
The Relationship Between Separation Logic and
Implicit Dynamic Frames

Matthew J. Parkinson1 and Alexander J. Summers2

1 Microsoft Research Cambridge, mattpark@microsoft.com
2 ETH Zurich, alexander.summers@inf.ethz.ch

Abstract. Separation logic is a concise method for specifying programs
that manipulate dynamically allocated storage. Partially inspired by sep-
aration logic, Implicit Dynamic Frames has recently been proposed, aim-
ing at first-order tool support. In this paper, we provide a total heap
semantics for a standard separation logic, and prove it equivalent to the
standard model. With small adaptations, we then show how to give a
direct semantics to implicit dynamic frames and show this semantics cor-
rectly captures the existing definitions. This precisely connects the two
logics. As a consequence of this connection, we show that a fragment
of separation logic can be faithfully encoded in a first-order automatic
verification tool (Chalice).

1 Introduction

Separation logic (SL) [5, 11] is a popular approach to specifying the behaviour
of programs, as it naturally deals with the issues of aliasing. Separation logic
assertions extend classical logic with extra connectives and predicates to de-
scribe memory layout. This makes it difficult to reuse current tool support for
verification. Implicit Dynamic Frames (IDF) [15] was developed to give the ben-
efits of separation logic specifications while leveraging existing tool support for
first-order logic.

Although IDF was partially inspired by separation logic, there are many
differences between SL and IDF that make understanding their relationship dif-
ficult. SL does not allow expressions that refer to the heap, while IDF does. SL is
defined on partial heaps, while IDF is defined using total heaps and permission
masks. The semantics of IDF are only defined by its translation to first-order
verification conditions, while SL has a direct Kripke semantics for its assertions.
These differences make it challenging to understand the relationship between
the two approaches.

In this paper, we develop an extended separation logic that both captures
the original semantics of separation logic, and correctly captures the semantics
of IDF. To achieve this we provide a separation logic based on total heaps and
a permission mask. The permission mask specifies the locations in the heap
which are safe to access. Our formulation allows expressions that access the
heap to be defined, however it complicates the definition of the separation logic

“magic wand” connective. In order to faithfully capture the original semantics
of separation logic, and thus use magic wand to give the weakest pre-condition
of commands, we present a non-standard definition of magic wand that includes
changes to the total heap.

We also show that this extended separation logic correctly captures the se-
mantics of the IDF formulas, we focus on the form of IDF found in the concurrent
verification tool Chalice [9]. As the semantics of IDF formulas are only defined
indirectly via weakest pre-condition calculations for a language using them, we
show that the verification conditions (VCs) generated by the existing Boogie2 [8]
encoding and the VCs generated from the separation logic proof rules are logi-
cally equivalent. This shows that our model directly captures the semantics of
IDF.

This strong correspondence enables us to encode a fragment of separation
logic containing separating conjunction, points to assertions, equalities and con-
ditionals on pure assertions (a typical fragment used in verification tools), into
Chalice - a tool based on first-order theorem proving.

Outline The paper is structured as follows. We begin by presenting the back-
ground definitions of both separation logic and implicit dynamic frames (§2); we
then develop our extended separation logic (§3). We prove the correspondence
between VCs in the two approaches (§4). Finally, we discuss related work (§5)
and consider possible extensions and conclude (§6).

The contributions of this paper are as follows:

– We define a total heap semantics for separation logic, and prove it equivalent
with the standard (partial heaps) semantics for the logic.

– We define a direct semantics for the implicit dynamic frames logic (the spec-
ification logic of the Chalice tool), which has so far only been given a seman-
tics implicitly, via verification conditions.

– We show how to encode a standard fragment of separation logic into an
implicit dynamic frames setting, preserving its semantics.

– We show that verification conditions as computed for separation logic coin-
cide via our translation and semantics with the verification conditions com-
puted by Chalice.

