = ∅
T , Λ, Γ,Ω ` 〈cs,N(ns)〉 [→] N(ns ′)

T , Λ, Γ,Ω,G ` (inl(b),N(ns))→CFG (inr(()),N(ns ′))

cmds(G, b) = cs
T , Λ, Γ,Ω ` 〈cs,N(ns)〉 [→] M

T , Λ, Γ,Ω,G ` (inl(()),N(ns))→CFG (inr(b′),M)

cmds(G, b) = cs
T , Λ, Γ,Ω ` 〈cs,N(ns)〉 [→] F

T , Λ, Γ,Ω,G ` (inl(()),N(ns))→CFG (inr(b′),F)

Fig. 11. CFG reduction

28 No Author Given

propagation transformation as part of the passifcation phase. Moreover, multiple
empty blocks are added as well during the three phases. We ignore both these
points here for the sake of presentation, but we handle them in our validation
tool.

assume i != 0
j := 0

B0

assert j >= 0 ∧ (i = 0 ⇒ j > 0) B1

assume i != 0 B2

assume i < 5
j := j+1

B3 assume !(i < 5) B4

i := i-1 B5

assume i == 0
assert j > 0

B6

Fig. 12. CFG representation of running example

assume i != 0
j := 0
assert j >= 0 ∧ (i = 0 ⇒ j > 0)

B′
0

havoc i,j
assume j >= 0 ∧ (i = 0 ⇒ j > 0)

B′
1

assume i != 0 B′
2

assume i < 5
j := j+1

B′
3 assume !(i < 5) B′

4

i := i-1
assert j >= 0 ∧ (i = 0 ⇒ j > 0)
assume false

B′
5

assume i == 0
assert j > 0

B′
6

Fig. 13. CFG representation of running example after CFG-to-DAG phase

Formally Validating a Practical Verification Condition Generator 29

assume i0 != 0
assume j1 = 0
assert j1 >= 0 ∧ (i0 = 0 ⇒ j1 > 0)

B′′
0

assume j2 >= 0 ∧ (i1 = 0 ⇒ j2 > 0) B′′
1

assume i1 != 0 B′′
2

assume i1 < 5
assume j3 = j2+1
assume j4 = j3

B′′
3

assume !(i1 < 5)
assume j4 = j2

B′′
4

assume i2 = i1-1
assert j4 >= 0 ∧ (i2 = 0 ⇒ j4 > 0)
assume false

B′′
5

assume i1 = 0
assert j2 > 0

B′′
6

Fig. 14. CFG representation of running example after passification phase

