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Abstract. Separation logic is a concise method for specifying programs that manipulate
dynamically allocated storage. Partially inspired by separation logic, Implicit Dynamic
Frames has recently been proposed, aiming at first-order tool support. In this paper,
we precisely connect the semantics of these two logics. We define a logic whose syntax
subsumes both that of a standard separation logic, and that of implicit dynamic frames
as sub-syntaxes. We define a total heap semantics for our logic, and, for the separation
logic subsyntax, prove it equivalent the standard partial heaps model. In order to define
a semantics which works uniformly for both subsyntaxes, we define the novel concept of
a minimal state extension, which provides a different (but equivalent) definition of the
semantics of separation logic implication and magic wand connectives, while also giving
a suitable semantics for these connectives in implicit dynamic frames. We show that our
resulting semantics agrees with the existing definition of weakest pre-condition semantics
for the implicit dynamic frames fragment. Finally, we show that we can encode the sep-
aration logic fragment of our logic into the implicit dynamic frames fragment, preserving
semantics. For the connectives typically supported by tools, this shows that separation
logic can be faithfully encoded in a first-order automatic verification tool (Chalice).

1. Introduction

Separation logic (SL) [6, 12] is a popular approach to specifying the behaviour of programs,
as it naturally deals with the issues of aliasing. Separation logic assertions extend classical
logic with extra connectives and predicates to describe memory layout. This makes it
difficult to reuse current tool support for verification. Implicit dynamic frames (IDF) [18]
was developed to give the benefits of separation logic specifications, while leveraging existing
tool support for first-order logic.

Although IDF was partially inspired by separation logic, there are many differences
between SL and IDF that make understanding their relationship difficult. SL does not
allow expressions that refer to the heap, while IDF does. SL is defined on partial heaps,
while IDF is defined using total heaps and permission masks. The semantics of IDF are
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only defined by its translation to first-order verification conditions, while SL has a direct
Kripke semantics for its assertions. These differences make it challenging to understand the
relationship between the two approaches.

In this paper, we investigate the formal relationship between the two approaches. As
a medium for this comparison, we define a verification logic (which we name Total Heaps
Permission Logic) whose syntax includes both that of a typical separation logic, and that of
implicit dynamic frames. We define a semantics for Total Heaps Permission Logic based on
states which incorporate a total heap and a separate permission mask, that we show both
captures the original semantics of separation logic, and correctly captures the semantics
of IDF. Intuitively, the permission mask specifies the locations in the heap which are safe
to access. Our formulation allows expressions that access the heap to be defined, and this
complicates the definition of the separation logic “magic wand” and implication connectives.
In order to define a suitable semantics for these connectives which is compatible with both
approaches, we introduce the novel concept of minimal extensions of a state, and use this
to define a novel semantics for these connectives, which nonetheless agrees with the original
semantics for the separation logic fragment of our logic. Correctly reflecting the standard
semantics of the separating conjunction and magic wand allows us to use these connectives
to define the usual separation logic notion of weakest pre-conditions of commands.

In order to show that our logic correctly captures the semantics of the IDF formulas,
we focus on the form of IDF found in the concurrent verification tool Chalice [10]. As the
semantics of IDF formulas are only defined indirectly via weakest pre-condition calculations
for a language using them, we show that the verification conditions (VCs) generated by the
existing Boogie2 [9] encoding and the VCs generated from the separation logic proof rules
are logically equivalent. This shows that our model directly captures the existing semantics
of IDF.

We make use of these strong correspondences to define an encoding of separation logic
into implicit dynamic frames that preserves semantics. We then define a subsyntax of sep-
aration logic (corresponding to the logical connectives supported by many practical tools),
which maps onto the assertion language supported by Chalice, and show that this fragment
of separation logic can, via our correspondences, be handled in a purely first-order prover.

Outline. The paper is structured as follows. We begin by presenting the background def-
initions of both separation logic and implicit dynamic frames (§2). We then provide an
overview of the challenges in defining our logic and semantics, and present Total Heaps
Permission Logic (§3), characterising various properties of our total heap semantics. We
prove the correspondence between VCs as calculated in separation logic and in implicit
dynamic frames (§4), and then combine our proven results to show how to map a fragment
of separation logic into contracts which can be verified by the Chalice tool, preserving their
original semantics (§5). Finally, we discuss related work (§6), consider possible extensions
and conclude (§7).

The contributions of this paper are as follows:

● We define a total heaps semantics for a logic whose syntax subsumes a separation logic,
and prove that, for the separation logic fragment, our total heaps semantics is equivalent
with the standard (partial heaps) semantics for the separation logic.
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● We define a direct semantics for the implicit dynamic frames logic (the specification logic
of the Chalice tool), which has so far only been given a semantics implicitly, via verification
conditions.
● We show how to encode a standard fragment of separation logic into an implicit dynamic
frames setting, preserving its semantics.
● We show that verification conditions as computed for separation logic coincide via our
translation and semantics with the verification conditions computed by Chalice.
● We present the notion of minimal extensions of a state, and show how it can be used to
define the semantics of the separation logic implication and magic wand connectives in a
new way.

Extensions with regard to the conference version. This paper extends the conference version
[15] by providing a different definition of implication that corresponds to that used in
Chalice. The conference version provided a definition of implication that was correct with
respect to separation logic, but on the formulas used in Chalice it had undesirable behaviour.
We have altered the definitions of implication and magic wand to correctly model both
Chalice and separation logic.

The paper provides extended discussions of the design of the logic, detailing the require-
ments which come from each of our target logics. We explicitly define and discuss the various
notions of state extension which were used implicitly in the formulations of the technical
definitions in our precursor paper. The semantics of implication in the logic is discussed
in detail, and a new concept of minimal extensions is used to obtain a semantics which
works well for both target logics. The resulting semantics is formulated differently from
the traditional presentation of implication in intuitionistic separation logic; our definition
requires checking the subformulas in fewer states.

The syntactic condition on when a Chalice assertion was considered self-framing in the
conference paper was overly restrictive, in that it did not reflect that Chalice takes account
of the restrictions provided by an assertion: for instance, acc(x.f,1) ∗ y = x ∗ y.f = 5 would
not have been considered self-framing in the conference version, but is in this paper, and in
Chalice.

We provide a new section (§5) which shows how to combine the previously-proved
results to explicitly show that a fragment of separation logic can be equivalently verified
using separation logic weakest pre-conditions, or (via an encoding) using implicit dynamic
frames specifications and weakest pre-condition calculations.

Finally, we provide full details of all proofs.

2. Background and Motivation

2.1. Standard Separation Logic. Separation logic [6, 12] is a verification logic which
was originally introduced to handle the verification of sequential programs in languages
with manual memory management, such as C. The key feature of the logic is the ability to
describe the behaviour of commands in terms of disjoint heap fragments, greatly simplifying
the work required when “framing on” extra properties in a modular setting. Since its
inception, separation logic has evolved in a variety of ways. In particular, variants of
separation logic are now used for the verification of object-oriented languages with garbage
collection, such as Java and C♯ [14].
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In order to handle concurrency, separation logic has been extended to consider its ba-
sic points-to assertions as permissions [11], determining which thread is allowed to read
and write the corresponding state. To gain flexibility, fractional permissions [5, 4] were
introduced, allowing the permissions governed by points-to assertions to be split and re-
combined. A fractional permission is a rational number 0 < π ≤ 1, where 1 denotes full and
exclusive (read/write) permission, and any other permission denotes read-only permission.
In this paper we focus on the following core fragment of separation logic with fractional
permissions.

Definition 2.1 (Separation Logic Assertions (SL)). We assume a set of object identifiers1,
ranged over by ι. We also assume a set of field identifiers, ranged over by f . Values, ranged
over by v are either object identifiers, integers, or the special value null.

The syntaxes of separation logic expressions (ranged over by e) and assertions (ranged
over by a) are defined as follows2. In this definition, n ranges over integer constants, and
0 < π ≤ 1.

e ∶∶= x ∣ null ∣ n

a ∶∶= e = e ∣ e.f
π
↦ e ∣ a ∗ a ∣ a −∗ a ∣ a ∧ a ∣ a ∨ a ∣ a → a ∣ ∃x. a

We will refer to this separation logic simply as SL hereafter.

The key feature of separation logic is the facility to reason locally about separate heap
portions. As such, the standard semantics for separation logic is formulated in terms of
judgements parameterised by partial heaps (sometimes called heap fragments), which can
be split and combined together as required. The critical new connectives are the separating
conjunction ∗, and the magic wand −∗. The separating conjunction a1 ∗ a2 expresses that
a1 and a2 are true and depend on disjoint fragments of the heap. The magic wand a1 −∗ a2
expresses that if any extra partial heap satisfying a1 is combined with the current partial
heap, then the resulting heap is guaranteed to satisfy a2.

Fractional permissions3 [4, 5] are employed to manage shared memory concurrency in
the usual way - a thread may only read from a heap location if it has a non-zero permission
to the location, and it may only write to a location if it has the whole (full) permission to it.
By careful permission accounting, it can then be guaranteed that a thread can never modify
a heap location while another thread can read it. Note that permissions are handled (via

points-to predicates e.f
π
↦ e′) on a per-field basis: it is possible for an assertion to provide

permission for only one field of an object. This fine granularity of permissions allows for
greater flexibility in the resulting logic - it can be specified that different threads have access
to different fields of an object at the same time, for example. Combination of partial heaps
includes combination of their permissions, where they overlap.

Definition 2.2 (Partial Fractional Heaps [4]).

● A partial fractional heap h is a partial function from pairs (ι, f) of object-identifier and
field-identifier to pairs (v,π) of value and non-zero permission π. Partial heap lookup is
written h[ι, f], and is only defined when (ι, f) ∈ dom(h).
1These could be considered to be addresses, but we choose to be parametric with the concrete implemen-

tation of the heap.
2Note that variables x need not be program variables, but can also be specification-only variables (some-

times called logical, ghost or specification variables)
3Chalice, described in the next subsection, actually uses a slight variation on fractional permissions to

make automatic theorem proving easier.
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● Partial heap extension: h1 ⊆ h2, iff ∀(ι, f) ∈ dom(h1). ↓1(h1[ι, f]) = ↓1(h2[ι, f]) and
↓2(h1[ι, f]) ≤ ↓2(h2[ι, f]).
● Partial heap compatibility: h1 ⊥ h2 iff ∀(ι, f) ∈ dom(h1) ∩ dom(h2). ↓1(h1[ι, f]) =
↓1(h2[ι, f]) ∧ ↓2(h1[ι, f]) + ↓2(h2[ι, f]) ≤ 1.
● The combination of two partial heaps, written h1 ∗h2, is defined only when h1 ⊥ h2 holds,
by the following equations:

dom(h1 ∗ h2) = dom(h1) ∪ dom(h2)
∀(ι, f) ∈ dom(h1 ∗ h2).
(h1 ∗ h2)[ι, f] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(↓1(h1[ι, f]), ↓2(h1[ι, f])) if (ι, f) ∉ dom(h2)(↓1(h2[ι, f]), ↓2(h2[ι, f])) if (ι, f) ∉ dom(h1)(↓1(h1[ι, f]), (↓2(h1[ι, f]) + ↓2(h2[ι, f]))) otherwise

We use ↓n to denote the nth component of a tuple.

There are two main flavours of separation logic studied in the literature: classical sepa-
ration logic, and intuitionistic separation logic [6]. In this paper, we consider intuitionistic
separation logic. In intuitionistic separation logic, truth of assertions is closed under heap
extension, which is appropriate for a garbage-collected language such as Java/C♯, rather
than a language with manual memory management, such as C. The standard intuitionistic
separation logic semantics for our fragment SL is defined as follows [14].

Definition 2.3 (Standard Semantics for SL [4]). Environments σ are partial functions4

from variable names to values. Separation logic expression semantics, JeKσ are defined by
JxKσ = σ(x), JnKσ = n and JnullKσ = null. The semantics of assertions is then as follows:

h,σ ⊧SL e1.f
π
↦ e2 ⇐⇒ ↓2(h[Je1Kσ, f]) ≥ π ∧ ↓1(h[Je1Kσ, f]) = Je2Kσ

h,σ ⊧SL e = e
′ ⇐⇒ JeKσ = Je′Kσ

h,σ ⊧SL a1 ∗ a2 ⇐⇒ ∃h1, h2.( h = h1 ∗ h2 ∧ h1, σ ⊧SL a1 ∧ h2, σ ⊧SL a2)
h,σ ⊧SL a1 −∗ a2 ⇐⇒ ∀h′.( h′ ⊥ h ∧ h′, σ ⊧SL a1 ⇒ h∗h′, σ ⊧SL a2)
h,σ ⊧SL a1 ∧ a2 ⇐⇒ h,σ ⊧SL a1 ∧ h,σ ⊧SL a2

h,σ ⊧SL a1 ∨ a2 ⇐⇒ h,σ ⊧SL a1 ∨ h,σ ⊧SL a2

h,σ ⊧SL a1 → a2 ⇐⇒ ∀h′.( h′ ⊥ h ∧ h∗h′, σ ⊧SL a1 ⇒ h∗h′, σ ⊧SL a2)
h,σ ⊧SL ∃x. a ⇐⇒ ∃v.( h,σ[x ↦ v] ⊧SL a)

The semantics for the separating conjunction and magic wand express the required split-
ting and combination of partial heaps. The semantics for logical implication → considers
all possible extensions of the current heap, so that assertion truth is closed under heap

extension [6]. In examples, we will sometimes write e.f
π
↦ as a shorthand for ∃x. e.f

π
↦ x.

4However, we assume that all applications of environments are well-defined; i.e., whenever we write σ(x),
that x ∈ dom(σ). This assumption is justified so long as the program and specifications are type-checked
appropriately.
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2.1.1. Assume/Assert. Verification in Boogie2 [9] and related technologies uses two com-
mands commonly to encode verification: assume A1 and assert A1. The first allows the
verification to work forwards with the additional assumption of A1, while the second requires
A1 to hold otherwise it will be considered a fault. These can be given weakest precondition
semantics of:

wp(assert A1,A2) = A1 ∧A2 wp(assume A1,A2) = A1 ⇒ A2

From a verification perspective, these primitives can be used to encode many advanced lan-
guage features. For example, in a modular verification setting with a first-order assertion
language, a method call can be encoded by a sequence assert pre; havoc(Heap); assume post,
in which pre and post are the pre- and post-conditions of the method respectively, and
havoc(.) is a Boogie command that causes the prover to forget all knowledge about a
variable/expression.

With separation logic, there are two forms of conjunction and implication, the standard
(additive) ones ∧ and →, and the separating (multiplicative) ones ∗ and −∗. This naturally
gives rise to a second form of assume and assert for the multiplicative connectives (assume∗

and assert
∗), with the following weakest precondition semantics:

wp(assert∗ A1, A2) = A1 ∗A2 wp(assume∗ A1, A2) = A1 −∗A2

These commands can be understood as follows: assert
∗ A1 removes a heap fragment

satisfying A1, and assume
∗ A1 adds a heap fragment satisfying A1. In a verification setting

where assertions express permissions as well as functional properties, these can be used
to correctly model the transfer of permissions when encoding various constructs. In a
separation logic setting, a method call can be encoded as assert∗ pre;assume∗ post.

In Chalice, which handles an assertion logic based on implicit dynamic frames, func-
tional verification is based on two new commands: exhaleA1 and inhale A1, which are also
given an intuitive semantics of removing and adding access to state. One outcome of this
paper is to make this intuitive connection between exhale/inhale and assert

∗/assume∗

formal, by defining a concrete and common semantics which can correctly characterise both
assertion languages.

2.2. Chalice and Implicit Dynamic Frames. The original concept of Dynamic Frames
comes from the PhD thesis of Kassios [8, 7]. The idea is to tackle the frame problem
by allowing method specifications to declare the portion of the heap they may modify (a
“frame” for the method call) via functions of the heap. The computed frames are therefore
dynamic, in the sense that the actual values determined by these functions may change as
the heap itself gets modified. Implicit dynamic frames [18, 17] takes a different approach
to computing frames - a first-order logic is extended with a new kind of assertion called an
accessibility predicate (written e.g., as acc(x.f)) whose role is to represent a permission to a
heap location x.f . In a method pre-condition, such an accessibility predicate indicates that
the method requires permission to x.f in order to be called - usually because this location
might be read or written to in the method implementation. By imposing the restriction that
heap dereference expressions (whether in assertions or in method bodies) are only allowed
if a corresponding permission has already been acquired, this specification style allows a
method frame to be calculated implicitly from its pre-condition.

Chalice [10] is a tool written for the automatic verification of concurrent programs. It
handles a fairly simple imperative language, with classes (but no inheritance), and several
interesting concurrency features (locks, channels, fork/join of threads). The tool proves
partial correctness of method specifications, as well as absence of deadlocks. The core of the
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methodology is based on the implicit dynamic frames specification logic, using accessibility
predicates to handle the permissions necessary to avoid data races between threads.

In this paper we ignore the deadlock-avoidance aspects of Chalice, and focus on the
aspects which guarantee functional correctness. Verification in Chalice is defined via an
encoding into Boogie2, in which two intermediate auxiliary Chalice commands exhale p and
inhale p are used. These commands reflect the removal and addition of permissions from
the state, as well as expressing assertions and assumptions about heap values. For example,
method calls are represented by exhale pre;inhale post. The command exhale pre has
the effect of giving up any permissions mentioned in accessibility predicates in pre, and
generating assert statements for any logical properties such as heap equalities. Dually,
inhale post has the effect of adding any permissions mentioned in post and assuming any
logical properties.

Definition 2.4 (Our Chalice Subsyntax). Expressions E, boolean expressions B and as-
sertions p in our fragment of Chalice are given by the following syntax definitions:

E ∶∶= x ∣ n ∣ null ∣ E.f

B ∶∶= E = E ∣ E ≠ E ∣ B ∗B
p ∶∶= B ∣ acc(E.f,π) ∣ p ∗ p ∣ B → p

Note that Chalice actually uses the symbol for logical conjunction (∧ or &&) where we write
∗ above. However, in terms the semantics of the logic this is misleading - in general it is not
the case that p ∧ p (as written in Chalice) is equivalent to p. Chalice’s conjunction treats
permissions multiplicatively, that is, acc(x.f,1/2)∧acc(x.f,1/2) is equivalent to acc(x.f,1),
while acc(x.f,1) ∧ acc(x.f,1) is actually equivalent to falsity (it describes a state in which
we have more than the full permission to the location x.f). As we will show, Chalice
conjunction is actually directly related to the separating conjunction of separation logic,
hence our choice of notation here. Where we use the symbol ∧ later in the paper, we mean
the usual (additive) conjunction, just as in SL or first order logic.

Chalice performs verification condition generation via an encoding into Boogie2, which
makes use of two special variables P and H. The former maps object-identifier and field-
name pairs to permissions, in this instance a fractional permission, and is used for bookkeep-
ing of permissions5. The latter maps object-identifier and field-name pairs to values, and is
used to model the heap of the real program. These maps can be read from (e.g., P[o, f])
and updated (e.g., P[o, f] ∶= 1) from within the Boogie2 code, which allows Chalice to main-
tain their state appropriately to reflect the modifications made by the source program. In
particular, the inhale and exhale commands have semantics which include modifications
to the P map, to reflect the addition or removal of permissions by the program.

The critical aspect of Chalice’s approach to data races, is to guarantee that assertions
about the heap are only allowed when at least some permission is held to each heap location
mentioned. This means that assertions cannot be made when it might be possible for other
threads to be changing these locations - all logical properties used in the verification are
then made robust to possible interference. This is enforced by requiring that assertions
used in verification contracts are self-framing [7] - which means that the assertion includes
enough accessibility predicates to “frame” its heap expressions. For example, the assertion

5Technically, one should think of P as a ghost variable, since it does not correspond to real data of the
original program.
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x.f = 5 is not self-framing, since it refers to the heap location x.f without permission. On
the other hand, (acc(x.f,1) ∗ x.f = 5) is self-framing.