2 Background and Motivation

2.1 Standard Separation Logic

Separation logic [5, 11] is a verification logic which was originally introduced to
handle the verification of sequential programs in languages with manual memory
management such as C. The key feature of the logic is the ability to describe the
behaviour of commands in terms of disjoint heap fragments, greatly simplifying
the work required when “framing on” extra properties in a modular setting. Since
its inception, separation logic has evolved in a variety of ways. In particular,

2

variants of separation logic are now used for the verification of object-oriented
languages with garbage collection, such as Java and C♯ [12].

In order to handle concurrency, separation logic has been extended to con-
sider its basic points-to assertions as permissions [10], determining which thread
is allowed to read and write the corresponding state. To gain flexibility, frac-
tional permissions [4, 3] were introduced, allowing the permissions governed by
points-to assertions to be split and combined. A fractional permission is a ratio-
nal number 0 < π ≤ 1, where 1 denotes full and exclusive (read/write) permission,
and any other permission denotes read-only permission. In this paper we focus
on the following core fragment of separation logic with fractional permissions.

Definition 1 (Separation Logic Assertions (SL)). We assume a set of ob-
ject identifiers3, ranged over by ι. We also assume a set of field identifiers,
ranged over by f . Values, ranged over by v are either object identifiers, integers,
or the special value null.

The syntaxes of separation logic expressions (ranged over by e) and assertions
(ranged over by a, b) are defined as follows4. In this definition, n ranges over
integer constants, and 0 < π ≤ 1.

e ∶∶= x ∣ null ∣ n
a ∶∶= e = e ∣ e.f π↦ e ∣ a ∗ a ∣ a −∗ a ∣ a ∧ a ∣ a ∨ a ∣ a→ a

We will refer to this separation logic simply as SL hereafter.

The key feature of separation logic is the facility to reason locally about separate
heap portions. As such, the standard semantics for separation logic is formulated
in terms of judgements parameterised by partial heaps (sometimes called heap
fragments), which can be split and combined together as required. The critical
new connectives are the separating conjunction ∗, and the magic wand −∗. The
separating conjunction a ∗ b expresses that a and b are true and depend on
disjoint fragments of the heap. The magic wand a−∗b expresses that if any extra
partial heap satisfying a is combined with the current partial heap, then the
resulting heap is guaranteed to satisfy b.

Fractional permissions5 are employed to manage shared memory concurrency
in the usual way - a thread may only read from a heap location if it has a non-
zero permission to the location, and it may only write to a location if it has the
whole (full) permission to it. By careful permission accounting, it can then be
guaranteed that a thread can never modify a heap location while another thread

can read it. Note that permissions are handled (via points-to predicates e.f
π↦ e′)

on a per-field basis: it is possible for an assertion to provide permission for only
one field of an object. This fine granularity of permissions allows for greater

3 These could be considered to be addresses, but we choose to be parametric with the
concrete implementation of the heap.

4 Note that variables x need not be program variables, but can also be specification-
only variables (sometimes called logical, ghost or specification variables)

5 Chalice, described in the next subsection, actually uses a slight variation on fractional
permissions to make automatic theorem proving easier.

3

flexibility in the resulting logic - it can be specified that different threads have
access to different fields of an object at the same time, for example. Combination
of partial heaps includes combination of their permissions, where they overlap.

Definition 2 (Partial Fractional Heaps).

– A partial fractional heap h is a partial function from pairs (ι, f) of object-
identifier and field-identifier to pairs (v, π) of value and non-zero permission
π. Partial heap lookup is written h[ι, f], and is only defined when (ι, f) ∈
dom(h).

– Partial heap extension: h1 ⊆ h2, iff ∀(ι, f) ∈ dom(h1). h2[ι, f] = h1[ι, f].
– Partial heap compatible: h1 ⊥ h2 iff ∀(ι, f) ∈ dom(h1)∩dom(h2). ↓1(h1[ι, f]) =
↓1(h2[ι, f]) ∧ ↓2(h1[ι, f]) + ↓2(h2[ι, f]) ≤ 1.

– The combination of two partial heaps, written h1 ∗ h2, is defined only when
h1 ⊥ h2 holds, by the following equations:

dom(h1 ∗ h2) = dom(h1) ∪ dom(h2)
∀(ι, f) ∈ dom(h1 ∗ h2).