3. Total Heaps Permission Logic (TPL)

3.1. Race-free Assertions. In order for a static verification tool to be able to reason
soundly about concurrent programs, a crucial aspect is to be able to give a well-defined
semantics to the assertion language employed. Since other executing threads may interfere
with the execution of code being verified (for example, by writing to heap locations which
the current program also accesses; a data race), assertions which describe properties of
the heap do not, in general, even have a well-defined semantics. For example, consider the
simple assertion x.f > 5. Such an assertion only has a well-defined semantics (at verification
time) if, at runtime, the heap location x.f is guaranteed not to be subject to a data race.
If another thread writes to this location at the “same time” as the assertion is checked to
hold, the truth of the assertion becomes non-deterministic, depending on the interleaving
of the memory accesses by the two threads. This makes any reasoning about expressions
such as x.f as expressions in a logical sense unreliable: assertions such as x.f > x.f could
even be “true” at runtime, due to interference; a behaviour which any useful verifier will
struggle to mimic accurately.

For these reasons, verifiers for concurrent programs need to use a verification method-
ology and assertion language whose semantics avoids data races. Both separation logic and
implicit dynamic frames attack this problem by employing notions of (fractional) permis-
sions. Permissions permit access to particular heap locations, and can be passed around
between threads, with the crucial property that a thread is only allowed to write to a
heap location if no other thread holds a permission to the location. By imposing suitable
restrictions on the assertion language used for verification, one can then guarantee a data-
race-free semantics by passing permissions explicitly along with heap-dependent assertions,
and enforcing the policy that an assertion may only mention a heap location if it also carries
at least some permission to that location. In implicit dynamic frames, these permissions
are represented by “accessibility predicates” acc(E.f,π), denoting π permission to location
E.f . For example, while the assertion x.f > 5 does not have a well-defined semantics on
its own, the compound assertion acc(x.f, π) ∗ x.f > 5 does - the presence of the permission
to the location x.f guarantees that its value in the heap is robust to interference. More
generally, any heap-dependent expression in an assertion can only be given a meaning by
its value being fixed with a permission to the appropriate heap locations. A “self-framing”
assertion is one which is only satisfied in states which carry enough permissions to fix the
values of all heap locations on which it depends; not all assertions are self-framing (x.f > 5
is not), but only such assertions can generally be used for verification contracts. The fact
that, in implicit dynamic frames, the permission to access a heap location can come from
a different part of an assertion (e.g., conjunct) than the constraints on the value at that
location, is the main challenge in giving a correct semantics for the logic.

The same challenge does not arise in separation logic, which does not allow heap-
dependent expressions, instead providing the special “points-to” predicates as the sole way

of handling heap accesses. A “points to” predicate e1.f
π
↦ e2 plays a dual role in the

logic - it provides knowledge of the value e2 of the heap location e1.f , and it also provides
a permission π to this location, making the value robust to interference. Because there
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is no other way to refer directly to heap locations, one cannot ever talk about the value
of a location without having some permission to that location. The observation of this
dual role leads naturally to the idea of encoding separation logic assertions into implicit

dynamic frames by replacing every points-to predicate e1.f
π
↦ e2 by a permission and a

heap-dependent expression: acc(e1.f, π) ∗ e1.f = e2. This observation can be used as the
basis of a comparison and translation between the two logics. In fact, our approach is to
give a uniform semantics for a logic which subsumes both separation logic and implicit
dynamic frames constructs, and then show that the primitive constructs of the former can
be represented in the latter.

3.2. Overview of Our Approach. In order to formally relate the two paradigms of sep-
aration logic and implicit dynamic frames, we define a new logic which subsumes both
syntaxes. We call this logic Total Heaps Permission Logic (TPL). This logic includes as
primitives both the “points-to” predicates of separation logic, and the “accessibility pred-
icates” of implicit dynamic frames, along with an expression syntax which permits heap-
dependent expressions. As we will show formally in this paper, this is actually redundant;
one can encode the SL-style primitives into implicit dynamic frames. However, our TPL
serves as a uniform basis for comparing these two logics. We also include all of the common
connectives used in separation logic, which subsume those typically implemented in tools
(based on either approach).

Our approach is to define a semantics for TPL, based on states consisting of a stack (giv-
ing meaning to variables), a total heap, and a permissions mask (defining which locations in
the total heap have reliable values for the current thread). Because our semantics is defined
compositionally, it actually gives a meaning to assertions which are not (by themselves)
well-formed in all states. As discussed above, assertions which mention heap-dependent
expressions such as x.f > 5 are not necessarily well-defined when considered in isolation.
However, because the IDF approach allows for such assertions as subformulas of a well-
formed assertion, and because we want to define a compositional semantics for our logic, we
are obliged to give such assertions a semantics, even though (by themselves) they cannot
be used in either approach. In some sense, by encompassing both SL and IDF, we actually
make our assertion logic too general. The presence of ill-formed assertions in our general
logic means that (just as in implicit dynamic frames) we will later have to introduce ad-
ditional concepts such as self-framing assertions, in order to identify the fragments of our
logic which are well-behaved.

Definition 3.1 (Total Heaps Permission Logic). We define the expressions E and assertions
A of Total Heaps Permission Logic (TPL), by the following grammar (in which n stands
for any integer constant):

e ∶∶= x ∣ null ∣ n
E ∶∶= e ∣ E.f

A ∶∶= E = E ∣ E.f
π
↦ E ∣ A ∗A ∣ A −∗A ∣ A ∧A ∣ A ∨A ∣ A→ A ∣ acc(E.f,π) ∣ ∃x. A

Note that the syntax of separation logic assertions (ranged over by a; see Definition 2.1)
is a strict subset of the TPL assertions A defined above. The syntax of separation logic
expressions e is also a strict subset of TPL expressions E. Similarly, the syntax of Chalice
assertions (cf. Definition 2.4) is a subset of our TPL syntax.
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Our strategy for the rest of the paper is as follows. We will first investigate carefully
how to define a suitable total-heaps-based semantics for TPL. In particular, we spend con-
siderable attention on the definition of cases which correspond to modelling state extension
(the implication and magic wand connectives).

We will then show that, for the subsyntax which corresponds to separation logic asser-
tions, our total heaps semantics coincides with the traditional partial-heaps-based semantics
of the logic (cf. Definition 2.3). Thus, we define a total-heaps model for separation logic,
which is consistent with the standard model. We will further show that the subsyntax of
TPL which covers SL assertions can be mapped into the IDF subsyntax, preserving the se-
mantics of the assertions. Thus, we can faithfully map from the SL world to an IDF-based
assertion language.

In Section 4, we will show how to connect our TPL model to the Chalice verification
methodology. In particular, we will show that weakest pre-conditions as calculated by Chal-
ice for a first-order theorem prover, are equivalent to weakest pre-conditions as calculated
in separation logic. By combining this result with our ability to faithfully reflect traditional
SL semantics in TPL, we can show the equivalence of the overall approaches. In particular,
for the subsyntax of SL typically supported by automatic tools, we can show that we can
encode programs with SL specifications as programs with IDF specifications, and compute
equivalent weakest pre-conditions for direct verification by a theorem prover.

3.3. Total vs Partial Heaps. One important technical challenge faced in defining a se-
mantics for both logics, is that the semantics of separation logic is defined using partial heaps
(representing heap fragments, which can be split and recombined), while the implementa-
tion of implicit dynamic frames employs a mutable total heap, and a separate permissions
mask to keep track of the permissions held in the current state. In order to make a uniform
semantics for the two logics, we needed to bridge this gap between the two paradigms. We
achieve this by employing only total heaps and permission masks, and using these to define
a semantics that faithfully captures the traditional partial-heaps-based model for the SL
subsyntax.

Definition 3.2 (Total Heaps and Permission Masks). A total heap H is a total map from
pairs of object-identifier o and field-identifier f to values v. Heap lookup is written H[o, f].
We write field location to mean a pair of object-identifier and field-identifier.
A permission mask P is a total map from pairs of object-identifier and field-identifier to
permissions. Permission lookup is written P [o, f].
We write P1 ⊆ P2 for permission mask extension, i.e., ∀(o, f). P1[o, f] ≤ P2[o, f].
We write ∅ for the empty permission mask ; i.e., the mask which assigns 0 to all locations.
We write rds(P ) for the set of field locations with non-zero permissions in P , that is,

{(o, f) ∣ P [o, f] > 0}. We write rds(P ) for the complement of this set of locations.
A state is a triple (H,P,σ) consisting of a heap, a permission mask and an environment σ.
Two permission masks P1 and P2 are compatible, written P1 ⊥ P2, if it holds that:

∀(o, f). P1[o, f] + P2[o, f] ≤ 1
The combination of two permission masks, written P1 ∗P2 is undefined if P1 and P2 are not
compatible, and is otherwise defined pointwise to be the following permission mask:

(P1 ∗P2)[o, f] = P1[o, f] + P2[o, f]
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We define the greatest lower bound of two masks:

(P1 ⊓P2)[o, f] = min(P1[o, f], P2[o, f])
and the least upper bound of two masks:

(P1 ⊔ P2)[o, f] = max(P1[o, f], P2[o, f])
Finally, we define a partial operation of subtraction on permission masks, P1 − P2. It is
defined if and only if P2 ⊆ P1, and is defined by:

(P1 − P2)[o, f] = (P1[o, f] − P2[o, f])
The crucial observation relating our logic to SL is that, while we will use total heaps in

our semantics, we will actually only allow assertions to depend on a subheap; those locations
which the current thread can “read”; i.e., that it has at least some permission to. We employ
the notation rds(P ) (where P is a permission mask), to talk about this set of locations.
We will design our semantics such that, for all separation logic assertions, their semantics
in a state with heap H and permissions P corresponds to their traditional semantics using
the (partial) heap obtained by restricting H to just the domain rds(P ) (this restriction is
formally written as H↾P later). This idea reflects the intuition that all other locations in
the (total) heap H have unreliable values (which may be subject to interference from other
threads); only assertions which are appropriately “framed” by sufficient permissions, can
be relied upon in a concurrent setting.

When we want to explicitly express that an assertion is robust to interference from
other threads, we can do so by considering the evaluation of the assertion in all heaps which
agree with the current one on the locations which the current thread can read, according to
the permissions mask. Effectively, we introduce a “havoc” of all of the locations to which we
hold no permission, and check that the assertion is still guaranteed after all such locations
are assigned arbitrary values. In order to define this operation, we introduce the concept of
two heaps “agreeing” on the permissions in a mask (as well some other heap constructions)
as follows:

Definition 3.3 (Total Heap Operations). Two heaps H1 and H2 agree on a set of object

field locations F , written H1

F
≡ H2, if the two heaps contain the same value for each location,

i.e.,

H1

F
≡ H2 ⇐⇒ ∀(o, f) ∈ F. H1[o, f] =H2[o, f]

Two heaps H1 and H2 agree on permissions P , written H1

P
≡ H2, if the two heaps agree on

all field locations given non-zero permission by P , i.e.,

H1

P
≡ H2 ⇐⇒ H1

rds(P )
≡ H2

The restriction of H to P , written H↾P is a partial fractional heap (Definition 2.2), defined
by:

dom(H↾P ) = rds(P )
∀(o, f) ∈ dom(H↾P ). (H↾P )[o, f] = (H[o, f], P [o, f])

The conditional merge of H1 and H2 over a set of locations F , written (F ? H1 ∶ H2) is a
total heap defined by:

(F ?H1 ∶ H2)[o, f] = { H1[o, f] if (o, f) ∈ F
H2[o, f] otherwise
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We write (P ?H1 ∶H2) as a shorthand for (rds(P ) ? H1 ∶ H2).
We can make use of these operations on total heaps to define what it means for an

assertion to be stable in a certain state (which intuitively means that its truth only depends
on heap locations to which it also requires permission to be held).

Definition 3.4 (Interference, Stability, Self-Framing and Pure Assertions). Given a heap
H and a permissions mask P , the interfered heaps from H,P is a set of heaps defined by:

interfere(H,P ) = {H ′ ∣ H ′ P≡ H}
A set of states S is stable with extra permissions P , written as stable−withP (S), if the extra
permissions are sufficient to make the set closed under interference; i.e.,

stable−withP (S)⇔ (∀(H,P ′, σ) ∈ S. ∀H ′ ∈ interfere(H,P ∗ P ′).(H ′, P ′, σ) ∈ S)
A set of states S is stable, written as stable(S), if the set is closed under interference; i.e.,

stable(S)⇔ stable−with∅ (S)
We write ⟨⟨A⟩⟩ to denote the set of states in which the assertion A is true (the actual
definition of our semantic judgement H,P,σ ⊧TPL A will come later).

⟨⟨A⟩⟩ = {(H,P,σ) ∣ H,P,σ ⊧TPL A}
An assertion A is self-framing if and only if the set of states satisfying it is stable; i.e., if
stable(⟨⟨A⟩⟩) is true.

An assertion A is pure if and only if it doesn’t depend on permissions, i.e.,

∀H,P,σ. ((H,P,σ) ∈ ⟨⟨A⟩⟩⇒ (H,∅, σ) ∈ ⟨⟨A⟩⟩)
Intuitively, self-framing assertions are robust to arbitrary interference on the rest of the

heap. For separation logic assertions, this property holds naturally, since it is impossible
for an assertion to talk about the heap without including the appropriate “points-to” pred-
icates, which force the corresponding permissions to be held. This is shown as a corollary
(Corollary 3.21) of the main theorem in this section.

On the other hand, pure assertions which depend on heap values (such pure assertions
are not supported in separation logic, but are employed in implicit dynamic frames) are
naturally not self-framing. An assertion such as x.f = 5 is considered pure (it does not
mention any permissions or points-to predicates); it will be true in a state where we have
no permissions, but in which the value of the heap location x.f is 5. Nonetheless, such a
state is not stable; when we allow for interference, the value of x.f can be modified, and
the truth of the assertion need not be preserved.

3.4. Pure Assertions and Separating Conjunction. Our assertion language includes
the separating conjunction A∗B of separation logic (recall Definition 2.3), and permissions
can be distributed multiplicatively across this conjunction. In particular, our semantics
needs to enforce, for an assertion A ∗B, that the permissions required are the sum of the
permissions required in each of A and B; we can model this by checking that we can split
the permissions mask into two parts, using them to judge the respective conjuncts. A
question which then arises is, what should happen to the heap when judging the separating
conjunction? In the traditional separation logic semantics, which uses partial heaps, since
the heap values and “permissions” are both tracked together in partial heap chunks, it is
natural to divide up the partial heap in this case. In the case of partial fractional heaps, the
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two resulting heap chunks can still share values, but only to those locations in which both
parts hold some permission. With a total-heaps semantics, we have a choice as to how to
reflect this “splitting”; we can either only split the permissions mask across the conjuncts,
but leave the heap unchanged, or we can also try to simulate the splitting of heap values,
say, by throwing away information about certain heap locations when judging the individual
conjuncts. By looking only at the separation logic fragment of our logic, we cannot see a
clear advantage either way; since all assertions in that logic can only read the same heap
values that they provide permission to, the question of what should be done with other heap
values is irrelevant there (and a partial heaps model gives no reasonable way to even phrase
this decision, since it conflates the notions of permission to read a location, and the action
of actually reading it). However, this question is pertinent in the case of implicit dynamic
frames, where we have heap-dependent expressions which can occur in pure assertions.

For pure assertions, we want the property that, even when mentioned in a separating
conjunction, they do not actually extend the “heap footprint” of what the assertion requires.
In particular, we would like to retain the law (which holds in intuitionistic separation
logic), that A1 ∗A2 is equivalent to A1 ∧A2 when either of the two conjuncts are pure. In
particular, this motivates that pure assertions should be allowed to depend on the same
state as assertions they are conjoined with. Of course, in separation logic, where pure
assertions are syntactically restricted to not mention the heap, this “same state” just means
the environment σ. But in implicit dynamic frames, we would like heap-dependent pure
assertions to be allowed to depend on the same heap values that other conjuncts make
readable by providing permissions; when interpreting assertions such as acc(x.f)∗x.f == 5
this is exactly what we want.

For these reasons, in our total-heaps model, we define the semantics for separating
conjunction with a split of the permissions mask, but no change to the heap. This is
concretely achieved by checking that we can split P into two pieces, each of which are
sufficient to judge the two sub-formulas; the particular definition (which will be provided
as part of the definition of our full semantics later) is:

H,P,σ ⊧TPL A1 ∗A2 ⇐⇒

∃P1, P2. (P = P1 ∗P2 ∧ H,P1, σ ⊧TPL A1 ∧ H,P2, σ ⊧TPL A2)
In the case of some implicit dynamic frames assertions, this rule for treating separating
conjunction may “separate” a heap-dependent expression from the permission used to fix
its values. For example, consider a permissions mask P in which we have full permission
to the location x.f (and no other permissions), and a heap H in which x.f has the value
5. The assertion acc(x.f,1)∗x.f = 5 is true in such a state. But, in treating the separating
conjunction, we are forced to split P = P1∗P2 and put all permission to x.f into P1, in order
to satisfy the left conjunct, leaving P2 to be the empty permissions mask. The fact that
the sub-formula x.f = 5 is eventually judged in a state in which we hold no permissions to
the relevant location x.f is not a problem - we only need to be sure that permission to this
location is held somewhere in the whole assertion, and not in this particular sub-formula.
That is, the property of an assertion being well-formed (self-framing) is not enforced for its
sub-formulas, but only for the assertion as a whole.

3.5. Modelling Partial Heap Extensions. One of the most difficult technical challenges
in the design of our semantics was correctly handling the magic wand (−∗) and implication
(→) connectives. In the traditional partial heaps semantics of separation logic (Definition
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2.3), the semantics of both of these connectives involve considering extensions of the current
heap. In a semantics based on partial heaps, this is rather straightforward, but with total
heaps and permission masks it is not so obvious how to model “heap extension” for these
connectives.

One simple option is just to consider permission extension - leave the heap unchanged
but consider all larger permissions masks. The problem with this rather-simplistic proposal
is that it attaches significance to pre-existing values in our total heap even in the case where
we previously had no permission to them. Since such values are generally meaningless, this
doesn’t give a well-behaved semantics. When one compares with the operation of extending
partial heaps, which we are trying to simulate appropriately, it can be seen that the approach
doesn’t work; when a new heap location is added in a partial heaps model, it can take any
value, whereas our total heap only has one value at any one time.

In order to avoid tying ourselves down to the values in our total heaps which are not
necessarily currently meaningful, we can instead model heap extension by adding on extra
permission and then havocing (i.e., assigning arbitrary values to) the heap locations to
which we have newly acquired permission. In this way, we make the original heap values
stored at these locations irrelevant, and correctly reflect the general operation of adding on
a fresh heap location in a partial-heaps-based model. To this end, we define several variants
of this idea of how to model state extensions. The differences in the variants come from
two decisions. Firstly, when we add on new permission, do we havoc the heap values at all
locations to which we previously held no permission (we call this a global havoc), or only
those which the permissions newly allow us to read (we call this a local havoc)? Secondly,
when we define the extensions of a state, are we interested in resulting states in which we
combine the new permissions with those we held previously, or do we just want to describe
the “extra” disjoint part of the state (using the new permissions, but not the old ones)?
These questions give rise to the following four concepts:

Definition 3.5 (State Extensions). The set of locally-havoced extensions of a state (H,P,σ)
is the set of states in which extra permission is added, and possibly-new values are assigned
to the newly-readable locations, i.e.,:

localExts(H,P,σ) = {(H ′, P ∗ P ′, σ) ∣ P ′⊥P ∧H ′ rds(P )∪rds(P ′)≡ H}
The set of globally-havoced extensions of a state (H,P,σ) is the set of states in which extra
permission is added, and possibly-new values are assigned to the previously-unreadable
locations, i.e.,:

globalExts(H,P,σ) = {(H ′, P ∗P ′, σ) ∣ P ′⊥P ∧H ′ ∈ interfere(H,P )}
The set of locally-havoced disjoint extensions of a state (H,P,σ) is the set of states in which
extra permission is added, possibly-new values are assigned to the newly-readable locations,
and only the extra permissions are kept in the results, i.e.,:

localDisjExts(H,P,σ) = {(H ′, P ′, σ) ∣ P ′⊥P ∧H ′ rds(P )∪rds(P ′)≡ H}
The set of globally-havoced disjoint extensions of a state (H,P,σ) is the set of states in which
extra permission is added, possibly-new values are assigned to the previously-unreadable
locations, and only the extra permissions are kept in the results,

globalDisjExts(H,P,σ) = {(H ′, P ′, σ) ∣ P ′⊥P ∧H ′ ∈ interfere(H,P )}
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As we will see later in this section, we have uses for all of these notions of state extension,
and choosing the appropriate one at various points is important for our logic to have the
right semantics.

3.6. Minimal Extensions and Implication. We now consider how to design an appro-
priate semantics for implication in our logic, which should manage to work appropriately
both for the separation logic and implicit dynamic frames fragments. Recall that, in the
traditional semantics of (intuitionistic) separation logic (cf. Definition 2.3), an implicative
assertion a1 → a2 is true if, in all extensions of the current heap, whenever a1 is true then a2
is also true. Therefore, we need to be careful to appropriately model this idea of extending
the current state when judging an implication. We use three examples here to guide the
discussion of our design:

Ex. 1: x.f
1
↦ ∗ (x.f 1

↦ 5 → y.g
1
↦ )

Ex. 2: acc(x.f,1) ∗ ((acc(x.f,1) ∗ x.f = 5) → acc(y.g,1))
Ex. 3: acc(x.f,1) ∗ (x.f = 5→ acc(y.g,1))

In (intuitionistic) separation logic, the first formula is actually only true in states which
have (full) permission to both locations x.f and y.g. The reason is that, in judging the
implication subformula, we have to consider all extensions of the provided state. Unless the
state in which we judge the implication has at least some permission to x.f (and gives a
value other than 5 to this location), then when we consider all extensions of the heap we
must consider the possibility that the new heap stores a value 5 at this location. Since the

left-hand conjunct x.f
1
↦ requires full access to x.f , no permission to this location can be

left over when judging the implication on the right. The formula can be formally shown to

be equivalent to x.f
1
↦ ∗ y.g

1
↦ according to the standard semantics of Definition 2.3, as

follows:

Proof. It suffices to show

h,σ ⊧SL (x.f 1
↦ 5 → y.g

1
↦ ) ∧ (JxKσ, f) ∉ dom(h)⇒ ↓1(h[JyKσ, f]) = 1

We can prove this by contradiction. We assume (JxKσ, f) ∉ dom(h) and ↓1(h[JyKσ, f]) ≠ 1,
and consider the semantics of the implication:

∀h′.( h′ ⊥ h ∧ h∗h′, σ ⊧SL x.f
1
↦ 5 ⇒ h∗h′, σ ⊧SL y.g

1
↦ )

By choosing h′ to be the heap containing x.f with full permission and value 5, and with

no other location in its domain, we deduce a contradiction, since h∗h′, σ ⊧SL x.f
1
↦ 5 does

hold, while h∗h′, σ ⊧SL y.g
1
↦ does not.

The second example formula listed above is actually a translation of the first into im-
plicit dynamic frames: it is only true in states which have (full) permission to both locations
x.f and y.g in our semantics, and for the same reasons as the previous example. However,
this assertion goes beyond the syntax of implicit dynamic frames typically supported by
tools; we will discuss this later. The third formula should mean: we have (full) permission
to access x.f , and if its value is currently 5 then we also have full access to y.f . This kind of
assertion is already supported by the Chalice tool, and has exactly that intuitive meaning.
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We need to decide which of the notions of state extension, as given in Definition 3.5, we
should use to define our semantics for implication. Since, in the traditional separation logic
semantics, the two sides of an implication get judged in the whole resulting heap (after the
state extension), the latter two “disjoint” variants from the definition are not appropriate.
However, we still have the choice between considering locally-havoced or globally-havoced
extensions. Let us consider the (slightly-simpler) option of using globally-havoced exten-
sions. This leads us to the following candidate semantics for implication:

H,P,σ ⊧TPL A1 → A2

?
⇐⇒

∀P ′,H ′.( P ′⊥P ∧ H ′
P
≡ H ∧ H ′, P ∗ P ′, σ ⊧TPL A1 ⇒ H ′, P ∗ P ′, σ ⊧TPL A2)

This definition gives the correct meaning to our first example assertion: since we judge the
implication in a state in which we have no permission to x.f (all such permission has to
be given to the left-hand side of the ∗), we have to consider heaps H ′ in which x.f has
taken on arbitrary values. In particular, there are some such heaps in which x.f has the
value 5, and this forces the requirement that we must also have full permission to y.g, just
as in the traditional separation logic semantics. In fact, using locally-havoced extensions

in our definition (i.e., changing the constraint on H ′ to be H ′
rds(P )∪rds(P ′)

≡ H), would also
give the right semantics; since we are still required to consider the possibility that we add
on permission to x.f in the extra permissions P ′, and in this case, it is allowed for H ′ to
differ with H on x.f ’s value. In fact, it is generally the case that the choice of locally-
havoced or globally-havoced extensions makes no difference when we consider separation
logic assertions. Exactly the same arguments (and resulting semantics) apply to the second
of our example assertions.

However, the candidate definition above does not in general have the correct meaning for
implicit dynamic frames. In particular, our third example formula does not have the correct
semantics. The change of heap forces us to consider extensions in which we alter the value of
x.f in the heap, and thus our third example also becomes equivalent to acc(x.f)∗acc(y.f),
since the value restriction for x.f is made irrelevant by this potential change. To see exactly
what we need here, we need to again consider carefully the meaning of x.f in a pure assertion.
When such a heap-dependent expression occurs on the left of an implication, its intended
meaning depends on where in the assertion we find permission to the heap location. There
are two important questions: does a permission to this location also occur on the left of the
implication (e.g., in our second example formula), and does a permission to this location
occur elsewhere in the assertion? If neither occurs, i.e., there is no permission guaranteed
to x.f anywhere in the assertion, then the expression is meaningless; we will consider this
case ill-formed, and so can give it any semantics. If a permission to x.f occurs on the left of
the implication in question (as in our second example formula), then it is possible that the
value of the heap location is fixed as part of the heap extension, and therefore we should
allow this value to change as part of the extension, as in our last candidate semantics above.
In particular, if we judge the truth of the implication in a state in which we start off with
no permission to the location x.f , then it is just by adding the new permission required on
the left of the implication that we can read from the location, and so we should consider
that the value may be different from that in our original state. Finally, if a permission does
not occur on the left of the implication, but does occur elsewhere in the assertion (as in our
third example formula acc(x.f,1) ∗ (x.f = 5 → acc(y.g,1))), then we should not allow the
value of x.f to change when judging the implication; its value must be determined by the
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permission outside of the implication, and so should not be allowed to change when judging
it.

This analysis leads us to the conclusion that, in our candidate semantics above, we are
considering too many extensions. We need to only consider the minimal extensions of the
state to make the left of the implication true; in particular, we should only add permissions
if the left-hand side of the implication explicitly requires them, and only allow values to
change at those locations to which we added new permission. To this end, we provide a
definition to capture the idea of a minimal permission extension, which expresses that the
extra permission we add on does not make any more locations readable than is necessary
to make the assertion we are concerned with true:

Definition 3.6 (Minimal Permission Extensions). Starting from a state (H,P,σ), we say
that P ′ is a minimal permission extension of (H,P,σ) to satisfy A, which we write as(H,P,σ) ⊲ P ′ ⊧TPL A, as described by the following formula:

(H,P,σ) ⊲ P ′ ⊧TPL A ⇐⇒ H,P ∗P ′, σ ⊧TPL A ∧
∀P ′′ ⋅ P ′′ ⊆ P ′ ∧ rds(P ′′) ⊂ rds(P ′)⇒H,P ∗P ′′, σ /⊧TPL A

We abstract over the precise permission values in this minimal extension (by focusing on
which locations are readable, using the rds() concept), in order to avoid imposing restrictions
on the underlying permissions model (in particular, our definition does not depend on there
being a greatest lower bound for the acceptable permission values to satisfy an assertion).
That is, a minimal permission extension can add on more permission than the assertion
really requires, so long as it does not increase the set of locations accessible in the permissions
mask by more than necessary.

Using the concept of a minimal permission extension, along with the notion of locally-
havoced extensions, we can finally define the semantics for implication which works for our
general logic:

H,P,σ ⊧TPL A1 → A2 ⇐⇒

∀(H ′, P ∗P ′, σ) ∈ localExts(H,P,σ) ⋅ (H ′, P, σ) ⊲ P ′ ⊧TPL A1 ⇒ H ′, P ∗ P ′, σ ⊧TPL A2

This definition can be informally understood as follows: A1 → A2 is true in a state if, for all
minimal extensions (and corresponding havocs) of the state such that A1 holds, A2 must
hold as well. The extension of the state is modelled by adding on the permissions P ′, and
allowing the values of the heap to be modified in exactly the locations which become newly-
readable by adding on these permissions. Furthermore, we insist on the permissions added
being minimal in the locations which they make readable, while still satisfying A1.

This definition correctly captures that we sometimes need to consider changing values
in the heap when judging an implication, but only when it is permissions in the left-hand
side of the implication that allow the reading of the locations. For example, using the
definition above, the third example formula acc(x.f,1) ∗ (x.f = 5 → acc(y.f,1)) is true
exactly in a state where we have (full) permission to x.f , and where, if the current value
of x.f is 5, we also have (full) permission to y.f . On the other hand, the second formula
acc(x.f,1)∗(acc(x.f,1)∗x.f = 5→ acc(y.f,1)) is true exactly when we have full permission
to both x.f and y.f - this is because the implication is evaluated in a state with no permission
to x.f , and when our semantics considers extending this state by just enough permission to
make the left-hand side true, we have to allow for the possibility that this makes x.f newly
readable, and thus, makes it take on a new value.
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Although we did not discuss the semantics of the magic wand connective (−∗) in the
above, similar considerations lead us to also use the concept of minimal extensions in its
definition. The formal definitions of our semantics come in the following subsection.

3.7. Magic Wand Semantics. We design our semantics for the “magic wand” connective
−∗ along similar lines to that for implication. In particular, if one writes a pure assertion A1

on the left of a wand formula A1 −∗A2, then we do not want the semantics of the assertion
to consider havocing heap locations that A1 refers to. Put another way, for pure A1 we
would like the property that A1 −∗A2 is equivalent to A1 → A2, which, as we have already
decided, should have a semantics which allows A1 to refer to heap values in our original
state, unless extra permission to those locations is added in A1. This reasoning leads us to
again employ our notion of minimal permission extension, but this time we complement it
with locally-havoced disjoint extensions:

H,P,σ ⊧TPL A1 −∗A2 ⇐⇒

∀(H ′, P ′, σ) ∈ localDisjExts(H,P,σ).(H ′,∅, σ) ⊲ P ′ ⊧TPL A1 ⇒ H ′, P ∗P ′, σ ⊧TPL A2)
3.8. Total Heaps Semantics for TPL. We can now define our semantics for assertions.
We make use of the concept of a minimal permission extension (Definition 3.6) to describe
minimal extensions to the whole state when judging implications and magic wand assertions:

Definition 3.7 (Total Heap Semantics for TPL). We define validity of TPL-assertions with
respect to a specified total heap H and permission mask P recursively on the structure of
the assertion:

H,P,σ ⊧TPL E.f
π
↦ E′ ⇐⇒ P [JEKσ,H , f] ≥ π ∧ H[JEKσ,H , f] = JE′Kσ,H

H,P,σ ⊧TPL A1 ∗A2 ⇐⇒ ∃P1, P2.(P = P1∗P2 ∧ H,P1, σ ⊧TPL A1 ∧ H,P2, σ ⊧TPL A2)
H,P,σ ⊧TPL A1 −∗A2 ⇐⇒ ∀(H ′, P ′, σ) ∈ localDisjExts(H,P,σ).(H ′,∅, σ) ⊲ P ′ ⊧TPL A1 ⇒ H ′, P ∗ P ′, σ ⊧TPL A2

H,P,σ ⊧TPL A1 ∧A2 ⇐⇒ H,P,σ ⊧TPL A1 ∧ H,P,σ ⊧TPL A2

H,P,σ ⊧TPL A1 ∨A2 ⇐⇒ H,P,σ ⊧TPL A1 ∨ H,P,σ ⊧TPL A2

H,P,σ ⊧TPL A1 → A2 ⇐⇒ ∀(H ′, P ∗P ′, σ) ∈ localExts(H,P,σ).(H ′, P, σ) ⊲ P ′ ⊧TPL A1 ⇒ H ′, P ∗ P ′, σ ⊧TPL A2

H,P,σ ⊧TPL acc(E.f,π) ⇐⇒ P [JEKσ,H , f] ≥ π
H,P,σ ⊧TPL E = E

′ ⇐⇒ JEKσ,H = JE′Kσ,H

H,P,σ ⊧TPL ∃x. A ⇐⇒ ∃v.(H,P,σ[x ↦ v] ⊧TPL A)
Note the similarity between the definitions for magic wand −∗ and logical implication →.
This is because both cases involve heap extension in the partial heap semantics; in our total
heap semantics we model heap extension by enabling the assignment of new arbitrary values
to the part of the heap we have added permissions to.

Evaluation of TPL expressions depends on a given environment and heap, and is defined
by:

JxKσ,H = σ(x) JnKσ,H = n JE.fKσ,H = H[JEKσ,H , f] JnullKσ,H = null
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The meaning of separation logic expressions is preserved (and is independent of the
heap), as the following lemma shows:

Lemma 3.8. ∀e,σ,H. JeKσ,H = JeKσ

The main aims of the rest of this section are to show that our assertion semantics also
preserves the original meaning of separation logic assertions.

3.9. Strengthening and Weakening Results. In this subsection, we present some of the
technical properties which describe how our semantics behaves when we add and remove
permissions, and when we extend states.

The following lemma shows the (intuitive) property that we can always discard super-
fluous permissions to reach a minimal permission extension:

Lemma 3.9 (Minimisation of Permission Masks). If H,P1 ∗ P2, σ ⊧TPL A then ∃P3 ⊆ P2

such that (H,P1, σ) ⊲ P3 ⊧TPL A. (See page 39 for proof.)

Definition 3.10 (Weakening-closed and Intuitionistic formulas). We define a formula A to
be weakening-closed if and only if

∀H,P,σ,P ′.(P ⊆ P ′ ∧ H,P,σ ⊧TPL A ⇒ H,P ′, σ ⊧TPL A)
We define a formula A to be intuitionistic if and only if

∀H,P,σ.(H,P,σ ⊧TPL A ⇒ ∀(H ′, P ′, σ) ∈ globalExts(H,P,σ). H ′, P ′, σ ⊧TPL A)
Lemma 3.11. If A is weakening-closed, (H,P,σ) ⊲ P ′ ⊧TPL A, P ′ ⊆ P ′′ and rds(P ′) =
rds(P ′′), then (H,P,σ) ⊲ P ′′ ⊧TPL A (See page 39 for proof.)

The following technical lemma shows that any necessary permissions in a state are still
necessary in a state with fewer permissions, provided the assertion we are considering is
closed under permission extension:

Lemma 3.12 (Minimal Permission Extensions Closed). If (H,P1 ∗P2, σ) ⊲ P3 ⊧TPL A and
A is weakening-closed, then ∃P4 ⊆ P2 and (H,P1, σ) ⊲ P4 ∗ P3 ⊧TPL A. (See page 39 for
proof.)

The validity of assertions in this semantics is closed under permission extension.

Proposition 3.13. All formulas A are weakening-closed.

Proof sketch: By induction on structure of formula. (Full proof on page 40)

In our later results, we sometimes need to be able to define when a minimal permission
extension in one state corresponds with a minimal permission extension in another. In
particular, we want to be able to show that, under certain conditions, the notion of what
is a minimal extension in a current state is robust to interference. An important property
which helps us here, is to be able to express that the truth of an assertion is stable in all
extensions of a particular state. That is, even if the assertion does not hold in the current
state, in all extensions which do satisfy the assertion, its truth will be stable. This can be
expressed by the following definitions.
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Definition 3.14. An assertion A is extension framed in a state (H,P,σ) if and only if, A
is stable in all (globally-havoced) extensions, i.e.,

ExtFrm(H,P,σ,A) ⇐⇒ stable(globalExts(H,P,σ) ∩ ⟨⟨A⟩⟩)
We also define the set of states in which A is extension framed:

ExtFrm(A) = {(H,P,σ) ∣ ExtFrm(H,P,σ,A)}
An assertion A is disjoint extension framed in the current memory if and only if, in all
(globally-havoced) disjoint extensions, the truth of A is stable with the permissions held
originally:

DisExtFrm(H,P,σ,A) ⇐⇒ stable−withP (globalDisjExts(H,P,σ) ∩ ⟨⟨A⟩⟩})
We also define the set of states in which A is disjoint-extension framed:

DisExtFrm(A) = {(H,P,σ) ∣ DisExtFrm(H,P,σ,A)}
Note that we use the globally-havoced notions of state extension (cf. Definition 3.5), rather
than locally-havoced. The reason for this is that, we need this criterion on assertions to
be preserved under interference, at various points in our proofs. The following lemma
characterises the essential properties that we require of these definitions.

Lemma 3.15.

(1) If (H,P,σ) ∈ ExtFrm(A), then:
(a) if H ′ ∈ interfere(H,P ), then (H ′, P, σ) ∈ ExtFrm(A).
(b) if P ′ ⊥ P and H ′ ∈ interfere(H,P ∗ P ′) and H,P ∗P ′, σ ⊧TPL A, then

H ′, P ∗ P ′, σ ⊧TPL A.
(2) If (H,P,σ) ∈ DisExtFrm(A), then:

(a) if H ′ ∈ interfere(H,P ), then (H ′, P, σ) ∈ DisExtFrm(A).
(b) if P ′ ⊥ P and H ′ ∈ interfere(H,P ∗ P ′) and H,P ′, σ ⊧TPL A, then

H ′, P ′, σ ⊧TPL A.

(See page 41 for proof.)

Note that using localExts(H,P,σ), or localDisjExts(H,P,σ), rather than globalExts(H,P,σ),
or globalDisjExts(H,P,σ), invalidates part (1.a), or part (2.a), respectively.

The following technical lemma provides sufficient conditions for a minimal permission
extension to be robust to interference in the rest of the heap:

Lemma 3.16 (Preservation of Minimal Extensions).

(1) For all (H1, P1, σ) ∈ ExtFrm(A),
∀P2 ⊥ P1,∀H2

P1∗P2

≡ H1.((H1, P1, σ) ⊲ P2 ⊧TPL A

⇒ (H2, P1, σ) ⊲ P2 ⊧TPL A)
(2) For all (H1, P1, σ) ∈ DisExtFrm(A),

∀P2 ⊥ P1,∀H2

P1∗P2

≡ H1.((H1,∅, σ) ⊲ P2 ⊧TPL A

⇒ (H2,∅, σ) ⊲ P2 ⊧TPL A)
(3) If A is self-framing and P2 ⊥ P1 and (H1, P1, σ) ⊲ P2 ⊧TPL A and H2

P1∗P2

≡ H1, then(H2, P1, σ) ⊲ P2 ⊧TPL A

(See page 42 for proof.)
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We will make use of these technical lemmas in the next subsections, in order to char-
acterise properties of our general semantics.

3.10. Correspondence with Separation Logic Semantics. In this subsection, we ex-
amine the correspondence between the semantics which our definition implies for the sepa-
ration logic fragment of our logic, and the traditional semantics of separation logic. In order
to precisely characterise the laws which hold of the logic, we require a notion of semantic
entailment.

Definition 3.17 (Semantic Entailment, Validity and Equivalence). A TPL assertion A is
semantically valid (written ⊧TPL A) if it holds in all situations; i.e.,

⊧TPL A⇔ ∀H,P,σ. H,P,σ ⊧TPL A

Given TPL assertions A1 and A2, we say that A1 semantically entails A2 (and write A1 ⊧TPL

A2) if and only if A2 holds whenever A1 does; i.e.,

A1 ⊧TPL A2 ⇔ ⟨⟨A1⟩⟩ ⊆ ⟨⟨A2⟩⟩
Given TPL assertions A1 and A2, we say that A1 is equivalent to A2 (and write A1 ≡TPL A2)
if and only if A1 ⊧TPL A2 and A2 ⊧TPL A1.

For pure assertions, our (rather complex) definition of implication can be simplified to
a simple boolean evaluation of the conditional:

Lemma 3.18 (Pure Assertions are Boolean Conditionals). If A1 is pure, then:

H,P,σ ⊧TPL A1 → A2 ⇐⇒ (H,P,σ ⊧TPL A1 ⇒ H,P,σ ⊧TPL A2)
Proof. We first observe that if A1 is pure and (H,P,σ) ⊲ P ′ ⊧TPL A1, then P ′ = ∅. Simpli-
fying the semantic definition of → using the ∅ gives the required semantics.

Note that this property was not true in the semantics of the precursor paper [15], and
prevents the former work from correctly modelling Chalice’s implication.