(h1 ∗ h2)[ι, f] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(↓1(h1[ι, f]), ↓2(h1[ι, f])) if (ι, f) ∉ dom(h2)
(↓1(h2[ι, f]), ↓2(h2[ι, f])) if (ι, f) ∉ dom(h1)
(↓1(h1[ι, f]), (↓2(h1[ι, f]) + ↓2(h2[ι, f]))) otherwise

We use ↓n to denote the nth component of a tuple.

There are two main flavours of separation logic studied in the literature:
classical separation logic, and intuitionistic separation logic. In this paper, we
consider intuitionistic separation logic. In intuitionistic separation logic, truth
of assertions is closed under heap extension, which is appropriate for a garbage-
collected language such as Java/C♯, rather than a language with manual memory
management, such as C. The standard intuitionistic separation logic semantics
for our fragment SL is defined as follows.

Definition 3 (Standard Semantics for SL). Environments σ are partial
functions6 from variable names to values. Separation logic expression seman-
tics, [[e]]σ are defined by [[x]]σ = σ(x), [[n]]σ = n and [[null]]σ = null. The
semantics of assertions is then as follows:

h,σ ⊧SL e1.f
π↦ e2 ⇐⇒ ↓2(h[[[e1]]σ, f]) ≥ π ∧ ↓1(h[[[e1]]σ, f]) = [[e2]]σ

h,σ ⊧SL e = e′ ⇐⇒ [[e]]σ = [[e′]]σ
h,σ ⊧SL a ∗ b ⇐⇒ ∃h1, h2.(h = h1 ∗ h2 ∧ h1, σ ⊧SL a ∧ h2, σ ⊧SL b)

h,σ ⊧SL a −∗ b ⇐⇒ ∀h′.(h′ ⊥ h ∧ h′, σ ⊧SL a ⇒ h∗h′, σ ⊧SL b)

h,σ ⊧SL a ∧ b ⇐⇒ h,σ ⊧SL a ∧ h,σ ⊧SL b

h, σ ⊧SL a ∨ b ⇐⇒ h,σ ⊧SL a ∨ h,σ ⊧SL b

h, σ ⊧SL a→ b ⇐⇒ ∀h′.(h ⊆ h′ ∧ h′, σ ⊧SL a ⇒ h′, σ ⊧SL b)
6 However, we assume that all applications of environments are well-defined; i.e., when-
ever we write σ(x), that x ∈ dom(σ). This assumption is justified so long as the
program and specifications are type-checked appropriately.

4

The semantics for the separating conjunction and magic wand express the re-
quired splitting and combination of partial heaps. The semantics for logical im-
plication→ considers all possible extensions of the current heap, so that assertion
truth is closed under heap extension [5].

Assume/Assert Verification in Boogie2 and related technologies uses two com-
mands commonly to encode verification: assume A and assert A. The first al-
lows the verification to work forwards with the additional assumption of A, while
the second requires A to hold otherwise it will be considered a fault. These can
be given weakest precondition semantics of:

wp(assert A,B) = A ∧B wp(assume A,B) = A⇒ B
From a verification perspective, these primitives can be used to encode many ad-
vanced language features. For example, in a modular verification setting with a
first-order assertion language, a method-call is encoded by a sequence assert pre;
havoc(Heap); assume post, in which pre and post are the pre- and post-conditions
of the method respectively, and havoc(.) is a Boogie command that causes the
prover to forget all knowledge about a variable/expression.

With separation logic, there are two forms of conjunction and implication,
the standard (additive) ones ∧ and →, and the separating (multiplicative) ones
∗ and −∗. This naturally gives rise to a second form of assume and assert for the
multiplicative connectives (assume∗ and assert∗), with the following weakest
precondition semantics:

wp(assert∗ A, B) = A ∗B wp(assume∗ A, B) = A −∗B
These commands can be understood as follows: assert∗ A removes a heap frag-
ment satisfying A, and assume∗ A adds a heap fragment satisfying A. In a
verification setting where assertions express permissions as well as functional
properties, these can be used to correctly model the transfer of permissions
when encoding various constructs. In a separation logic setting, a method call is
encoded as assert∗ pre;assume∗ post.

In Chalice, which handles an assertion logic based on Implicit Dynamic
Frames, functional verification is based on two new commands: inhale A and
exhale A, which are also given an intuitive semantics of adding and removing
access to state. One outcome of this paper is to make this intuitive connection be-
tween inhale/exhale and assume∗/assert∗ formal, by defining a concrete and
common semantics which can correctly characterise both assertion languages.

2.2 Chalice and Implicit Dynamic Frames

The original concept of Dynamic Frames comes from the PhD thesis of Kassios
[7, 6]. The idea is to tackle the frame problem by allowing method specifications
to declare the portion of the heap they may modify (a “frame” for the method
call) via functions of the heap. The computed frames are therefore dynamic, in
the sense that the actual values determined by these functions may change as
the heap itself gets modified. Implicit Dynamic Frames [15, 14] takes a different
approach to computing frames - a first-order logic is extended with a new kind

5

of assertion called an accessibility predicate (written e.g., as acc(x.f)) whose role
is to represent a permission to a heap location x.f . In a method pre-condition,
such an accessibility predicate indicates that the method requires permission to
x.f in order to be called - usually because this location might be read or written
to in the method implementation. By imposing the restriction that heap deref-
erence expressions (whether in assertions or in method bodies) are only allowed
if a corresponding permission has already been acquired, this specification style
allows a method frame to be calculated implicitly from its pre-condition.

Chalice [9] is a tool written for the automatic verification of concurrent pro-
grams. It handles a fairly simple imperative language, with classes (but no inher-
itance), and several interesting concurrency features (locks, channels, fork/join
of threads). The tool proves partial correctness of method specifications, as well
as absence of deadlock. The core of the methodology is based on the Implicit
Dynamic Frames specification logic, using accessibility predicates to handle the
permissions necessary to avoid data races between threads.

In this paper we ignore the deadlock-avoidance aspects of Chalice, and focus
on the aspects which guarantee functional correctness. Verification in Chalice
is defined via an encoding into Boogie2, in which two auxiliary Chalice com-
mands inhale p and exhale p are used. These commands reflect the addition
and removal of permissions from the state, as well as expressing assumptions
and assertions about the heap. For example, method calls are represented by
exhale pre;inhale post. The command exhale pre has the effect of giving up any
permissions mentioned in accessibility predicates in pre, and generating assert

statements for any logical properties such as heap equalities. Dually, inhale post
has the effect of adding any permissions mentioned in post and assuming any
logical properties.

Definition 4 (Our Chalice Subsyntax). Expressions E and assertions p in
our fragment of Chalice are given by the following syntax definitions:

E ∶∶= x ∣ n ∣ null ∣ E.f
p ∶∶= E = E ∣ acc(E.f, π) ∣ p ∗ p

Note that Chalice actually uses the symbol for logical conjunction (∧ or &&)
where we write ∗ above. However, in terms the semantics of the logic this is
misleading - in general it is not the case that p ∧ p (as written in Chalice) is
equivalent to p. Chalice’s conjunction treats permissions multiplicatively, that is
acc(x.f,1)∧acc(x.f,1) is actually equivalent to falsity. As we will show, Chalice
conjunction is actually directly related to the separating conjunction of separa-
tion logic, hence our choice of notation here. Where we use the symbol ∧ later
in the paper, we mean the usual (additive) conjunction, just as in SL.

Chalice performs verification condition generation via an encoding into Boo-
gie2, which makes use of two special variables P and H. The former maps object
identifier and field name pairs to permissions, in this instance a fractional per-
mission, and is used for bookkeeping of permissions7. The latter maps object

7 Technically, one should think of P as a ghost variable, since it does not correspond
to real data of the original program.

6

identifier and field name pairs to values, and is used to model the heap of the
real program. These maps can be read from (e.g., P[o, f]) and updated (e.g.,
P[o, f] ∶= 1) from within the Boogie2 code, which allows Chalice to maintain
their state appropriately to reflect the modifications made by the source pro-
gram. In particular, the inhale and exhale commands have semantics which
include modifications to the P map, to reflect the addition or removal of per-
missions by the program.