The following lemma also shows how our definition of semantics for implication and the
magic wand can be simplified if we know that the immediate subformulas are self-framing
assertions (in this case, we do not encounter the technical difficulties which led us to employ
minimal extensions; cf. Section 3.6):

Lemma 3.19 (Simplified Semantics for Self-Framing Conditionals).

(1) If A1 and A2 are both self-framing, then:
(a) H,P,σ ⊧TPL A1 → A2 if and only if:

∀(H ′, P ′, σ) ∈ localExts(H,P,σ). (H ′, P ′, σ ⊧TPL A1 ⇒ H ′, P ′, σ ⊧TPL A2)
(b) H,P,σ ⊧TPL A1 → A2 if and only if:

∀(H ′, P ′, σ) ∈ globalExts(H,P,σ). (H ′, P ′, σ ⊧TPL A1 ⇒ H ′, P ′, σ ⊧TPL A2)
(2) If A1 and A2 are both self-framing, then:

(a) H,P,σ ⊧TPL A1 −∗A2 if and only if:

∀(H ′, P ′, σ) ∈ localDisjExts(H,P,σ). (H ′, P ′, σ ⊧TPL A1 ⇒ H ′, P ∗ P ′, σ ⊧TPL A2)
(b) H,P,σ ⊧TPL A1 −∗A2 if and only if:

∀(H ′, P ′, σ) ∈ globalDisjExts(H,P,σ). (H ′, P ′, σ ⊧TPL A1 ⇒ H ′, P ∗P ′, σ ⊧TPL A2)
(See page 42 for proof.)
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This lemma provides two alternative semantics for the implication and wand connectives,
which are both equivalent to our actual semantics of Definition 3.7 if we restrict the logic
to self-framing subformulas. In particular, to model the fragment of our logic which corre-
sponds to separation logic, these alternative semantics are sufficient. The latter alternative
for each connective (defined in terms of globally-havoced extensions) is the semantics used in
our precursor paper [15], while the former (using locally-havoced extensions) is convenient
to simplify several of our proofs.

Note that the concepts of minimal permission extensions, and locally-havoced exten-
sions (neither of which were used in our precursor paper) are not motivated by our desire
to correctly model separation logic semantics in our total heaps model; as the lemma above
makes explicit, a simpler semantics could have been defined if this was our only goal. How-
ever, that semantics does not extend to correctly handle the implication in implicit dynamic
frames, for which we needed the concept of minimal extensions to get the general case cor-
rect, as is motivated in Subsection 3.6.

We now turn to relating our total heap semantics for separation logic with the standard
semantics. To do this, we need to relate partial heaps with pairs of total heap and permission
mask. Given any total heap H and permission mask P we can construct a corresponding
partial heap H↾P . Conversely, any partial heap h can be represented as the restriction of
a total heap H to the permission mask corresponding to all the permissions in h. This
representation however, is not unique - there are many such total heaps H we could choose
such that h = H↾P . However, the different choices of H can only differ over the locations
given no permission in P , and Corollary 3.21 demonstrates that such differences do not
affect the semantics of assertions. For our correspondence result, it is therefore without loss
of generality to consider partial heaps constructed by H↾P . We can then show that our
total heap semantics for SL is sound and complete with respect to the standard semantics:

Theorem 3.20 (Correctness of Total Heap Semantics). For all SL-assertions a, environ-
ments σ, total heaps H, and permission masks P :

H,P,σ ⊧TPL a ⇐⇒ (H↾P ), σ ⊧SL a

Proof sketch: By induction on the structure of a. (Full proof on page 44)

This result demonstrates that our total heap semantics correctly models the standard
semantics of separation logic assertions.

Corollary 3.21. All separation logic assertions a (Defn 2.1) are self-framing.

Corollary 3.22. All separation logic assertions a are intuitionistic.

3.11. Separation Logic Laws. Because our assertion language is more general than that
of separation logic, not all properties of the separation logic connectives transfer across to
the full generality of TPL. For example, in separation logic, the assertions a −∗ (b −∗ c) and(a ∗ b) −∗ c are (always) equivalent. This is not quite the case in TPL. We can show how
various laws which hold for separation logic transfer (in some cases partially) to our more
general setting of TPL. Firstly, we need a technical lemma which shows how to break down
minimal permission extensions over (separating and logical) conjunctions:
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Lemma 3.23 (Decomposing Minimal Permission Extensions over Conjunctions).

(1) If (H,∅, σ) ⊲ P ′ ⊧TPL A1∗A2 then ∃P1, P2 such that P ′ = P1∗P2 and (H,∅, σ) ⊲ P1 ⊧TPL

A1 and (H,∅, σ) ⊲ P2 ⊧TPL A2.
(2) If (H,P,σ) ⊲ P ′ ⊧TPL A1∧A2 then ∃P1, P2 such that P ′ = P1∗P2 and (H,P,σ) ⊲ P1 ⊧TPL

A1 and (H,P ∗P1, σ) ⊲ P2 ⊧TPL A2.

(See page 45 for proof.)

Certain technical properties which follow do not hold for general formulas, but only for those
that do not behave disjunctively. Following, O’Hearn et al. [13], we call these formulas
supported. A formula such as acc(x.f,1) ∨ acc(y.f,1) is not supported, while (b = 1 →
acc(x.f,1)) ∗ (b ≠ 1→ acc(y.f,1) is supported.
Definition 3.24 (Supported Formulas). A formula A is supported iff for all H, σ, P1 and
P2, if H,P1, σ ⊧TPL A and H,P2, σ ⊧TPL A , then H,P1 ⊓ P2, σ ⊧TPL A.

Supported assertions allow minimal permission extensions to be combined for both ∗

and ∧.

Lemma 3.25 (Composing Minimal Permission Extensions over Supported Conjunctions).

(1) If (H,∅, σ) ⊲ P1 ⊧TPL A1 and (H,∅, σ) ⊲ P2 ⊧TPL A2 and A1 and A2 are supported,
then (H,∅, σ) ⊲ P1 ∗P2 ⊧TPL A1 ∗A2.

(2) If (H,P,σ) ⊲ P1 ⊧TPL A1 and (H,P ∗P1, σ) ⊲ P2 ⊧TPL A2 and A1 and A2 are supported,
then (H,P,σ) ⊲ P1 ∗P2 ⊧TPL A1 ∧A2.

(See page 46 for proof.)

We can now show which of the usual separation logic laws carry over to our more general
logic, and under which conditions:

Proposition 3.26. For all TPL assertions A1, A2, A3:

(1) A1 ∗ (A1 −∗A2) ⊧TPL A2

(2) A1 ∧ (A1 → A2) ⊧TPL A2

(3) (a) DisExtFrm(A1) ∩ ⟨⟨A1 −∗ (A2 −∗A3)⟩⟩ ⊆ ⟨⟨(A1 ∗A2) −∗A3⟩⟩
(b) if A1 and A2 are supported, then:

DisExtFrm(A1) ∩ ⟨⟨(A1 ∗A2) −∗A3⟩⟩ ⊆ ⟨⟨(A1 −∗ (A2 −∗A3)⟩⟩
(c) if both A1 ∗A2 and A3 are self-framing, then:

DisExtFrm(A1) ∩ ⟨⟨(A1 ∗A2) −∗A3⟩⟩ ⊆ ⟨⟨(A1 −∗ (A2 −∗A3)⟩⟩
(4) (a) ExtFrm(A1) ∩ ⟨⟨A1 → (A2 → A3)⟩⟩ ⊆ ⟨⟨(A1 ∧A2)→ A3⟩⟩

(b) if A1 and A2 are supported, then:
ExtFrm(A1) ∩ ⟨⟨(A1 ∧A2)→ A3⟩⟩ ⊆ ⟨⟨A1 → (A2 → A3)⟩⟩

(c) if both A1 ∧A2 and A3 are self-framing, then:
ExtFrm(A1) ∩ ⟨⟨(A1 ∧A2)→ A3⟩⟩ ⊆ ⟨⟨A1 → (A2 → A3)⟩⟩

(5) If A1 ⊧TPL (A2 −∗A3) then (A1 ∗A2) ⊧TPL A3

(6) If A1 is self-framing and (A1 ∗A2) ⊧TPL A3 then A1 ⊧TPL (A2 −∗A3)
(See page 47 for proof.)

To see that the usual separation logic laws do not all hold in general, consider for example the

two assertions A1

def
= (x.f = 1−∗(acc(x.f,1)−∗ false)) and A2

def
= (x.f = 1∗acc(x.f,1))−∗ false.

The assertion A2 is equivalent to acc(x.f, ), that is a permissions mask, which cannot be
extended with disjoint full access to x.f . However, the assertion A1 is also true in models
where the heap maps x.f to a value other than 1, as the outer wand does not get to change
the current heap.
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The usual separation logic laws do however hold for self-framing assertions which (by
Lemma 3.21) includes all separation logic assertions.

Corollary 3.27. For all self-framaing TPL assertions A1, A2, A3:

(1) A1 ∗ (A1 −∗A2) ⊧TPL A2

(2) A1 ∧ (A1 → A2) ⊧TPL A2

(3) A1 −∗ (A2 −∗A3) ≡TPL (A1 ∗A2) −∗A3

(4) A1 → (A2 → A3) ≡TPL (A1 ∧A2)→ A3

(5) A1 ⊧TPL (A2 −∗A3) if and only if (A1 ∗A2) ⊧TPL A3

3.12. Existentials and Substitution. Next we consider when it is valid to replace a
variable with an expression it is equal to; that is, under what condition is ∃x.x = E ∗ A

equivalent to A[E/x]. If the expression does not depend on the heap, then this equivalence
holds.

Lemma 3.28. For any separation logic expression e:

(∃x.x = e ∗A) ≡TPL A[e/x]
Proof. We prove

H,P,σ ⊧TPL A[e/x]⇔H,P,σ[x ↦ JeKH,σ] ⊧TPL A

and
JE[E′/x]KH,σ⇔ JEKH,σ[x↦JE′KH,σ]

by straightforward inductions on structures of A and E, respectively.

However, if the expression depends on the heap, then the problem is more challenging.
Consider the example formula

∃v. v = x.f ∗ acc(x.f, π) ∗ (acc(x.f, π) −∗ v = 5)
This formula is semantically equivalent (noting that changes to the heap do not affect the
interpretation of v) to

acc(x.f, π) ∗ x.f = 5
However, if we apply the standard substitution on the formula, replacing v with the expres-
sion x.f , then we get

acc(x.f, π) ∗ (acc(x.f, π) −∗ x.f = 5)
which is equivalent to false (recall that the semantics for the −∗ connective considers “adding
on” new permission for x.f in this case, which includes considering changing its value
arbitrarily). More abstractly, the difficulty here is that the semantics of −∗, and → consider
changes to the current heap; in general this is incompatible with treating heap-dependent
expressions as purely syntactic entities which can be moved around amongst subformulas
freely, as we would if we wanted a substitution property for such expressions. In particular,
the meaning of a heap-dependent expression can differ in different positions in a formula,
depending on its nesting under −∗ and → connectives6. For this reason, if we wanted such
a property, we would need to restrict the uses of −∗ and → to enable the substitution of

6One can compare with the analogous situation in standard separation logic: an SL formula such as

x.f
π
↦ u ∗ (x.f

π
↦ v → u = v) is not actually valid in traditional intuitionistic separation logic semantics

for the same reasons; the semantics of the implication connective includes the concept of “adding on” new
access to x.f when evaluating the implication.
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expressions with heap dependencies. To illustrate this, we define a class of formulas, that
are substitutable. These are the formulas that only contain pure formulas on the left of −∗
and →.

Definition 3.29 (Substitutable formulas). We define a formula as substitutable, subst(A),
by

subst(A1 ⊸ A2) ⇐⇒ subst(A1) ∧ subst(A2) and A1 is pure(where ⊸ ∈ {−∗,→})
subst(A1 ○A2) ⇐⇒ subst(A1) ∧ subst(A2) (where ○ ∈ {∨,∧,∗})
subst(∃x. A) ⇐⇒ subst(A)
subst(acc(E.f,π)) ⇐⇒ subst(E = E′) ⇐⇒ subst(E.f

π
↦ E′) ⇐⇒ always

As substitutable formulas only have pure formulas on the left of −∗ and →, there is a single
heap that is used to evaluate the entire formula.

Lemma 3.30. If subst(A), then
(∃x.x = E ∗A) ≡TPL A[E/x]

Proof. We prove

H,P,σ ⊧TPL A[E/x]⇔H,P,σ[x ↦ JEKH,σ] ⊧TPL A

by straightforward induction on the subst(A) predicate. The −∗ and → cases use that for
pure formulas they behave like boolean conditionals (Lemma 3.18). We reuse the expression
substitutability proof from previous lemma.

In Section 5, we will present an encoding from the SL fragment to the IDF fragment
of our logic, which preserves semantics. A natural question to ask is, can we encode back
from IDF to SL, at least for those IDF assertions which are self-framing? In general, it is
surprisingly difficult to define a suitable syntactic translation. A tempting approach is to

convert all acc(x.f, π) assertions into x.f
π
↦ v for some fresh logical variable v, and then

to replace any heap-dependent expressions x.f with v elsewhere in the assertion. But this
approach fails in two ways: firstly, it does not deal correctly with aliasing. The criteria for
an IDF to be self-framing take account of constraints imposed by the assertion itself; for
example, acc(x.f) ∗ x = y ∗ y.f = 4 is self-framing. This makes a syntactic replacement of
heap-dependent expressions challenging. Furthermore, the correctness of the replacement
of all heap-dependent expressions with logical variables, depends on a substitution property
holding for such expressions. As discussed above, this does not hold for the general logic; the
meaning of a heap-dependent expression is actually fixed by the “closest scoped” occurrence
of a permission to that location, with respect to implications and wands; in the presence of
aliasing this is hard to determine.

For the subsyntaxes of these logics typically supported by tools, which generally only
allow for pure assertions on the left of → formulas (and do not support −∗ in general), we do
get a substitution property, as shown above. However, the problem of correctly handling
aliasing between heap locations when translating heap-dependent expressions, still seems
to make defining a correct syntactic translation challenging.
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4. Verification Conditions

In this section, we precisely connect the semantics of our assertion language with Chalice.
Chalice does not provide a direct model for its assertion language. It instead defines the
semantics of assertions using the weakest pre-condition semantics of the commands inhale
and exhale. We show that this semantics precisely corresponds with the semantics in TPL.

4.1. Chalice. Chalice is defined by a translation into Boogie2 [9], which generates veri-
fication conditions on a many-sorted classical logic with first-order quantification. It has
sorts for mathematical maps, which are used by Chalice to encode both the heap and the
permission mask. We use φ to range over formulas in this logic, and σ ⊧FO φ to mean φ

holds in the standard semantics of first-order logic given the interpretation of free variables
σ. Similarly, ⊧FO φ means that φ holds in all such interpretations.

The definitions throughout this section generate expressions that have these two specific
free variables: H for the current heap, and P for the current permission mask. Thus,H[x, f] = 5 means that in the current heap the variable x’s field named f contains the value
5. In the assertion logic, this corresponds to x.f = 5, in which the heap access is implicit.

To define the verification conditions for Chalice, we need to be able to translate ex-
pressions into the underlying logic using access to the map H. We can provide a syntactic
translation from the Chalice assertion logic into the first-order logic.

Definition 4.1. We translate expressions that implicitly access the heap into expressions
that explicitly access the heap as follows:

TxU = x TnullU = null TE.fU =H[TEU, f]
we translate boolean expressions as:

TB1 ∗B2U = TB1U ∧ TB2U TE = E′U = TEU = TE′U TE ≠ E′U = TEU ≠ TE′U

First, we must show some basic facts about the properties of Chalice assertions (cf. Defini-
tion 2.4): every Chalice boolean expression is pure, and every Chalice assertion is supported.

Lemma 4.2. Every Chalice boolean expression B is pure.

Proof. By trivial induction on B.

Lemma 4.3. Every Chalice formula p is supported.

Proof. We must show

H,P,σ ⊧TPL p ∧ H,P ′, σ ⊧TPL p ⇒ H,P ⊓P ′, σ ⊧TPL p

We proceed by induction on p

p ≡ B: As B is pure, we know that if it is satisfied in a state, it will also be satisfied with
any alternative permission mask.

p ≡ acc(E.f,π): P and P ′ must map the field location to π or greater, therefore P ⊓P ′ will
also map the field location to π or greater.
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p ≡ p1∗p2: AssumeH,P,σ ⊧TPL p1∗p2, andH,P ′, σ ⊧TPL p1∗p2. Therefore there exist P1, P2,
P ′
1
and P ′

2
such that P1∗P2 = P and P ′

1
∗P ′

2
= P ′ and H,P1, σ ⊧TPL p1 and H,P2, σ ⊧TPL p2

andH,P ′
1
, σ ⊧TPL p1 andH,P ′

2
, σ ⊧TPL p2. By induction, we knowH,P1⊓P

′
1
, σ ⊧TPL p1 and

H,P2 ⊓P
′
2
, σ ⊧TPL p2, and thus we can deduce that H, (P1 ⊓P

′
1
)∗(P2 ⊓P

′
2
), σ ⊧TPL p1 ∗p2.

We can show (P1 ⊓ P ′
1
) ∗ (P2 ⊓ P ′

2
) ⊆ (P1 ∗ P2) ⊓ (P ′1 ∗ P ′

2
), which by Proposition 3.13

proves the obligation.
p ≡ B → p′: Case split on H,∅, σ ⊧TPL B. If B is true, then using Lemma 3.18 the result

follows directly by induction. If B is false, then using Lemma 3.18 we have H,∅, σ ⊧TPL

B → p as required.

Chalice does not allow arbitrary formulas to be used as argument to inhale and exhale:
it restricts the formulas to be self-framing. Chalice does not use the semantic check from
earlier, but instead uses a more-syntactic formulation that checks self-framing from left-to-
right. Note that this means that syntactic self-framing is not symmetric with respect to
∗. For instance, acc(x.f, π) ∗ x.f = 5 is syntactically self-framing, but x.f = 5 ∗ acc(x.f, π)
is not. Somewhat surprisingly this is required by the way the verification conditions are
generated. In Chalice the check is actually implemented by a Boogie program. Here, we
use the logic to define an equivalent condition7.

Definition 4.4 (Syntactic Self-Framing). We define a condition sframed(E) to express that
all the fields mentioned in E are accessible.

sframed(E.f)⇐⇒ sframed(E) ∧ acc(E.f, )
sframed(x)⇐⇒ True

sframed(null)⇐⇒ True

We lift this to boolean expressions as

sframed(E = E′)⇐⇒ sframed(E) ∧ sframed(E′)
sframed(E ≠ E′)⇐⇒ sframed(E) ∧ sframed(E′)
sframed(B1 ∗B2)⇐⇒ sframed(B1) ∧ (B1 → sframed(B2))

We lift this to formulas as

sframed(B → p)⇐⇒ sframed(B) ∧ (B → sframed(p))
sframed(acc(E.f,π))⇐⇒ sframed(E)

sframed(p1 ∗ p2)⇐⇒ sframed(p1) ∧ (p1 −∗ sframed(p2))
Note that when we check that p2 is framed in p1 ∗ p2, we can use the assertion p1; these
checks do not treat ∗ as commutative.

A formula, p, is syntactically self-framing, if and only if ⊧TPL sframed(p).
We prove some basic facts about sframed(E) and sframed(B): (1) in any state in which
sframed(E) holds, changing the value at any locations without permissions does not affect
E’s evaluation; (2) sframed(E) is (semantically) self-framing; (3) in any state in which
sframed(B) holds, changing the value at any locations without permissions does not affect
B’s evaluation.

7The end result of this section can be used to prove it is equivalent to verifying the Boogie program that
Chalice would generate.