The critical aspect of Chalice’s approach to data races, is to guarantee that
assertions about the heap are only allowed when at least some permission is
held to each heap location mentioned. This means that assertions cannot be
made when it might be possible for other threads to be changing these loca-
tions - all logical properties used in the verification are then made robust to
possible interference. Syntactically, this is enforced by requiring that assertions
used in verification contracts are self-framing [6] - which means that the as-
sertion includes enough accessibility predicates to “frame” its heap expressions.
For example, the assertion x.f = 5 is not self-framing, since it refers to the heap
location x.f without permission. On the other hand, (acc(x.f,1) ∗ x.f = 5) is
self-framing.

3 A Total Heaps Semantics for Separation Logic

In this section we present a semantics for separation logic, which is based on
states consisting of a total heap and a separate permission mask. Intuitively,
the idea is that the permission mask specifies which locations in the heap we
currently have permission to - this subset of the heap approximately corresponds
with the partial heap which would be used in the standard semantics. The ad-
vantage of such a semantics is that it is simpler to relate to other logics with
similar semantics and to encodings into first-order logic, as we will show later.

To facilitate comparisons, we define our semantics for an extended separation
logic syntax, including not only the constructs of Definition 1, but also acces-
sibility predicates from Implicit Dynamic Frames, and an enriched expression
syntax that depend on the heap.

Definition 5 (Extended Separation Logic). We define the expressions E
and assertions A of extended separation logic (SL+), by the following grammar
(in which n stands for any integer constant):

e ∶∶= x ∣ null ∣ n
E ∶∶= e ∣ E.f
A ∶∶= E = E ∣ e.f π↦ e ∣ A ∗A ∣ A −∗A ∣ A ∧A ∣ A ∨A ∣ A→ A ∣ acc(E.f, π)

Note that the syntax of separation logic assertions (ranged over by a; see
Definition 1) is a strict subset of the SL+ assertions A defined above. The syntax
of separation logic expressions e is also a strict subset of SL+ expressions E.

Our aim is to give a total heap semantics for this more-general assertion
language, implicitly defining a suitable semantics for both the fragment corre-
sponding to SL assertions, and that corresponding to the assertions of Implicit

7

Dynamic Frames. This semantics depends on states which are specified by a
combination of a total heap and a permission mask which separately tracks
permissions to heap locations.

Definition 6 (Total Heaps and Permission Masks). A total heap H is a
total map from pairs of object-identifier o and field-identifier f to values v. Heap
lookup is written H[o, f].

A permission mask Π is a total map from pairs of object-identifier and field-
identifier to permissions. Permission lookup is written Π[o, f].
We write Π1 ⊆Π2 for permission extension, i.e., ∀(o, f). Π1[o, f] ≤Π2[o, f].
We write ∅ for the empty permission mask; i.e., the mask which assigns 0 to
all locations.

Evaluation of extended separation logic expressions depends on a given environ-
ment and heap, and is defined by:

[[x]]σ,H = σ(x) [[n]]σ,H = n [[E.f]]σ,H = H[[[E]]σ,H , f] [[null]]σ,H = null

The meaning of separation logic expressions is preserved (and is independent of
the heap), as the following lemma shows:

Lemma 1. ∀e, σ,H. [[e]]σ,H = [[e]]σ
In order to define our semantics, we need to be able to combine permission

masks:

Definition 7 (Combining Permission Masks). Two permission masks Π1

and Π2 are compatible, written Π1 ⊥Π2, if it holds that:

∀(o, f). Π1[o, f] +Π2[o, f] ≤ 1

The combination of two permission masks, written Π1∗Π2 is undefined if Π1

and Π2 are not compatible, and is otherwise defined pointwise to be the following
permission mask:

(Π1 ∗Π2)[o, f] =Π1[o, f] +Π2[o, f]

To define and prove results about our semantics, we need operations for
replacing and removing portions of a heap, according to a specified permission.
To this end, we introduce the following auxiliary definitions.

Definition 8 (Total Heap Operations). Two heaps H1 and H2 agree on

permissions Π, written H1
Π≡ H2, if the two heaps agree on all locations given

non-zero permission by Π, i.e.,

H1
Π≡ H2 ⇐⇒ ∀o, f.Π[o, f] > 0 ⇒ H2[o, f] =H1[o, f]

The restriction of H to Π, written H↾Π is a partial fractional heap, defined by:

dom(H↾Π) = {(o, f) ∣Π[o, f] > 0}
∀(o, f) ∈ dom(H↾Π).↓1((H↾Π)[o, f]) =H[o, f]
∀(o, f) ∈ dom(H↾Π).↓2((H↾Π)[o, f]) =Π[o, f]

8

The main difficulty in defining a semantics for SL using total heaps is getting
the treatment of the magic wand connective correct. Since the standard seman-
tics of this connective involves a quantification over all partial heaps which can
be combined with the current one (i.e., all those which are compatible), it is not
obvious how a corresponding definition can be made when starting from a total
heap. The key idea is to model the “addition” of a new heap fragment which
takes place in the standard semantics by acquiring some additional permissions,
and then considering all possible heaps which have different values at the loca-
tions corresponding to these new permissions. In this way, the “newly acquired”
region of our total heap can take on arbitrary new values. We model this by con-
sidering all heaps which agree with the current heap over the part to which any
permission is held, and also satisfy the requirements of the “additional” heap.

Definition 9 (Total Heap Semantics for SL+). We define validity of SL+-
assertions with respect to a specified total heap H and permission mask Π re-
cursively on the structure of the assertion:

H,Π,σ ⊧SL+ e.f
π↦ e′ ⇐⇒ Π[[[e]]σ,H , f] ≥ π ∧ H[[[e]]σ,H , f] = [[e′]]σ,H

H,Π,σ ⊧SL+ A ∗B ⇐⇒ ∃Π1,Π2. (Π =Π1 ∗Π2 ∧ H,Π1, σ ⊧SL+ A ∧
H,Π2, σ ⊧SL+ B)

H,Π,σ ⊧SL+ A −∗B ⇐⇒ ∀Π ′,H ′.(Π ′⊥Π ∧ H ′
Π≡ H ∧ H ′,Π ′, σ ⊧SL+ A
⇒ H ′,Π ∗Π ′, σ ⊧SL+ B)

H,Π,σ ⊧SL+ A ∧B ⇐⇒ H,Π,σ ⊧SL+ A ∧ H,Π,σ ⊧SL+ B

H,Π,σ ⊧SL+ A ∨B ⇐⇒ H,Π,σ ⊧SL+ A ∨ H,Π,σ ⊧SL+ B

H,Π,σ ⊧SL+ A→ B ⇐⇒ ∀Π ′,H ′.(Π ⊆Π ′ ∧ H ′
Π≡ H ∧ H ′,Π ′, σ ⊧SL+ A
⇒ H ′,Π ′, σ ⊧SL+ B)

H,Π,σ ⊧SL+ acc(E.f, π) ⇐⇒ Π[[[E]]σ,H , f] ≥ π

H,Π,σ ⊧SL+ E = E′ ⇐⇒ [[E]]σ,H = [[E′]]σ,H

Note the similarity between the definitions for magic wand −∗ and logical impli-
cation →.8 This is because both cases involve heap extension in the partial heap
semantics; in our total heap semantics we model heap extension by enabling
the assignment of new arbitrary values to the part of the heap we have not yet
acquired permission to. We observe that validity of assertions in this semantics
is closed under permission extension.

Proposition 1. If H,Π,σ ⊧SL+ A and Π ⊆Π ′ then H,Π ′, σ ⊧SL+ A.

Proof. By straightforward induction on the structure of the assertion A.

Semantically, an assertion is framed by a permission mask if it only depends
on the values of heap locations which the permission mask assigns permission to.