28 M. J. PARKINSON AND A. J. SUMMERS

wpch(exhale(B), φ) = wpch(assert TBU, φ)
wpch(exhale(p1 ∗ p2), φ) = wpch(exhale(p1);exhale(p2), φ)
wpch(exhale(acc(E.f,π)), φ)
= wpch(assert(P[TEU, f]) ≥ π;P[TEU, f] ∶= P[TEU, f] − π,φ)

wpch(exhale(B → p), φ) = wpch((assume(TBU);exhale(p)) + assume(¬TBU), φ)
wpch(inhale(B), φ) = wpch(assume TBU, φ)
wpch(inhale(p1 ∗ p2), φ) = wpch(inhale(p1);inhale(p2), φ)
wpch(inhale(acc(E.f,π)), φ)
= wpch(assume(P[TEU, f] = 0);P[TEU, f] ∶= π;havoc(H[TEU, f]), φ)
∧wpch(assume(0 < P[TEU, f] ≤ 1 − π);P[TEU, f]+=π,φ)

wpch(inhale(B → p), φ) = wpch((assume(TBU);inhale(p)) + assume(¬TBU), φ)
where

wpch(P[o, f] ∶= x,φ) = φ[upd(P, (o, f), x)/P]
wpch(havoc(H[x, f]), φ) = φ[upd(H, (x, f), z)/H] fresh z
wpch(assume φ′, φ) = φ′ → φ

wpch(assert φ′, φ) = φ′ ∧ φ

wpch(C1;C2, φ) = wpch(C1,wpch(C2, φ))
wpch(C1 +C2, φ) = wpch(C1, φ) ∧wpch(C2, φ)

where upd(a, b, c)[b] = c and upd(a, b, c)[d] = a[d] provided d ≠ b.

Figure 1: Abridged weakest pre-condition semantics for Chalice [10]

Lemma 4.5.

(1) If H,P,σ ⊧TPL sframed(E), and H ′
P
≡ H then JEKH,σ = JEKH′,σ.

(2) sframed(E) is self-framing

(3) If H,P,σ ⊧TPL sframed(B), and H ′
P
≡ H then H,P,σ ⊧TPL B if and only if H ′, P, σ ⊧TPL

B.
(4) sframed(B) is self-framing.

(See page 51 for proof.)

The key property we require of the sframed(p) definition is that it allows a wand (−∗) of a
separating conjunction, to be considered as a sequence of wands.

Lemma 4.6.

(1) sframed(p1) ∧ ((p1 ∗ p2) −∗ p) ⊧TPL p1 −∗ (p2 −∗ p)
(2) sframed(p1) ∧ (p1 −∗ (p2 −∗ p)) ⊧TPL (p1 ∗ p2) −∗ p
Proof sketch: This proof follows from Proposition 3.26.3.a and 3.26.3.b, Lemma 4.3, and
showing

∀p. ⟨⟨sframed(p)⟩⟩ ⊆ DisExtFrm(p)
This is proved by induction on p. (Full proof on page 52)

We can now provide the definitions of the weakest pre-conditions of the commands
inhale and exhale. In Figure 1, we present the weakest pre-conditions of commands in
Chalice from [10]. We write wpch(C,φ) for the weakest pre-condition of the command
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C given the post-condition φ. Chalice models the inhaling and exhaling of permissions
by mutating the permission mask variable. To exhale an equality (or any formula not
mentioning the permission mask) we simply assert that it must be true. This does not need
to modify the permission mask. To exhale p ∗ q, first we exhale p and then q. When an
accessibility predicate is exhaled, first we check that the permission mask contains sufficient
permission, and then we remove the permission from the mask.

To inhale an equality is simply the same as assuming it. To inhale p ∗ q, we first inhale
p and then q. There are two cases for inhaling a permission: (1) we don’t currently have
any permission to that location; and (2) we do currently have permission to that location.
The first case proceeds by adding the permission, and then havocing the contents of that
location; that is, making sure any previous value of the variable has been forgotten. The
second case simply adds the permission to the permission mask.

4.2. Relationship. In the rest of this section, we show that the verification conditions
(VCs) generated by Chalice are equivalent to those generated by TPL. We focus on the
inhale and exhale commands, as these represent the semantics of the Chalice assertion
language. By showing the equivalence, we show that our model of TPL is also a model for
Chalice.

We write wpsl(C,A), to be the weakest pre-condition in TPL of the formula A with
respect to the command C. We treat inhale and exhale as the multiplicative versions of
assume and assert (see §2.1.1), and thus have the following weakest pre-conditions:

wpsl(exhale(A1),A2) = A1 ∗A2 wpsl(inhale(A1),A2) = A1 −∗A2

Our core result is to show that both inhale and exhale have equivalent VCs in the two
approaches.

First we must extend the first order logic we are considering to additionally contain a
proposition to represent separation logic assertions.

Definition 4.7 (interp(A)). We extend the many sorted first order logic with an additional
atomic proposition interp(A), which represents the interpretation of an arbitrary TPL for-
mula in first order logic.

σ,H ↦H,P ↦ P ⊧FO interp(A) ⇐⇒ H,P,σ ⊧TPL A

Note, this definition is not required by Chalice, but it allows us to express our proof
by induction on the structure of the formula, by providing a single logic in which we can
describe both the Chalice VCs and the TPL judgements.

Definition 4.8 (equiv(C)). We define the VCs of a command as equivalent in both systems,
equiv(C), iff for every TPL assertion A, we have

⊧FO interp(wpsl(C,A)) ⇐⇒ wpch(C, interp(A))
The key to showing that our semantics for TPL correctly reflects that of Chalice is to

show that the VCs generated for the inhale and exhale commands are equivalent. The
exhale is straightforward.

Lemma 4.9. ∀p. equiv(exhale p)
Proof. By induction on p.
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The proof for inhale is more involved. This depends on the inhaled formula being
syntactically self-framing. We define two Boogie commands, assertTPL(A) to assert
that a TPL assertion must hold at this point in the execution, and assertFrm(p) to assert
that a Chalice formula will be framed if it is inhaled in the current state.

Definition 4.10.

● assertTPL(A) = assert(interp(A))
● assertFrm(p) = assertTPL(sframed(p))

We lift the ability to curry and uncurry −∗ into the VC world. This is required to allow
us to prove that an inhale of a ∗ can be replaced by two inhales, as Chalice does.

Lemma 4.11.

wpch(assertFrm(p1), interp(p1−∗(p2−∗A))) ⇐⇒ wpch(assertFrm(p1), interp((p1∗p2)−∗A))
Proof. The left to right direction follows using Lemma 4.6:

wpch(assertFrm(p1), interp(p1 −∗ (p2 −∗A)))
⇒ wpch(assertFrm(p1), interp(sframed(p1)) ∧ interp(p1 −∗ (p2 −∗A)))
⇒ wpch(assertFrm(p1), interp(sframed(p1) ∧ (p1 −∗ (p2 −∗A))))
⇒ wpch(assertFrm(p1), interp(sframed(p1) ∧ ((p1 ∗ p2) −∗A)))

The reverse direction follows similarly.

We want to show that if p is syntactically self-framing, then inhale p is equivalent
in both approaches. However, we need to prove a stronger fact that accounts for the
permissions we may have inhaled so far. In particular, as inhale p1 ∗ p2 is implemented
by first inhaling p1 and then p2, when we consider inhaling p2 it need not be self-framing.
However, the context will have inhaled sufficient permissions that it is framed in that
context. We prove that the VCs are equivalent in a context in which the inhale is framed.

We consider states in which, if we extend the environment to satisfy p, then p will be
framed. In these states, asserting the formula p −∗A and then inhaling p, is equivalent to
inhaling p, and then asserting that A must hold.

Lemma 4.12.

wpch(assertFrm(p);assertTPL(p −∗A);inhale p,φ)
⇐⇒ wpch(assertFrm(p);inhale p;assertTPL(A), φ)

Proof. We abbreviate assertFrm(p) to assFrm(p), and assertTPL(A) to assTPL(A).
By induction on p. We first consider the ∗ case:

wpch(assFrm(p1 ∗ p2);assTPL((p1 ∗ p2) −∗A);inhale p1 ∗ p2, φ)
⇐⇒ wpch(assFrm(p1 ∗ p2);assFrm(p1);assTPL((p1 ∗ p2) −∗A);inhale p1 ∗ p2, φ)
⇐⇒ wpch(assFrm(p1 ∗ p2);assFrm(p1);assTPL(p1 −∗ p2 −∗A);inhale p1;inhale p2, φ)
⇐⇒ wpch(assFrm(p1);assTPL(p1 −∗ sframed(p2));inhale p1;assTPL(p2 −∗A);inhale p2, φ)
⇐⇒ wpch(assFrm(p1);inhale p1;assFrm(p2);assTPL(p2 −∗A);inhale p2, φ)
⇐⇒ wpch(assFrm(p1);inhale p1;assFrm(p2);inhale p2;assTPL(A), φ)
⇐⇒ wpch(assFrm(p1);assTPL(p1 −∗ sframed(p2));inhale p1;inhale p2;assTPL(A), φ)
⇐⇒ wpch(assFrm(p1 ∗ p2);inhale p1 ∗ p2;assTPL(A), φ)

For the access permission case, we can subdivide this into three further cases, (1) where
the model contains no permission for E.f ; (2) where the model contains more than 0, and
less than or equal to 1 − π permission E.f ; and (3) where the model contains more that
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1−π permission for E.f . The third case is trivial, so we just present the first two. First we
consider the case P[TEU.f] = 0 :

wpch(assTPL(acc(E.f,π) −∗A);inhale acc(E.f,π), φ)
⇐⇒ wpch(assTPL(acc(E.f,π) −∗A);P[TEU, f] = π;havoc H[TEU, f], φ)
⇐⇒ wpch(inhale acc(E.f,π);assTPL(A), φ)

Second, we consider the case: 0 < P[TEU.f] ≤ 1 − π,

wpch(assTPL(acc(E.f,π) −∗A);inhale acc(E.f,π), φ)
⇐⇒ wpch(assTPL(acc(E.f,π) −∗A);P[TEU, f]+=π,φ)
⇐⇒ wpch(inhale acc(E.f,π);assTPL(A), φ)

Finally, we present the implication case. We split this into two cases depending on
whether the left of the implication holds. First we assume TBU holds in the current model:

wpch(assFrm(B → p);assTPL((B → p) −∗A);inhale(B → p), φ)
⇔ wpch(assFrm(B → p);assTPL(p −∗A);inhale p,φ)
⇔ wpch(assFrm(B → p);assTPL(B → sframed(p));assTPL(p −∗A);inhale p,φ)
⇔ wpch(assFrm(B → p);assFrm(p);assTPL(p −∗A);inhale(p), φ)
⇔ wpch(assFrm(B → p);assFrm(p);inhale(p);assTPL(A), φ)
⇔ wpch(assFrm(B → p);inhale(p);assTPL(A), φ)
⇔ wpch(assFrm(B → p);inhale(B → p);assTPL(A), φ)

and secondly, we assume TBU does not hold in the model:

wpch(assFrm(B → p);assTPL((B → p) −∗A);inhale(B → p), φ)
⇔ wpch(assFrm(B → p);assTPL(true −∗A);inhale(true), φ)
⇔ wpch(assFrm(B → p);assTPL(true −∗A), φ)
⇔ wpch(assFrm(B → p);assTPL(A), φ)
⇔ wpch(assFrm(B → p);inhale(B → p);assTPL(A), φ)

Corollary 4.13. If p is syntactically self-framing, then equiv(inhale p).
Proof. By the previous lemma, we know:

wpch(assFrm(p);assTPL(p −∗A);inhale p, true)
⇐⇒ wpch(assFrm(p);inhale p;assTPL(A), true)

As wpch(inhale p, true) ≡ true and wpch(assTPL(A), true) ≡ interp(A), we know

wpch(assFrm(p), interp(p −∗A)) ⇐⇒ wpch(assFrm(p);inhale p, interp(A))
As p is syntactically self-framing we have

interp(p −∗A) ⇐⇒ wpch(inhale p, interp(A))
By the definition of separation logic weakest pre-conditions, we have

interp(wpsl(inhale p,A)) ⇐⇒ wpch(inhale p, interp(A))
as required.
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Remark 4.14. Without the syntactic self-framing requirement on inhales, it would be
unsound to break inhale A1 ∗A2 into inhale A1;inhale A2. In particular, in the Chalice
semantics, the behaviour of inhale(A1∗A2) and inhale(A2∗A1) are different. For instance,
consider inhale(x.f = 3 ∗ acc(x.f)) and inhale(acc(x.f) ∗ x.f = 3).

wpch(inhale(x.f = 3 ∗ acc(x.f)),Tx.f = 3U) ⇐⇒ x.f ≠ 3
wpch(inhale(acc(x.f) ∗ x.f = 3),Tx.f = 3U) ⇐⇒ true

The translation given by Smans et al. [18] does not suffer this problem as it does the
analogue of inhale in a single step. However, it checks self-framing in a similar way, and
thus would also rule out the first inhale.

5. Mapping Separation Logic into Implicit Dynamic Frames

We are now in a position to draw together our various results, and show that SL-based
verification can be simulated using IDF and Chalice. The overall approach is to show that,
if one calculates weakest pre-conditions for a program using SL specifications, then there is
a corresponding translated program in which one uses IDF specifications, and can calculate
Chalice weakest pre-conditions which turn out to be equivalent to the SL ones. Just as in
Section 3, we can use the projection of a total heap down to a permissions mask, to relate
the evaluation of the two resulting assertions.

Just as in the preceding section, we focus our attention on inhale and exhale statements,
since all commands which deal with changes to the footprint/permissions held in the state
(e.g., method calls, fork/join of threads, acquire/release of locks) can be de-sugared down
to these (other commands such as variable assignment can be treated uniformly in both
worlds). Therefore, we aim to prove that the two different ways of calculating weakest
pre-conditions produce equivalent results for both inhale and exhale statements.

Firstly, we state a few simple results which distribute equivalent assertions over various
constructions.

Lemma 5.1 (Distributing Equivalences). For all TPL assertions A1 and A2 such that
A1 ≡TPL A2, we have:

(1) For all TPL assertions A3: wpsl(inhale(A1),A3) ≡TPL wpsl(inhale(A2),A3) and sim-
ilarly wpsl(exhale(A1),A3) ≡TPL wpsl(exhale(A2),A3).

(2) The first-order assertions interp(A1) and interp(A2) are equivalent.
(3) For all TPL assertions A3, the first-order assertions wpch(inhale(A3), interp(A1)) and

wpch(inhale(A3), interp(A2)) are equivalent (and analogously for exhale(A3)).
(4) For all TPL assertions A3, the first-order assertion interp(wpsl(inhale(A1),A3)) is

equivalent to interp(wpsl(inhale(A2),A3)). Similarly interp(wpsl(exhale(A1),A3)) is
equivalent to interp(wpsl(exhale(A2),A3)).

Proof. The first three parts follow straightforwardly from the corresponding definitions (and
the fact that the definitions for weakest pre-conditions never inspect the post-condition).
The fourth part is simply a combination of the first two.
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We now need to identify the fragment of separation logic which can be encoded into the
syntax of Chalice (cf. Definition 2.4). This syntax roughly corresponds with the syntaxes
supported by most separation-logic-based tools (in particular, no points-to predicates are
permitted on the left of implications; a very common restriction which avoids needing to
implement the full technical complexity of the connective; cf. Lemma 3.18). In order to
avoid introducing further meta-variables to our notation, we will reuse the notation for full
separation logic (a for assertions, e for expressions), but will clarify explicitly when we mean
the restricted assertion syntax defined here.

Definition 5.2 (Restricted Separation Logic). Expressions e, boolean expressions b and
restricted separation logic assertions a are given by the following syntax definitions:

e ∶∶= x ∣ null ∣ n
b ∶∶= e = e ∣ e ≠ e ∣ b ∗ b
a ∶∶= b ∣ e.f π

↦ e ∣ a ∗ a ∣ b→ a ∣ ∃v. e.f π
↦ v ∗ a

We allow a restricted form of existential in the syntax. It requires that the existential
is witnessed by a particular field in the heap. This restriction is often implicit in tools
for separation logic that support existentials. Without this restriction tools are typically
incomplete.

We can represent the separation logic points-to predicate in terms of the Chalice acces-
sibility predicate and a (heap-dependent) equality.

Proposition 5.3. For all e,f ,e′,π we have e.f
π
↦ e′ ≡TPL acc(e.f, π) ∗ e.f = e′.

Proof. Directly from the semantics.

Thus, we define the obvious translation from restricted separation logic assertions to
those of Chalice:

Definition 5.4 (Mapping Restricted Separation Logic to Chalice). We define a mapping[a] from restricted separation logic assertions to Chalice assertions (cf. Definition 2.4),
recursively as follows:

[b] = b

[e1.f π
↦ e2] = (acc(e1.f, π) ∗ e1.f = e2)[a1 ∗ a2] = [a1] ∗ [a2][b→ a] = b→ [a]

[∃v. e.f π
↦ v ∗ a] = acc(e.f, π) ∗ [a][e.f/v]

As the existential is witnessed by a particular heap location, in the translation to Chal-
ice the existential can be eliminated by substituting the heap dependent expression. The
translation preserves the semantics of the original assertion, which is a simple generalisation
of Proposition 5.3:

Lemma 5.5 (Mapping to Chalice Preserves Semantics). For all restricted separation logic
assertions a, we have a ≡TPL [a].
Proof. By straightforward induction on the structure of a, using Definition 3.7 and Propo-
sition 5.3. The existential case uses Lemma 3.30.
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We can now combine the results of this section to relate the two different notions of
weakest pre-conditions in combination with the appropriate translation from one assertion
syntax to the other.

Theorem 5.6 (Weakest Pre-condition Calculations Equivalent). For any restricted SL
assertion a, and any TPL assertion A, we have:

⊧FO interp(wpsl(inhale(a),A)) ⇐⇒ wpch(inhale([a]), interp(A))
and

⊧FO interp(wpsl(exhale(a),A)) ⇐⇒ wpch(exhale([a]), interp(A))
Proof. Consider the first case of the result (for inhale statements). By Lemma 5.1(4) and
Lemma 5.5, we have that:

⊧FO interp(wpsl(inhale(a),A)) ⇐⇒ interp(wpsl(inhale([a]),A))
By Corollary 4.13 (noting that [a] is a syntactically self-framing Chalice assertion), we also
know that:

⊧FO interp(wpsl(inhale([a]),A)) ⇐⇒ wpch(inhale([a]), interp(A))
Combining these two lines, we have the claimed result.

The case for exhale statements is analogous, using Lemma 4.9 instead of Corollary
4.13.

Finally, we can draw together these results with the main result of Section 3, to show
the equivalence of the two overall approaches.

Corollary 5.7 (Verifying Restricted Separation Logic in Chalice). For any restricted SL
assertion a, and any (unrestricted) SL assertion a′, and any environment σ, total heap H,
and permission mask P , we have both:

(H↾P ), σ ⊧SL wpsl(exhale(a), a′)
⇔

σ,H ↦H,P ↦ P ⊧FO wpch(exhale([a]), interp([a′]))
and: (H↾P ), σ ⊧SL wpsl(inhale(a), a′)

⇔

σ,H ↦ H,P ↦ P ⊧FO wpch(inhale([a]), interp([a′]))
Proof. By Theorem 5.6 and Definition 4.7, we have:

H,P,σ ⊧TPL wpsl(exhale(a), a′) ⇔ σ,H ↦ H,P ↦ P ⊧FO wpch(exhale([a]), interp(a′))
and

H,P,σ ⊧TPL wpsl(inhale(a), a′) ⇔ σ,H ↦ H,P ↦ P ⊧FO wpch(inhale([a]), interp(a′))
By Lemmas 5.5 and 5.1(2), we have that the two assertions interp(a′) and interp([a′])

are equivalent. Therefore, by Lemma 5.1(3) and Theorem 3.20, we obtain the two desired
equivalences.
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In this section, we have shown that the encoding of inhale and exhale into Boogie2
is equivalent to the separation logic weakest pre-condition semantics. As a consequence,
we have shown two things: (1) our model accurately reflects the semantics of Chalice’s
assertion language, and (2) a fragment of separation logic can be directly encoded into
Chalice precisely preserving its semantics.

6. Related Work

In this paper, we have provided a logic related to separation logic [6, 12], which allows
arbitrary expressions over the heap. We have modified the standard presentation of an
object-oriented heap for separation logic [14] to separate the notion of access from value
(and thereby also relate to implicit dynamic frames [17]). Most previous separation log-
ics have combined these two concepts. One notable exception is the separation logic for
reasoning about Cminor [1]. This logic also separates the ability to access memory, the
mask, from the actual contents of the heap. The choice in this work was to enable a reuse
of a existing operational semantics for Cminor, rather than producing a new operational
semantics involving partial states. In the Cminor separation logic, they do not consider
the definition of magic wand, or weakest pre-condition semantics, which is crucial for the
connection with Chalice [10]. Benton and Leperchey [3] also provide a logic for sequential
program reasoning that uses total heaps and maps defining which locations can be accessed.