8 Note the intuitionistic implication can be defined in terms of the pointwise classical
implication (→c) in separation logic: A→ B ⇐⇒ true −∗ (A→c B).

9

An assertion is semantically self-framing if it is only true for permission masks
large enough to frame it. These semantic notions of framing and self-framing are
formalised as follows:

Definition 10 (Framing, Self-Framing and Pure Assertions). A permis-
sion mask Π ′ frames an assertion A (Π ′ frames A) if and only if:

∀Π,H,σ,H ′. (H,Π,σ ⊧SL+ A ∧H ′
Π′≡H ⇒H ′,Π,σ ⊧SL+ A)

An assertion A is self-framing if and only if it is only satisfied under permission
masks which frame it, i.e.,

∀Π,H,σ,H ′. (H,Π,σ ⊧SL+ A ∧H ′
Π≡H ⇒H ′,Π,σ ⊧SL+ A)

An assertion A is pure9 if and only if it doesn’t depend on permissions, i.e.,
∀Π,H,σ. (H,Π,σ ⊧SL+ A⇒H,∅, σ ⊧SL+ A)

For example, the assertion x.f = 5 is only framed by permission masks which give
permission to location (x, f). It is not self-framing, since with an environment
σ such that σ(x) = ι, a heap H such that H[ι, f] = 5 and an empty permission
mask Π, we have H,Π,σ ⊧SL+ x.f = 5. However, the heap H ′ = H[(ι, f) ↦ 4]
satisfies H ′

Π≡H, but we have H ′,Π,σ /⊧SL+ x.f = 5. On the other hand, the

assertions acc(x.f,1) ∗ x.f = 5 and x.f
1↦ 5 are both self-framing.

Intuitively, self-framing assertions are robust to arbitrary interference on the
rest of the heap. For separation logic assertions, this property holds naturally,
since it is impossible for an assertion to talk about the heap without including the
appropriate “points-to” predicates, which force the corresponding permissions to
be held.

Lemma 2. All separation logic assertions a (Defn 1) are self-framing.

Proof. We prove, by straightforward induction on the structure of the assertion
a, the equivalent statement:

∀a,H,Π. (H,Π,σ ⊧SL+ a⇔ ∀H ′. (H ′
Π≡H ⇒H ′,Π,σ ⊧SL+ a))

We now turn to relating our total heap semantics for separation logic, with
the standard semantics. To do this, we need to relate partial heaps with pairs of
total heap and permission mask. Given any total heapH and permission maskΠ
we can construct a corresponding partial heapH↾Π. Conversely, any partial heap
h can be represented as the restriction of a total heap H to the permission mask
corresponding to all the permissions in h. This representation however, is not
unique - there are many such total heaps H we could choose such that h =H↾Π.
However, the different choices of H can only differ over the locations given no
permission in Π, and the previous lemma demonstrates that such differences
do not affect the semantics of assertions. For our correspondence result, it is
therefore without loss of generality to consider partial heaps constructed by
H↾Π. We can then show that our total heap semantics for SL is sound and
complete with respect to the standard semantics:

9 Wemay have considered pure assertions to depend on the heap as well. This however,
does not have the right logical characterisation: A is pure iff ∀B,A ∗B = A ∧B.

10

Theorem 1 (Correctness of Total Heap Semantics). For all SL-assertions
a, environments σ, total heaps H, and permission mask Π:

H,Π,σ ⊧SL+ a ⇐⇒ (H↾Π), σ ⊧SL a

Proof. By induction on the structure of the assertion a, using Lemma 1.

This result demonstrates that our total heap semantics correctly models the
standard semantics of separation logic assertions. However, because our assertion
language is more general than that of separation logic, not all properties of the
separation logic connectives transfer across to the full generality of SL+. For
example, in separation logic, the assertions a−∗(b−∗c) and (a∗b)−∗c are (always)
equivalent. This is not quite the case in SL+. In order to precisely characterise
the laws which hold, we require a notion of semantic entailment.