Smans’ original presentation of IDF was implemented in a tool, VeriCool [18, 17]. The
results in this paper should also apply to the verification conditions generated by VeriCool.
In recent work, Smans et al. [19] describe an IDF approach as a separation logic. However,
they do not present a model of the assertions, just the VCs of their analogues to inhale
and exhale. Hence, the work does not provide the strong connection between the VCs and
the model of separation logic that we have provided. Vericool does however have a sound
implementation of abstract predicates and pure functions (in fact, two different approaches;
one for verification condition generation, as in [18], and one for symbolic execution, as in
[19]). However, the approach for verification condition generation requires the formalisa-
tion of weakest pre-conditions in the presence of background axioms (used to define the
meanings of predicates and pure methods). The use of these axioms cannot be summarised
simply as part of a weakest pre-condition calculation, since the approach taken allows the
prover to instantiate these axioms in an unbounded (and potentially non-terminating) way.
Similarly, a comparison with a symbolic-execution-based approach would require more tech-
nical machinery than our current arguments based on first-order verification conditions. A
comparison based on a runtime semantics for a language (as used to formalise soundness in
[18]) might work better than one dealing with a verification semantics, but this is beyond
the scope of our work.

There have been many other approaches based on dynamic frames [7, 8] to enable
automated verification with standard verification tool chains; for instance, Dafny [16] and
Region Logic [2]. Like Chalice, both also encode into Boogie2. The connection between
these logics and separation logic is less clear. They explicitly talk about the footprint of an
assertion, rather than implicitly. However, our new separation logic might facilitate future
comparisons.
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7. Extensions and Applications

In this section we highlight the potential impact of our connection between separation logic
and the implicit dynamic frames of Chalice, by explaining several ways in which ideas from
one world can be transferred to the other.

Supporting Extra Connectives. Our TPL logic supports many more connectives than have
previously existed in implicit dynamic frames logics. For example, the support for a “magic
wand” in the logic (or indeed an unrestricted logical implication) is a novel contribution,
which paves the way for investigating how to extend Chalice to support this much-richer
assertion language. While a formal semantics for the magic wand does not immediately tell
us how to implement inhaling and exhaling such assertions correctly, it provides us with a
means of formally evaluating such a proposal. Furthermore, our direct semantics for the
assertion logic of Chalice provides a means of judging whether a particular implementation
is faithful to the intended logical semantics.

In addition, while the notions of minimal permission extensions and locally-havoced
heap extensions are technically complex, it seems that the resulting semantics for the magic
wand may actually simplify the problem of defining a suitable weakest-precondition seman-
tics. This is because, whereas the classical semantics of the separation logic magic wand
involves a quantification over states (which is problematic for encoding to a first-order
prover), the semantics we present in this paper can, in the (common) case of supported
assertions, eliminate the need for the quantifier altogether; we need only check the unique,
minimal extension of the initial state to make the left-hand side true, if such an extension
exists. Exploring the practical consequences of these observations will be interesting future
work.

Evaluating the Chalice Implementation. Various design decisions in the Chalice methodol-
ogy can be evaluated using our formal semantics. For example, Chalice deals with potential
interference from other threads by “havocing” heap locations whenever permission to the
location is newly granted. An alternative design would be to “havoc” such locations when-
ever all permission to them was given up in an exhale, instead. This would provide different
weakest pre-conditions for Chalice commands, and it would be interesting to investigate
what differences this design decision makes from a theoretical perspective. Our results
provide the necessary basis for such investigations.

Separation logics typically feature recursive (abstract) predicates in their assertion lan-
guage. The Chalice tool also includes an experimental implementation of recursive predi-
cates (without arguments), along with the use of “functions” in specifications to describe
properties of the state in a way which could support information hiding. In the course
of investigating how to extend our results to handle predicates in the assertion logics, we
discovered that the current approach to handling predicates/functions in Chalice is actually
unsound in the presence of functions and the decision to havoc on inhales rather than ex-
hales. We, along with other Chalice contributors, are now working on a redesign of Chalice
predicates based on our findings. As above, the formal semantics and connections we have
provided give us excellent tools for evaluating such a redesign.
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Implementing Separation Logic. One exciting outcome of the results we have presented
is that a certain fragment of separation logic specifications can be directly represented
in implicit dynamic frames and automatically verified using the Chalice tool. This is a
consequence of three results:

(1) We have shown that our total heap semantics for separation logic coincides with its
prior partial heaps semantics.

(2) We have shown that we can replace all “points-to” predicates with logical primitives
from implicit dynamic frames, preserving semantics.

(3) We have shown that the Chalice weakest-pre-condition calculation agrees with the weak-
est pre-conditions used in separation logic verification.

The critical aspect which is missing is the treatment of predicates - once we can extend
our correspondence results to handle recursively-defined predicates in the logics (which
are used in virtually all separation logic verification examples), then it will be possible to
exploit our work to use Chalice to implement separation logic verification. This will open
up many interesting practical areas of work, in comparing the performance and encodings
of verification problems between Chalice and separation logic based tools.

Old Expressions. We have also observed that the use of a total heap semantics seems to
make it easy to support certain extra specification features in a separation logic assertion
language. In particular, the use of “old” expressions in method contracts (allowing post-
conditions to explicitly mention values of heap locations in the pre-state of the method call)
is awkward to support in a partial heaps semantics, since it expresses relationships between
partial heap fragments which may not have obviously-related domains. As a consequence,
separation logic based tools typically do not support this feature, and typically use logical
variables to connect old and new values of heap locations. However, with our total heap
semantics it seems rather easy to evaluate old expressions by simply replacing our total
heap with a copy of the pre-heap. Consider the following two specifications, where the left
one uses old expressions and the right one a logical variable v:

requires acc(x.f)
ensures acc(x.f) ∗ x.f = old(x.f) + 1

requires acc(x.f) ∗ x.f = v
ensures acc(x.f) ∗ x.f = v + 1

To use the logical variable specification, we must find a witness for the logical variable
v, while with old expressions this witness is not required as it simply places a constraint
on the possible old and new heaps. This is because the assertions describing the value
relationship in the old expression specification only appears in the post-condition, which,
from the caller’s perspective, ends up as an assume. On the other hand, in the logical
variable alternative, the variable appears both in the pre- and post-conditions, hence it
also ends up used in an assert (when the caller exhales the pre-condition). Moving to old
expressions may have benefits for building tool support for separation logic.
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Appendix A. Proofs

Lemma 3.9 (Minimisation of Permission Masks). If H,P1 ∗ P2, σ ⊧TPL A then ∃P3 ⊆ P2

such that (H,P1, σ) ⊲ P3 ⊧TPL A.

Proof. By complete (strong) induction on rds(P2) using subset ordering.
Case split on whether the following formula holds:

∃P4 ⊆ P2. rds(P4) ⊂ rds(P2) ∧H,P1 ∗ P4, σ ⊧TPL A

Assume first that it does. By induction, we know ∃P5 ⊆ P4. (H,P1, σ) ⊲ P5 ⊧TPL A, and by
transitivity of ⊆, we have P5 ⊆ P2, as required.

Secondly, assume that the formula does not hold. Therefore,

∀P4 ⊆ P2. rds(P4) ⊂ rds(P2)⇒H,P1 ∗P4, σ /⊧TPL A

Hence, (H,P1, σ) ⊲ P2 ⊧TPL A. We can prove the obligation by picking P3 = P2.

Lemma 3.11. If A is weakening-closed, (H,P,σ) ⊲ P ′ ⊧TPL A, P ′ ⊆ P ′′ and rds(P ′) =
rds(P ′′), then (H,P,σ) ⊲ P ′′ ⊧TPL A

Proof. As A is weakening-closed, we know:

H,P ∗ P ′′, σ ⊧TPL A

If P ′′ is not minimal, then neither was P ′, which is a contradiction. So P ′′ must also be a
minimal extension.

Lemma 3.12 (Minimal Permission Extensions Closed). If (H,P1 ∗ P2, σ) ⊲ P3 ⊧TPL A and
A is weakening-closed, then ∃P4 ⊆ P2 and (H,P1, σ) ⊲ P4 ∗ P3 ⊧TPL A.

Proof. First, we prove a more general result, and apply Lemma 3.11 to get the required
result. We prove, that:

If we know that A is weakening-closed, then, if we also have (H,P1∗P2, σ) ⊲
P3 ⊧TPL A then ∃P4 ⊆ P2 and P5 ⊆ P3 such that rds(P5) = rds(P3) and(H,P1, σ) ⊲ P4 ∗ P5 ⊧TPL A.

We know H,P1 ∗ P2 ∗ P3, σ ⊧TPL A, and by Lemma 3.9, we have that there exists P6 such
that (H,P1, σ) ⊲ P6 ⊧TPL A and P6 ⊆ P2 ∗P3. Choose P4 and P5 such that P5 = P3 ⊓P6, and
P4 = P6 − (P3 ⊓P6).

We need to show P4 ⊆ P2 and rds(P5) = rds(P3). From our assumptions, we know that
P4 ∗ (P3 ⊓ P6) = P6, and thus P4 ⊆ P6, and P6 ⊆ P2 ∗P3. We split into two cases:

(P4 /⊆ P2): Therefore, there exists (ι, f) such that P4[ι, f] > P2[ι, f]. Therefore, P6[ι, f] >
P2[ι, f], but by assumption, we know P6[ι, f] ≤ P2[ι, f]+P3[ι, f]. Consider two sub-cases:
(P6[ι, f] < P3[ι, f]): Therefore, as P4 = P6 − (P3 ⊓P6) we know P4[ι, f] = 0 contradicting

P4[ι, f] > P2[ι, f].
(P3[ι, f] ≤ P6[ι, f]): Therefore, as P4∗(P3⊓P6) = P6 we know P4[ι, f]+P3[ι, f] = P6[ι, f].

As P6 ⊆ P2∗P3, we know P4[ι, f]+P3[ι, f] ≤ P2[ι, f]+P3[ι, f], hence P4[ι, f] ≤ P2[ι, f],
contradicting assumption.

(P4 ⊆ P2): We split into two sub-cases:
(rds(P5) = rds(P3)): The result follows directly.
(rds(P5) ⊂ rds(P3)): For this case, using the assumption that A is weakening-closed,

we get H,P1 ∗ P2 ∗ P5, σ ⊧TPL A, which is in contradiction with the assumption that(H,P1 ∗P2, σ) ⊲ P3 ⊧TPL A.
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Proposition 3.13. All formulas A are weakening-closed.

Proof. By induction on A. By P ⊆ P ′ we can assume there exists P ′′ such that P ∗P ′′ = P ′.

(A ≡ acc(E.f,π)):
H,P,σ ⊧TPL A

⇔ P [JEKH,σ, f] ≥ π (by defn)
⇒ P ′[JEKH,σ, f] ≥ π (as P ⊆ P ′)
⇔ H,P ′, σ ⊧TPL A

(A ≡ E = E′):
H,P,σ ⊧TPL A

⇔ JEKH,σ = JE′KH,σ (by defn)
⇔ H,P ′, σ ⊧TPL A

(A ≡ E.f ↦ E′): Follows using a combination of arguments from previous two cases.
(A ≡ A1 ∗A2):

H,P,σ ⊧TPL A

⇒ ∃P1, P2. P1 ∗ P2 = P ∧H,P1, σ ⊧TPL A1 ∧H,P2, σ ⊧TPL A2

We introduce P1 and P2, and define P3 = P2 ∗ P
′′. By induction, we know

⇒ P1 ∗P2 = P ∧H,P1, σ ⊧TPL A1 ∧H,P3, σ ⊧TPL A2

⇒ P1 ∗P3 = P
′
∧H,P1, σ ⊧TPL A1 ∧H,P3, σ ⊧TPL A2

⇒ H,P ′, σ ⊧TPL A (by defn)

(A ≡ A1 ∧A2, A ≡ A1 ∨A2): Trivially by induction.
(A ≡ A1 −∗A2): By unfolding the obligation, we can assume

H,P,σ ⊧TPL A1 −∗A2

P1 ⊥ P
′

H1

rds(P ′)∪rds(P1)
≡ H(H1,∅, σ) ⊲ P1 ⊧TPL A1

and must prove
H1, P

′
∗ P1, σ ⊧TPL A2

By assumptions, we know P1 ⊥ P and H1

rds(P )∪rds(P1)
≡ H as P is smaller than P ′.

Therefore, using −∗ assumption, we have

H1, P ∗ P1, σ ⊧TPL A2

By inductive hypothesis, we know

H1, P
′
∗ P1, σ ⊧TPL A2

as required.
(A ≡ A1 → A2): By unfolding the obligation, we can assume

H,P,σ ⊧TPL A1 → A2

P2 ⊥ P
′

H2

rds(P ′)∪rds(P2)
≡ H(H2, P

′, σ) ⊲ P2 ⊧TPL A1
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and must prove
H2, P

′
∗ P2, σ ⊧TPL A2

By Lemma 3.12, and as A1 is closed under permission extension by inductive hypothesis,
we have that there exists a P1 such that

P1 ⊆ P
′′

(H2, P, σ) ⊲ P1 ∗P2 ⊧TPL A1

As P ⊆ P ′, we can show

H2

rds(P ′)∪rds(P2)
≡ H

⇒ H2

rds(P )∪rds(P2)
≡ H (as P ⊆ P ′)

⇒ H2

rds(P )∪rds(P2∗P1)
≡ H (as P2 ⊆ P1 ∗P2)

Therefore by → assumption, we have

H2, P ∗ P1 ∗ P2, σ ⊧TPL A2

As P1 ⊆ P
′′, by inductive hypothesis we have

H2, P ∗P ′′ ∗P2, σ ⊧TPL A2

as required.
(A ≡ ∃x. A′):

H,P,σ ⊧TPL ∃x. A
′

⇒ ∃v. H,P,σ[x ↦ v] ⊧TPL A
′

⇒ ∃v. H,P ′, σ[x ↦ v] ⊧TPL A
′ (by inductive hypothesis)

⇒ H,P ′, σ ⊧TPL ∃x. A
′

Lemma 3.15.

(1) If (H,P,σ) ∈ ExtFrm(A), then:
(a) if H ′ ∈ interfere(H,P ), then (H ′, P, σ) ∈ ExtFrm(A).
(b) if P ′ ⊥ P and H ′ ∈ interfere(H,P ∗P ′) and H,P ∗P ′, σ ⊧TPL A, then

H ′, P ∗P ′, σ ⊧TPL A.
(2) If (H,P,σ) ∈ DisExtFrm(A), then:

(a) if H ′ ∈ interfere(H,P ), then (H ′, P, σ) ∈ DisExtFrm(A).
(b) if P ′ ⊥ P and H ′ ∈ interfere(H,P ∗P ′) and H,P ′, σ ⊧TPL A, then

H ′, P ′, σ ⊧TPL A.

Proof.

(1) (a) This follows directly, since if we have H ′ ∈ interfere(H,P ), then it follows that
globalExts(H,P,σ) = globalExts(H ′, P, σ).

(b) By assumptions, we know that (H,P ∗ P ′, σ) ∈ globalExts(H,P,σ), and also that
H ′ ∈ interfere(H,P ∗ P ′). As globalExts(H,P,σ) ∩ ⟨⟨A⟩⟩ is stable, we know H ′, P ∗

P ′, σ ⊧TPL A as required.
(2) (a) This follows directly, since if H ′ ∈ interfere(H,P ), then globalDisjExts(H,P,σ) =

globalDisjExts(H ′, P, σ).
(b) By assumptions, we know that (H,P ′, σ) ∈ globalDisjExts(H,P,σ), and also that

H ′ ∈ interfere(H,P ∗ P ′). As globalDisjExts(H,P,σ) ∩ ⟨⟨A⟩⟩ is stable with P , we
know H ′, P ′, σ ⊧TPL A as required.
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Lemma 3.16 (Preservation of Minimal Extensions).

(1) For all (H1, P1, σ) ∈ ExtFrm(A),
∀P2 ⊥ P1,∀H2

P1∗P2

≡ H1.((H1, P1, σ) ⊲ P2 ⊧TPL A

⇒ (H2, P1, σ) ⊲ P2 ⊧TPL A)
(2) For all (H1, P1, σ) ∈ DisExtFrm(A),

∀P2 ⊥ P1,∀H2

P1∗P2

≡ H1.((H1,∅, σ) ⊲ P2 ⊧TPL A

⇒ (H2,∅, σ) ⊲ P2 ⊧TPL A)
(3) If A is self-framing and P2 ⊥ P1 and (H1, P1, σ) ⊲ P2 ⊧TPL A and H2

P1∗P2

≡ H1, then(H2, P1, σ) ⊲ P2 ⊧TPL A

Proof.

(1) Assume P2 ⊥ P1, H2

P1∗P2

≡ H1 and (H1, P1, σ) ⊲ P2 ⊧TPL A. By (H1, P1, σ) ∈ ExtFrm(A)
we have H2, P1 ∗P2, σ ⊧TPL A, and thus we are left to prove:

∀P3 ⊆ P2. rds(P3) ⊂ rds(P2)⇒H2, P1 ∗ P3, σ /⊧TPL A

We assume P3 ⊆ P2, rds(P3) ⊂ rds(P2) andH2, P1∗P3, σ ⊧TPL A and seek a contradiction.
By Lemma 3.15(1)(b) we can prove H1, P1 ∗ P3, σ ⊧TPL A, and thus using (H1, P1, σ) ⊲
P2 ⊧TPL A we deduce a contradiction.

(2) Assume P2 ⊥ P1, H2

P1∗P2

≡ H1 and (H1,∅, σ) ⊲ P2 ⊧TPL A. By (H1, P1, σ) ∈ DisExtFrm(A)
we have H2, P2, σ ⊧TPL A, and thus we are left to prove:

∀P3 ⊆ P2. rds(P3) ⊂ rds(P2)⇒H2, P3, σ /⊧TPL A

We assume P3 ⊆ P2, rds(P3) ⊂ rds(P2) andH2, P3, σ ⊧TPL A and seek a contradiction. By
Lemma 3.15(2)(b) we can prove H1, P3, σ ⊧TPL A, and thus using (H1,∅, σ) ⊲ P2 ⊧TPL A

we deduce a contradiction.
(3) Since A is self-framing, we know H2, P1 ∗P2, σ ⊧TPL A, and thus we are left to prove:

∀P3 ⊆ P2. rds(P3) ⊂ rds(P2)⇒H2, P1 ∗ P3, σ /⊧TPL A

We assume P3 ⊆ P2, rds(P3) ⊂ rds(P2) andH2, P1∗P3, σ ⊧TPL A and seek a contradiction.
By self-framing assumption, we know H1, P1 ∗P3, σ ⊧TPL A, but this contradicts initial
minimality assumption.

Lemma 3.19 (Simplified Semantics for Self-Framing Conditionals).

(1) If A1 and A2 are both self-framing, then:
(a) H,P,σ ⊧TPL A1 → A2 if and only if:

∀(H ′, P ′, σ) ∈ localExts(H,P,σ). (H ′, P ′, σ ⊧TPL A1 ⇒ H ′, P ′, σ ⊧TPL A2)
(b) H,P,σ ⊧TPL A1 → A2 if and only if:

∀(H ′, P ′, σ) ∈ globalExts(H,P,σ). (H ′, P ′, σ ⊧TPL A1 ⇒ H ′, P ′, σ ⊧TPL A2)
(2) If A1 and A2 are both self-framing, then:

(a) H,P,σ ⊧TPL A1 −∗A2 if and only if:

∀(H ′, P ′, σ) ∈ localDisjExts(H,P,σ). (H ′, P ′, σ ⊧TPL A1 ⇒ H ′, P ∗ P ′, σ ⊧TPL A2)
(b) H,P,σ ⊧TPL A1 −∗A2 if and only if:

∀(H ′, P ′, σ) ∈ globalDisjExts(H,P,σ). (H ′, P ′, σ ⊧TPL A1 ⇒ H ′, P ∗P ′, σ ⊧TPL A2)
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Proof.

(1) (a) We need to show that:

( ∀P1,H1.( (H1, P ∗P1, σ) ∈ localExts(H,P,σ) ∧ (H1, P, σ) ⊲ P1 ⊧TPL A1

⇒H1, P ∗P1, σ ⊧TPL A2) )
⇔

( ∀P2,H2.( (H2, P ∗P2, σ) ∈ localExts(H,P,σ) ∧ H2, P ∗ P2, σ ⊧TPL A1

⇒H2, P ∗P2, σ ⊧TPL A2) )
The right-to-left direction is easy, since the left-hand formula requires that we check
the implication in strictly fewer states (only those which are obtained via minimal
extensions). For the left-to-right direction, assume that for some arbitrary P2,H2

we have P2 ⊥ P and H2

rds(P )∪rds(P2)
≡ H and H2, P ∗ P2, σ ⊧TPL A1. Then we need

to show that: H2, P ∗ P2, σ ⊧TPL A2. By Lemma 3.9, there exists P3 ⊆ P2 such that(H2, P, σ) ⊲ P3 ⊧TPL A1. Define H3 = (P ∗ P3 ? H2 ∶ H). Then, by construction,

H3

P∗P3

≡ H2 and H3

rds(P )∪rds(P3)
≡ H.

By Lemma 3.16 (3), since A1 is self-framing, we have (H3, P, σ) ⊲ P3 ⊧TPL A1. Now,
using the assumption from the left-hand-side of our overall goal, choose P1 = P3 and
H1 = H3, and we obtain H3, P ∗ P3, σ ⊧TPL A2. Since A2 is self-framing, we have
H2, P ∗ P3, σ ⊧TPL A2. Then, by Proposition 3.13, we obtain H2, P ∗ P2, σ ⊧TPL A2

as required.
(b) By the previous part, it suffices to show that :

∀(H ′, P ′, σ) ∈ localExts(H,P,σ). (H ′, P ′, σ ⊧TPL A1 ⇒ H ′, P ′, σ ⊧TPL A2)
⇔

∀(H ′, P ′, σ) ∈ globalExts(H,P,σ). (H ′, P ′, σ ⊧TPL A1 ⇒ H ′, P ′, σ ⊧TPL A2)
The (⇐) direction is immediate, since localExts(H,P,σ) ⊆ globalExts(H,P,σ). To
show the (⇒) direction, we assume the former formula, and suppose that we have
some (H ′, P ′, σ) ∈ globalExts(H,P,σ) such that H ′, P ′, σ ⊧TPL A1 holds. Define

H ′′ = (P ′ ?H ′ ∶H). By construction, (H ′′, P ′, σ) ∈ localExts(H,P,σ) and H ′′
P ′

≡ H ′.
Since A1 is self-framing, we conclude that H ′, P ′, σ ⊧TPL A1 holds. Therefore, by
the assumed formula, we can conclude that H ′′, P ′, σ ⊧TPL A2 is true. Since A2 is
self-framing, we conclude H ′, P ′, σ ⊧TPL A2 as required.

(2) (a) We need to show that:

⎛
⎝ ∀P1,H1.( P1⊥P ∧H1

rds(P )∪rds(P1)
≡ H ∧ (H1,∅, σ) ⊲ P1 ⊧TPL A1

⇒H1, P ∗P1, σ ⊧TPL A2)
⎞
⎠

⇔

⎛
⎝ ∀P2,H2.( P2⊥P ∧H2

rds(P )∪rds(P2)
≡ H ∧ H2, P2, σ ⊧TPL A1

⇒H2, P ∗P2, σ ⊧TPL A2)
⎞
⎠

The right-to-left direction is easy, since the left-hand formula requires that we check
the implication in strictly fewer states (only those which are obtained via minimal
extensions). For the left-to-right direction, assume that for some arbitrary P2,H2

we have P2 ⊥ P and H2

rds(P )∪rds(P2)
≡ H and H2, P2, σ ⊧TPL A1. Then we need to

show that: H2, P ∗ P2, σ ⊧TPL A2. By Lemma 3.9, there exists P3 ⊆ P2 such that
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(H2,∅, σ) ⊲ P3 ⊧TPL A1. Define H3 = (P ∗ P3 ? H2 ∶ H). Then, by construction,

H3

P∗P3

≡ H2 and H3

rds(P )∪rds(P3)
≡ H.

By Lemma 3.16 (3), since A1 is self-framing, we have (H3,∅, σ) ⊲ P3 ⊧TPL A1. Now,
using the assumption from the left-hand-side of our overall goal, choose P1 = P3

andH1 =H3, and we obtain H3, P ∗P3, σ ⊧TPL A2. Since A2 is self-framing, we have
H2, P ∗P3, σ ⊧TPL A2. Then, by Proposition 3.13, we obtain H2, P ∗P2, σ ⊧TPL A2

as required.
(b) By similar argument to part (1)(b).

Theorem 3.20 (Correctness of Total Heap Semantics). For all SL-assertions a, environ-
ments σ, total heaps H, and permission masks P :

H,P,σ ⊧TPL a ⇐⇒ (H↾P ), σ ⊧SL a

Proof. By induction on a. First note, if the property holds of an SL-assertion, then the
assertion is self-framing. Thus, inductively we can assume all sub-assertions are self-framing.

(a ≡ e.f
π
↦ e′):

H,P,σ ⊧TPL a

⇔ P [JeKσ,H , f] ≥ π ∧ H[JeKσ,H , f] = Je′Kσ,H (by defn.)
⇔ (JeKσ,H , f) ∈ dom(H↾P ) ∧ ↓1((H↾P )[JeKσ,H , f]) = Je′Kσ,H ∧

↓2((H↾P )[JeKσ,H , f]) ≥ π (by defn. of (H↾P ))
⇔ (JeKσ, f) ∈ dom(H↾P ) ∧ ↓1((H↾P )[JeKσ, f]) = Je′Kσ ∧

↓2((H↾P )[JeKσ, f]) ≥ π (by Lemma 3.8)
⇔ (H↾P ), σ ⊧SL a (by defn.)

(a ≡ e=e′):
H,P,σ ⊧TPL a

⇔ JeKσ,H = Je′Kσ,H (by defn.)
⇔ JeKσ = Je′Kσ (by Lemma 3.8)
⇔ (H↾P ), σ ⊧SL a (by defn.)

(a ≡ a1∗a2):

H,P,σ ⊧TPL a

⇔ ∃P1, P2.(P = P1 ∗P2 ∧

H,P1, σ ⊧TPL a1 ∧ H,P2, σ ⊧TPL a2) (by defn.)
⇔ ∃P1, P2.(P = P1 ∗P2 ∧(H↾P1), σ ⊧SL a1 ∧ (H↾P2), σ ⊧SL a2) (by induction, twice)
⇔ (H↾P ), σ ⊧SL a (by defn.)

(a ≡ a1∧a2),(a ≡ a1∨a2): Straightforwardly, by induction.
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(a ≡ a1→a2):
H,P,σ ⊧TPL a

⇔ ∀P1,H1.( P1⊥P ∧ H1

rds(P )∪rds(P1)
≡ H ∧

H1, P ∗P1, σ ⊧TPL a1 ⇒ H1, P ∗P1, σ ⊧TPL a2)
(by Lemma 3.19 (1))

⇔ ∀P1,H1.( P1⊥P ∧ H1

rds(P )∪rds(P1)
≡ H ∧(H1↾(P∗P1)), σ ⊧SL a1 ⇒ (H1↾(P∗P1)), σ ⊧SL a2)

(by induction, twice)

⇔ ∀P1,H1.( P1⊥P ∧ H1

rds(P )∪rds(P1)
≡ H ∧((H1↾P ) ∗ (H1↾P1)), σ ⊧SL a1 ⇒ ((H1↾P ) ∗ (H1↾P1)), σ ⊧SL a2)

(by defn.)

⇔ ∀P1,H1.( P1⊥P ∧ H1

rds(P )∪rds(P1)
≡ H ∧((H↾P ) ∗ (H1↾P1)), σ ⊧SL a1 ⇒ ((H↾P ) ∗ (H1↾P1)), σ ⊧SL a2)

(since H1

P
≡ H)

⇔ ∀P1, h1.( P1⊥dom(H↾P ) ∧ dom(h1) = rds(P1) ∧(∀(ι, f) ∈ (dom(h1)∩dom(H↾P )).h1[ι, f] = (H↾P )[ι, f]) ∧((H↾P ) ∗ h1), σ ⊧SL a1 ⇒ ((H↾P ) ∗ h1), σ ⊧SL a2))
(by defn. of (H1↾P1))

⇔ ∀h1.( h1⊥(H↾P ) ∧((H↾P ) ∗ h1), σ ⊧SL a1 ⇒ ((H↾P ) ∗ h1), σ ⊧SL a2)
(by defn. of h1⊥(H↾P ))

⇔ (H↾P ), σ ⊧SL a1 → a2

(a ≡ a1−∗a2): Analogous to previous case, using Lemma 3.19 (2) instead of Lemma 3.19 (1).
(a ≡ ∃x. a′): We have:

H,P,σ ⊧TPL ∃x. a
′

⇔ ∃v. H,P,σ[x ↦ v] ⊧TPL a
′

⇔ ∃v. H↾P,σ[x ↦ v] ⊧SL a
′ by inductive hypothesis

⇔ H↾P,σ ⊧SL ∃x. a
′

Lemma 3.23 (Decomposing Minimal Permission Extensions over Conjunctions).

(1) If (H,∅, σ) ⊲ P ′ ⊧TPL A1∗A2 then ∃P1, P2 such that P ′ = P1∗P2 and (H,∅, σ) ⊲ P1 ⊧TPL

A1 and (H,∅, σ) ⊲ P2 ⊧TPL A2.
(2) If (H,P,σ) ⊲ P ′ ⊧TPL A1∧A2 then ∃P1, P2 such that P ′ = P1∗P2 and (H,P,σ) ⊲ P1 ⊧TPL

A1 and (H,P ∗ P1, σ) ⊲ P2 ⊧TPL A2.

Proof.

(1) We prove an equivalent statement:

(H,∅, σ) ⊲ P ⊧TPL A1 ∗A2 ∧ P3 ∗ P4 = P ∧ H,P3, σ ⊧TPL A1 ∧ H,P4, σ ⊧TPL A2

⇒ ∃P1, P2. P1 ∗ P2 = P ∧ (H,∅, σ) ⊲ P1 ⊧TPL A1 ∧ (H,∅, σ) ⊲ P2 ⊧TPL A2

by complete (strong) induction on ∣rds(P3)∩rds(P4)∣. In the proof, we use the shorthand
P [(ι, f) ↦ π] to denote the permission mask that returns π for (ι, f) and behaves like
P for all other entries, and also the shorthand P ∖ (ι, f) for P [(ι, f) ↦ 0]].

We now consider two cases:
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(∃(ι, f) ∈ rds(P3). H, (P3 ∖ (ι, f)), σ ⊧TPL A1)
By Proposition 3.13, we knowH, (P4[(ι, f) ↦ P [ι, f]]), σ ⊧TPL A2. We know P4[ι, f] >
0, otherwise P3 ∗ P4 was not minimal to start with. Therefore ∣rds(P3 ∖ (ι, f)) ∩
rds(P4[(ι, f) ↦ P [ι, f]])∣ < ∣rds(P3) ∩ rds(P4)∣. By construction, we know (P3 ∖(ι, f)) ∗ (P4[(ι, f) ↦ P [ι, f]]) = P3 ∗ P4, so this case holds by induction choosing(P3 ∖ (ι, f)) for P3 and P4[(ι, f) ↦ P [ι, f]] for P4 in inductive hypothesis.

(∀(ι, f) ∈ rds(P3). H, (P3 ∖ (ι, f)), σ /⊧TPL A1)
Therefore, (H,∅, σ) ⊲ P3 ⊧TPL A1. Consider two sub-cases:
(∃(ι, f) ∈ rds(P4). H, (P4 ∖ (ι, f)), σ ⊧TPL A2)

By Proposition 3.13, we know H, (P3[(ι, f) ↦ P [ι, f]]), σ ⊧TPL A1. By construc-
tion, we know P3[ι, f] > 0, otherwise P3 ∗ P4 was not minimal to start with.
Therefore ∣rds(P4 ∖ (ι, f)) ∩ rds(P3[(ι, f) ↦ P [ι, f]])∣ < ∣rds(P3) ∩ rds(P4)∣. We
know (P4 ∖(ι, f))∗(P3[(ι, f) ↦ P [ι, f]]) = P3 ∗P4, so this case holds by induction
choosing (P4∖(ι, f)) for P4 and P3[(ι, f) ↦ P [ι, f]] for P3 in inductive hypothesis.

(∀(ι, f) ∈ rds(P4). H, (P4 ∖ (ι, f)), σ /⊧TPL A2)
Then, (H,∅, σ) ⊲ P4 ⊧TPL A2. Hence, we have solution choosing P3 = P1 and
P4 = P2.

(2) We can assume (H,P,σ) ⊲ P ′ ⊧TPL A1∧A2 and henceH,P ∗P ′, σ ⊧ A1 andH,P ∗P ′, σ ⊧

A2. By Lemma 3.9, we know there exists P ′
1
such that P ′

1
⊆ P ′ and (H,P,σ) ⊲ P ′

1
⊧TPL

A1. Define
P1 = λ(ι, f). if P ′1[ι, f] = 0 then 0 else P ′[ι, f].

Note that P1 ⊆ P
′. By Lemma 3.11, we know (H,P,σ) ⊲ P1 ⊧TPL A1.

We know H, (P ∗P1)∗ (P ′ −P1), σ ⊧TPL A2, and by Lemma 3.9 we know there exists
P ′2 ⊆ (P ′ − P1) such that (H,P ∗P1, σ) ⊲ P ′2 ⊧TPL A2. Define

P2 = λ(ι, f). if P ′2[ι, f] = 0 then 0 else P ′[ι, f].
Note that P2 ⊆ P ′ − P1, and thus P1 ∗ P2 ⊆ P ′. By Lemma 3.11, we deduce that(H,P,σ) ⊲ P2 ⊧TPL A2.

By construction of P1 and P2, either P1 ∗ P2 = P ′ or rds(P1 ∗ P2) ⊂ rds(P ′). In
the first case we are done. In the second case, we seek a contradiction. We know
H,P ∗ P1 ∗ P2, σ ⊧TPL A2, and by Prop 3.13, we know H,P ∗ P1 ∗ P2, σ ⊧TPL A1, hence
H,P ∗P1 ∗P2, σ ⊧TPL A1 ∧A2. As we know P1 ∗P2 ⊆ P

′, but that contradicts the initial
assumption of P ′ being minimal.

Lemma 3.25 (Composing Minimal Permission Extensions over Supported Conjunctions).

(1) If (H,∅, σ) ⊲ P1 ⊧TPL A1 and (H,∅, σ) ⊲ P2 ⊧TPL A2 and A1 and A2 are supported, then(H,∅, σ) ⊲ P1 ∗P2 ⊧TPL A1 ∗A2.
(2) If (H,P,σ) ⊲ P1 ⊧TPL A1 and (H,P ∗P1, σ) ⊲ P2 ⊧TPL A2 and A1 and A2 are supported,

then (H,P,σ) ⊲ P1 ∗ P2 ⊧TPL A1 ∧A2.

Proof.

(1) Proof by contradiction. We know H,P1 ∗P2, σ ⊧TPL A1 ∗A2 holds, therefore we assume
that there exists P ′ ⊆ P1 ∗ P2 such that rds(P ′) ⊂ rds(P1 ∗ P2) and H,P ′, σ ⊧TPL A1 ∗

A2. Therefore, there exist P3 and P4 such that P3 ∗ P4 = P ′ and H,P3, σ ⊧TPL A1

and H,P4, σ ⊧TPL A2. From rds(P ′) ⊂ rds(P1 ∗ P2), we know (ι, f) ∈ rds(P1 ∗ P2)
and (ι, f) ∉ rds(P ′). W.l.o.g assume (ι, f) ∈ rds(P1). As A1 is supported, we know
H,P1 ⊓ P3, σ ⊧TPL A1. Since (P1 ⊓ P3) ⊆ P3 ⊆ P

′ we have (ι, f) ∉ rds(P1 ⊓P3). But this
contradicts (H,P,σ) ⊲ P1 ⊧TPL A1, since (ι, f) ∈ rds(P1).
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(2) By assumptions and Prop 3.13, we have H,P ∗ P1 ∗ P2, σ ⊧TPL A1 ∧ A2. We show(H,P,σ) ⊲ P1 ∗ P2 ⊧TPL A1 ∧A2 by contradiction. Assume there exists P3 ⊆ (P1 ∗ P2)
such that rds(P3) ⊂ rds(P1 ∗ P2) and H,P ∗ P3, σ ⊧TPL A1 ∧ A2. Then there exists(ι, f) ∈ rds(P1 ∗ P2) such that (ι, f) ∉ rds(P3). Case split:
((ι, f) ∈ rds(P1)) Note that (P ∗P3)⊓ (P ∗P1) = P ∗ (P1 ⊓P3), thus as A1 is supported

we have H,P ∗ (P1 ⊓ P3), σ ⊧TPL A1. but this contradicts (H,P,σ) ⊲ P1 ⊧TPL A1

((ι, f) ∈ rds(P2)) Note that (P ∗ P3) ⊓ (P ∗ P1 ∗ P2) = P ∗ (P3 ⊓ (P1 ∗ P2)). As A2 is
supported, we know H,P ∗ (P3 ⊓ (P1 ∗ P2)), σ ⊧TPL A2, but this contradicts (H,P ∗

P1, σ) ⊲ P2 ⊧TPL A2.
Proposition 3.26. For all TPL assertions A1, A2, A3:

(1) A1 ∗ (A1 −∗A2) ⊧TPL A2

(2) A1 ∧ (A1 → A2) ⊧TPL A2

(3) (a) DisExtFrm(A1) ∩ ⟨⟨A1 −∗ (A2 −∗A3)⟩⟩ ⊆ ⟨⟨(A1 ∗A2) −∗A3⟩⟩
(b) if A1 and A2 are supported, then:

DisExtFrm(A1) ∩ ⟨⟨(A1 ∗A2) −∗A3⟩⟩ ⊆ ⟨⟨(A1 −∗ (A2 −∗A3)⟩⟩
(c) if both A1 ∗A2 and A3 are self-framing, then:

DisExtFrm(A1) ∩ ⟨⟨(A1 ∗A2) −∗A3⟩⟩ ⊆ ⟨⟨(A1 −∗ (A2 −∗A3)⟩⟩
(4) (a) ExtFrm(A1) ∩ ⟨⟨A1 → (A2 → A3)⟩⟩ ⊆ ⟨⟨(A1 ∧A2)→ A3⟩⟩

(b) if A1 and A2 are supported, then:
ExtFrm(A1) ∩ ⟨⟨(A1 ∧A2)→ A3⟩⟩ ⊆ ⟨⟨A1 → (A2 → A3)⟩⟩

(c) if both A1 ∧A2 and A3 are self-framing, then:
ExtFrm(A1) ∩ ⟨⟨(A1 ∧A2)→ A3⟩⟩ ⊆ ⟨⟨A1 → (A2 → A3)⟩⟩

(5) If A1 ⊧TPL (A2 −∗A3) then (A1 ∗A2) ⊧TPL A3

(6) If A1 is self-framing and (A1 ∗A2) ⊧TPL A3 then A1 ⊧TPL (A2 −∗A3)
Proof.

(1) Assume H,P,σ ⊧TPL A1 ∗ (A1 −∗ A2). We seek to prove that H,P,σ ⊧TPL A2. From
our assumption, there exist P1, P2 such that P1 ∗ P2 = P and H,P1, σ ⊧TPL A1 and
H,P2, σ ⊧TPL A1 −∗A2. From the latter, we have that

∀P3 ⊥ P2,∀H3

rds(P2)∪rds(P3)
≡ H.(H3,∅, σ) ⊲ P3 ⊧TPL A1

⇒ H3, P2 ∗ P3, σ ⊧TPL A2.

From H,P1, σ ⊧TPL A1, by Lemma 3.9, we know that there exists P3 ⊆ P1 such that(H,∅, σ) ⊲ P3 ⊧TPL A1. Combining these facts, we obtain that H,P2 ∗ P3, σ ⊧TPL A2

holds. By Proposition 3.13, we obtain H,P2 ∗ P1, σ ⊧TPL A2 as required.
(2) Assume H,P,σ ⊧TPL A1 ∧ (A1 → A2). We seek to prove that H,P,σ ⊧TPL A2. From our

assumption, we obtain both H,P,σ ⊧TPL A1 and H,P,σ ⊧TPL A1 → A2. From the latter,
we have

∀P1 ⊥ P,∀H1

rds(P )∪rds(P1)
≡ H.(H1, P, σ) ⊲ P1 ⊧TPL A1 ⇒H1, P ∗ P1, σ ⊧TPL A2

Taking H1 = H and P1 = ∅ in the above (and noting that from H,P,σ ⊧TPL A1 we can
easily obtain (H,P,σ) ⊲ ∅ ⊧TPL A1), we can obtain H,P,σ ⊧TPL A2 as required.

(3) In the following, we assume (as in the statement of the Lemma) that (H,P,σ) ∈
DisExtFrm(A1)
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(a) We assumeH,P,σ ⊧TPL A1−∗(A2−∗A3) and seek to proveH,P,σ ⊧TPL (A1∗A2)−∗A3.
Thus, we can assume

(H3, P3, σ) ∈ localDisjExts(H,P,σ)(H3,∅, σ) ⊲ P3 ⊧TPL A1 ∗A2

and must prove
H3, P ∗ P3, σ ⊧TPL A3

By Lemma 3.23 (1), there exist P1 ⊥ P2 such that P3 = P1 ∗P2 and both

(H3,∅, σ) ⊲ P1 ⊧TPL A1(H3,∅, σ) ⊲ P2 ⊧TPL A2

By the definition of localDisjExts(H,P,σ), we can show

(H ′, P1, σ) ∈ localDisjExts(H,P,σ)(H3, P2, σ) ∈ localDisjExts(H ′, P ∗ P1, σ)
where H ′ = (P1?H3 ∶ H). By assumptions, we know H3

P
≡ H, thus H ′

P
≡ H3. By

construction, H ′
P1

≡ H3, and thus H ′
P∗P1

≡ H3.
By DisExtFrm(H,P,σ) assumption, and Lemma 3.16 (2), we get

(H ′,∅, σ) ⊲ P1 ⊧TPL A1

Now using H,P,σ ⊧TPL A1 −∗ (A2 −∗A3), we get

H ′, P ∗ P1, σ ⊧TPL A2 −∗A3

and thus
H3, P ∗ P1 ∗ P2, σ ⊧TPL A3

as required.
(b) and (c) We prove these two cases together, since they are almost identical. In

the proof, we case split on which extra assumption to use: either A1 and A2 are
supported (for part (b)) or both A1 ∗A2 and A3 are self-framing (for part (c)).
We assumeH,P,σ ⊧TPL (A1∗A2)−∗A3 and seek to proveH,P,σ ⊧TPL A1−∗(A2−∗A3).
Thus, we can assume

(H1, P1, σ) ∈ localDisjExts(H,P,σ)(H1,∅, σ) ⊲ P1 ⊧TPL A1(H2, P2, σ) ∈ localDisjExts(H1, P ∗ P1, σ)(H2,∅, σ) ⊲ P2 ⊧TPL A2

and must prove
H2, P ∗ P1 ∗ P2, σ ⊧TPL A3

By definition of localDisjExts(H,P,σ) we can show

(H2, P1 ∗P2, σ) ∈ localDisjExts(H,P,σ)
By Lemma 3.15, we know

(H1, P, σ) ∈ DisExtFrm(A1)
and thus, by Lemma 3.16 (2) we know

(H2,∅, σ) ⊲ P1 ⊧TPL A1

Now, we case-split on whether we are proving part (b) or (c):
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part (b) Then we can assume that A1 and A2 are supported. By Lemma 3.25 (1), we can
obtain (H2,∅, σ) ⊲ P1 ∗P2 ⊧TPL A1 ∗A2. Thus, using H,P,σ ⊧TPL (A1 ∗A2)−∗A3

we get
H2, P ∗ P1 ∗ P2, σ ⊧TPL A3

as required.
part (c) Then, we can assume that both A1 ∗ A2 and A3 are self-framing. By Lemma

3.9, there exists P3 ⊆ (P1 ∗ P2) such that (H2,∅, σ) ⊲ P3 ⊧TPL A1 ∗ A2. Define

H3 = (P3 ? H2 ∶ H). Then we have H3

P∗P3

≡ H2. Since A1 ∗A2 is self-framing, by
Lemma 3.16 (3), we have (H3,∅, σ) ⊲ P3 ⊧TPL A1 ∗A2. We need to show that

(H3, P3, σ) ∈ localDisjExts(H,P,σ)
which follows as H3

P
≡ H (since H

P
≡ H1

P
≡ H2

P
≡ H3). Thus, by assumption, we get

H3, P ∗P3, σ ⊧TPL A3. Since A3 is self-framing, and since H2

P∗P3

≡ H3, we obtain
H2, P ∗P3, σ ⊧TPL A3. By Proposition 3.13, we have H2, P ∗P1 ∗P2, σ ⊧TPL A3 as
required.

(4) In the following, we assume (as in the statement of the Lemma) that (H,P,σ) ∈
ExtFrm(A1)
(a) We assume H,P,σ ⊧TPL A1 → (A2 → A3) and seek to prove that H,P,σ ⊧TPL(A1 ∧A2)→ A3. Thus, we can assume

(H3, P ∗ P3, σ) ∈ localExts(H,P,σ)(H3, P, σ) ⊲ P3 ⊧TPL A1 ∧A2

and must prove
H3, P ∗ P3, σ ⊧TPL A3

By Lemma 3.23 (2), there exist P1 ⊥ P2 such that P3 = P1 ∗P2 and both

(H3, P, σ) ⊲ P1 ⊧TPL A1(H3, P ∗ P1, σ) ⊲ P2 ⊧TPL A2

By the definition of localExts(H,P,σ), we can show

(H ′, P ∗ P1, σ) ∈ localExts(H,P,σ)(H3, P ∗P1 ∗P2, σ) ∈ localExts(H ′, P ∗P1, σ)
where H ′ = (P1?H3 ∶ H). By assumptions, we know H3

P
≡ H, thus H ′

P
≡ H3. By

construction, H ′
P1

≡ H3, and thus H3

P∗P1

≡ H ′.
By ExtFrm(H,P,σ) assumption, and Lemma 3.16 (1), we get

(H ′, P, σ) ⊲ P1 ⊧TPL A1

Now using H,P,σ ⊧TPL A1 → (A2 → A3), we get

H ′, P ∗P1, σ ⊧TPL A2 → A3

and thus
H3, P ∗ P1 ∗ P2, σ ⊧TPL A3

as required.
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(b) and (c) We prove these two cases together, since they are almost identical. In
the proof, we case split on which extra assumption to use: either A1 and A2 are
supported (for part (b)) or both A1 ∧A2 and A3 are self-framing (for part (c)).
We assume H,P,σ ⊧TPL (A1 ∧A2)→ A3 and seek to prove H,P,σ ⊧TPL A1 → (A2 →

A3). Thus, we can assume

(H1, P1 ∗ P,σ) ∈ localExts(H,P,σ)(H1, P, σ) ⊲ P1 ⊧TPL A1(H2, P ∗ P1 ∗P2, σ) ∈ localExts(H1, P ∗P1 ∗P2, σ)(H2, P ∗ P1, σ) ⊲ P2 ⊧TPL A2

and must prove
H2, P ∗ P1 ∗ P2, σ ⊧TPL A3

By definition of localExts(H,P,σ) we can show

(H2, P ∗ P1 ∗ P2, σ) ∈ localExts(H,P,σ)
By Lemma 3.15, we know

(H1, P ∗ P1, σ) ∈ ExtFrm(A1)
and thus, by Lemma 3.16 (2) we know

(H2, P, σ) ⊲ P1 ⊧TPL A1

Now, we case-split on whether we are proving part (b) or (c):
part (b) Then we can assume that A1 and A2 are supported. By Lemma 3.25 (2), we can

obtain (H2, P, σ) ⊲ P1∗P2 ⊧TPL A1∧A2. Thus, using H,P,σ ⊧TPL (A1∧A2)→ A3

we get
H2, P ∗ P1 ∗ P2, σ ⊧TPL A3

as required.
part (c) Then, we can assume that both A1 ∧ A2 and A3 are self-framing. By Lemma

3.9, there exists P3 ⊆ (P1 ∗ P2) such that (H2, P, σ) ⊲ P3 ⊧TPL A1 ∧ A2. Define

H3 = (P3 ? H2 ∶ H). Then we have H3

P∗P3

≡ H2. Since A1 ∧A2 is self-framing, by
Lemma 3.16 (3), we have (H3, P, σ) ⊲ P3 ⊧TPL A1 ∗A2. We need to show that

(H3, P ∗ P3, σ) ∈ localExts(H,P,σ)
which follows as H3

P
≡ H. By assumption, we get H3, P ∗ P3, σ ⊧TPL A3. Since

A3 is self-framing, and since H2

P∗P3

≡ H3, we obtain H2, P ∗ P3, σ ⊧TPL A3. By
Proposition 3.13, we have H2, P ∗P1 ∗ P2, σ ⊧TPL A3 as required.

(5) We can assume that:

∀H,P,σ.(H,P,σ ⊧TPL A1 ⇒

∀P1 ⊥ P,∀H1

rds(P )∪rds(P1)
≡ H.((H1,∅, σ) ⊲ P1 ⊧TPL A2 ⇒H1, P ∗ P1, σ ⊧TPL A3))

We need to know that, assuming that (for some H2, P2) H2, P2, σ ⊧TPL A1∗A2 holds, we
can deduce that H2, P2, σ ⊧TPL A3 also holds. The former means that there exist P3 and
P4 such that P2 = P3 ∗ P4 and both H2, P3, σ ⊧TPL A1 and H2, P4, σ ⊧TPL A2 hold. By
Lemma 3.9, there exists P5 ⊆ P4 such that (H2,∅, σ) ⊲ P5 ⊧TPL A2 holds. Now we apply
our original assumption, defining H = H2 and H1 = H2 and P = (P3 ∗ (P4 − P5)) and
P1 = P5 (note that, by Proposition 3.13, we haveH,P,σ ⊧TPL A1). From the assumption,
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we obtain H,P ∗ P1, σ ⊧TPL A3, i.e., H2, P3 ∗ P4, σ ⊧TPL A3, i.e., H2, P2, σ ⊧TPL A3 as
required.

(6) We can assume that

∀H,P,σ.(H,P,σ ⊧TPL A1 ∗A2 ⇒H,P,σ ⊧TPL A3)
i.e., we (equivalently) assume that:

∀H,P1, P2, σ.(P1 ⊥ P2 ∧H,P1, σ ⊧TPL A1 ∧H,P2, σ ⊧TPL A2 ⇒

H,P1 ∗P2, σ ⊧TPL A3)
We need to show that, if we assume (for some H1 and P1) that H1, P1, σ ⊧TPL A1, then
we can deduce that H1, P1, σ ⊧TPL A2 −∗A3 holds, i.e., that:

∀P2 ⊥ P1,∀H2

rds(P1)∪rds(P2)
≡ H1.((H2,∅, σ) ⊲ P2 ⊧TPL A2 ⇒ H2, P1 ∗P2, σ ⊧TPL A3)

To show this, we assume P2 ⊥ P1 and H2

rds(P1)∪rds(P2)
≡ H1 and (H2,∅, σ) ⊲ P2 ⊧TPL A2

and need to prove H2, P1 ∗P2, σ ⊧TPL A3. Since A1 is self-framing, and since H2

P1

≡ H1,
we know that H2, P1, σ ⊧TPL A1. Then, letting H = H2, we can apply our original
assumption to obtain H2, P1 ∗P2, σ ⊧TPL A3 as required.

Lemma 4.5.

(1) If H,P,σ ⊧TPL sframed(E), and H ′
P
≡ H then JEKH,σ = JEKH′,σ.

(2) sframed(E) is self-framing

(3) If H,P,σ ⊧TPL sframed(B), and H ′
P
≡ H then H,P,σ ⊧TPL B if and only if H ′, P, σ ⊧TPL

B.
(4) sframed(B) is self-framing.

Proof.

(1) Follows by straightforward induction on E.
(2) Follows by induction on E, and using previous property. The base cases hold trivially.

For the inductive case (E.f), we assume

H,P,σ ⊧TPL sframed(E) P [JEKH,σ, f] ≥ π H
P
≡ H ′

and need to show that

H ′, P, σ ⊧TPL sframed(E) P [JEKH′,σ, f] ≥ π
The first part follows from the inductive hypothesis. The second part follows as we
know JEKH,σ = JEKH′,σ by the previous part of the lemma.

(3) By induction on B. The base cases hold trivially. For the inductive case, assume

H,P,σ ⊧TPL sframed(B1)
H,P,σ ⊧TPL B1 → sframed(B2)
H

P
≡ H ′

By inductive hypothesis, we know

H,P,σ ⊧TPL B1 ⇐⇒ H ′, P, σ ⊧TPL B1



52 M. J. PARKINSON AND A. J. SUMMERS

We case split on whether or not B1 holds. For the first case, assume H,P,σ ⊧TPL B1.
Therefore, by Lemma 3.18 we know

H,P,σ ⊧TPL sframed(B2)
and thus, by inductive hypothesis

H,P,σ ⊧TPL B2 ⇐⇒ H ′, P, σ ⊧TPL B2

Hence, we know

H,P,σ ⊧TPL B1 ∗B2 ⇐⇒ H ′, P, σ ⊧TPL B1 ∗B2

as required.
For the second case, assume H,P,σ /⊧TPL B1. Therefore

H ′, P, σ /⊧TPL B1

and thus we know

H,P,σ ⊧TPL B1 ∗B2 ⇐⇒ H ′, P, σ ⊧TPL B1 ∗B2

as required.
(4) By induction on B. The base cases follow directly from previous parts of this lemma.

For the inductive case, we assume

H,P,σ ⊧TPL sframed(B1)
H,P,σ ⊧TPL B1 → sframed(B2)
H

P
≡ H ′

and we seek to prove

H ′, P, σ ⊧TPL sframed(B1)
H ′, P, σ ⊧TPL B1 → sframed(B2)

The first obligation follows by inductive hypothesis. Using Lemma 3.18, we can assume
H ′, P, σ ⊧TPL B1, and must prove H ′, P, σ ⊧TPL sframed(B2). Thus, by previous part,
we know H,P,σ ⊧TPL B1, and by Lemma 3.18 we know

H,P,σ ⊧TPL sframed(B2)
By inductive hypothesis, we obtain

H ′, P, σ ⊧TPL sframed(B2)
as required.

Lemma 4.6.

(1) sframed(p1) ∧ ((p1 ∗ p2) −∗ p) ⊧TPL p1 −∗ (p2 −∗ p)
(2) sframed(p1) ∧ (p1 −∗ (p2 −∗ p)) ⊧TPL (p1 ∗ p2) −∗ p
Proof. We break this proof into two steps. First we prove that the sframed(p1) condition
has a semantic meaning in terms of DisExtFrm(p1), and then show this semantic meaning
allows the restructuring of the assertion. That is, we show that

∀p. ⟨⟨sframed(p)⟩⟩ ⊆ DisExtFrm(p) (A.1)

and then show
DisExtFrm(p1) ∩ ⟨⟨(p1 ∗ p2) −∗ p⟩⟩ ⊆ ⟨⟨p1 −∗ (p2 −∗ p)⟩⟩ (A.2)

and
DisExtFrm(p1) ∩ ⟨⟨p1 −∗ (p2 −∗ p)⟩⟩ ⊆ ⟨⟨(p1 ∗ p2) −∗ p⟩⟩ (A.3)
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To prove (A.2) we use Proposition 3.26(3)(b) and Lemma 4.3, and (A.3) is just a
restatement of Proposition 3.26(3)(a).

To prove (A.1) we use induction on p.

(p ≡ acc(E,f,π)) This requires that we prove

⟨⟨sframed(E)⟩⟩ ⊆ DisExtFrm(acc(E.f,π))
By expanding the definition of DisExtFrm(acc(E.f,π)) and the semantics of acc(E.f,π)
we can assume

H,P,σ ⊧TPL sframed(E) H
P
≡ H ′ P ⊥ P ′

P ′[JEKH′,σ, f] ≥ π H ′
P∗P ′

≡ H ′′

and are required to prove P ′[JEKH′′,σ, f] ≥ π. By definition of ≡, we can get H ′
P
≡ H ′′,

and thus use Lemma 4.5, to give JEKH′,σ = JEKH′′,σ as required.
(p ≡ B) This case requires that we prove

⟨⟨sframed(B)⟩⟩ ⊆ DisExtFrm(B)
By expanding the definition of DisExtFrm(B) we can assume

H,P,σ ⊧TPL sframed(B) H
P
≡ H ′ P ⊥ P ′

H ′, P ′, σ ⊧TPL B H ′
P∗P ′

≡ H ′′

and are required to prove H ′′, P ′, σ ⊧TPL B. By definition of ≡, we know H ′
P
≡ H ′′, and

thus use Lemma 4.5 to give H ′, P ′, σ ⊧TPL B ⇐⇒ H ′′, P ′, σ ⊧TPL B as required.
(p ≡ p1 ∗ p2) We assume ⟨⟨sframed(p1)⟩⟩ ⊆ DisExtFrm(p1)⟨⟨sframed(p2)⟩⟩ ⊆ DisExtFrm(p2)

and, expanding the definition of sframed(p1 ∗ p2), we must show

⟨⟨sframed(p1) ∧ (p1 −∗ sframed(p2))⟩⟩ ⊆ DisExtFrm(p1 ∗ p2)
We can assume, by expanding the definition of DisExtFrm(p1 ∗ p2), and the definition of
the semantics of ∗:

H,P,σ ⊧TPL sframed(p1)
H,P,σ ⊧TPL p1 −∗ sframed(p2)
H

P
≡ H ′

P1 ⊥ P ∧P2 ⊥ P ∧ P1 ⊥ P2

H ′, P1, σ ⊧TPL p1
H ′, P2, σ ⊧TPL p2

H ′
P∗P1∗P2

≡ H ′′

and we are left with proving:

H ′′, P1 ∗P2, σ ⊧TPL p1 ∗ p2

Let H1 = (rds(P ) ∪ rds(P1) ? H ∶ H ′). By inductive hypothesis, we know (H,P,σ) ∈
DisExtFrm(p1), and thus we know H1, P1, σ ⊧TPL p1.

By Lemma 3.9, we can prove that there exist P ′1, P
′′
1 such that P ′1 ∗ P ′′1 = P1 and(H1,∅, σ) ⊲ P ′1 ⊧TPL p1. Therefore, we know H1, P

′
1 ∗ P,σ ⊧TPL sframed(p2), and thus

(H1, P
′
1∗P,σ) ∈ DisExtFrm(p2). AsH P

≡ H ′, we knowH1

P
≡ H ′ by construction. Moreover,
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by construction we know H1

rds(P1)∖rds(P )
≡ H ′, which with the previous gives H1

P1

≡ H ′.

Thus, we know H1

P1∗P
≡ H ′, which we can weaken to H1

P ′
1
∗P
≡ H ′. Thus, we know(H ′, P ′

1
∗ P,σ) ∈ DisExtFrm(p2)

As all assertions are weakening-closed (cf. Proposition 3.13), we haveH ′, P ′′
1
∗P2, σ ⊧TPL

p2. We know P ′′
1
∗P2 ⊥ P

′
1
∗P , thus using DisExtFrm(p2), we know H ′′, P ′′

1
∗P2, σ ⊧TPL p2.

By (H,P,σ) ∈ DisExtFrm(p1) and H
P
≡ H ′, we know (H ′, P, σ) ∈ DisExtFrm(p1). By

weakening assumption we know H ′
P∗P ′

1

≡ H ′′. As P ′1 ⊥ P , we know H ′′, P ′1, σ ⊧TPL p1 and
thus

H ′′, P1 ∗P2, σ ⊧TPL p1 ∗ p2

as required.
(p ≡ B → p′) This case requires

⟨⟨sframed(B) ∧ (B → sframed(p′))⟩⟩ ⊆ DisExtFrm(B → p′)
By expanding the definition of DisExtFrm(B → p′) and using Lemma 3.18, we can assume

H,P,σ ⊧TPL sframed(B)
H,P,σ ⊧TPL B ⇒ H,P,σ ⊧TPL sframed(p′)
H

P
≡ H ′

P ⊥ P ′

H ′, P ′, σ ⊧TPL B ⇒H ′, P ′, σ ⊧TPL p
′

H ′′
P∗P ′

≡ H ′

H ′′, P ′, σ ⊧TPL B

and must prove
H ′′, P ′, σ ⊧TPL p

′

By the sframed(B) assumption and by Lemma 4.5, and since B is pure, we can obtain
that H ′, P ′, σ ⊧TPL B and H,P,σ ⊧TPL B. Therefore, we know

H,P,σ ⊧TPL sframed(p′)
H ′, P ′, σ ⊧TPL p

′

and must show
H ′′, P ′, σ ⊧TPL p

′

which follows directly by definition of sframed(p′) and the inductive hypothesis.
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