Definition 11 (Semantic Entailment, Validity and Equivalence). A SL+

assertion A is semantically valid (written ⊧SL+ A) if it holds in all situations;
i.e.,

⊧SL+ A⇔ ∀H,Π,σ. H,Π,σ ⊧SL+ A

Given SL+ assertions A and B, we say that A semantically entails B (and write
A ⊧SL+ B) if and only if B holds whenever A does; i.e.,

A ⊧SL+ B ⇔ ∀H,Π,σ. (H,Π,σ ⊧SL+ A ⇒ H,Π,σ ⊧SL+ B)

Given SL+ assertions A and B, we say that A is equivalent to B (and write
A ≡SL+ B) if and only if A ⊧SL+ B and B ⊧SL+ A.

We can now show how various laws which hold for separation logic transfer
(in some cases partially) to our more general setting of SL+.

Proposition 2. For all SL+ assertions A1, A2, A3:

1. ⊧SL+ A1 ∗ (A1 −∗A2)→ A2 and ⊧SL+ A1 ∧ (A1 → A2)→ A2

2. A1−∗(A2−∗A3) ⊧SL+ (A1∗A2)−∗A3 and A1 → (A2 → A3) ⊧SL+ (A1∧A2)→ A3

3. ∀H,Π,σ, if ∀Π ′. (Π ′⊥Π) ∧H,Π ′, σ ⊧SL+ A1 ⇒ Π ∗Π ′ frames A1, then:
H,Π,σ ⊧SL+ (A1 ∗A2) −∗A3 ⇒ H,Π,σ ⊧SL+ A1 −∗ (A2 −∗A3)

4. ∀H,Π,σ, if ∀Π ′. (Π ′⊥Π) ∧H,Π ∗Π ′, σ ⊧SL+ A1 ⇒ Π ∗Π ′ frames A1,
then: H,Π,σ ⊧SL+ (A1 ∧A2)→ A3 ⇒ H,Π,σ ⊧SL+ A1 → (A2 → A3)

5. If A1 ⊧SL+ (A2 −∗A3) then (A1 ∗A2) ⊧SL+ A3

6. If A1 is self-framing and (A1 ∗A2) ⊧SL+ A3 then A1 ⊧SL+ (A2 −∗A3)

To see that the usual separation logic laws do not all hold in general, consider for

example the two assertions P1
def= (x.f = 1 −∗ (x.f = 2 −∗ 1 = 2)) and P2

def= (x.f =
1 ∗x.f = 2)−∗ 1 = 2. The assertion P2 is always true, essentially because no heap
exists which satisfies (x.f = 1 ∗x.f = 2), and so the implication in the semantics
of the wand holds vacuously. However, the assertion P1 is not always true - if
we consider the case where we do not have permission to x.f when checking the
wand, we can pick two heaps which agree on our existing permissions and which

11

assign x.f the values 1 and 2 respectively. However, 1 = 2 will of course be false
in any configuration.

The usual separation logic laws do however hold for self-framing assertions
(which by Lemma 2) includes all separation logic assertions).

Corollary 1. For all self-framing SL+ assertions A1, A2, A3:

1. ⊧SL+ A1 ∗ (A1 −∗A2)→ A2

2. ⊧SL+ A1 ∧ (A1 → A2)→ A2

3. A1 −∗ (A2 −∗A3) ≡SL+ (A1 ∗A2) −∗A3

4. A1 → (A2 → A3) ≡SL+ (A1 ∧A2)→ A3

5. A1 ⊧SL+ (A2 −∗A3) if and only if (A1 ∗A2) ⊧SL+ A3

To complete this section, we observe that we are able to eliminate the “points-
to” assertions from our syntax without loss of expressiveness. This is because of
the following proposition:

Proposition 3. For all e,f ,e′,π we have e.f
π↦ e′ ≡SL+ acc(e.f, π) ∗ e.f = e′.

Proof. Directly from the semantics.

This result along with Theorem 1 shows that we can faithfully represent SL
assertions in an implicit dynamic frames logic, in which permissions are tracked
by accessibility predicates, and assertions about the heap are managed inde-
pendently. Because our proofs are inductive on the structure of assertions, this
representation result can also be applied to any fragments of SL. In particular,
if we take the core fragment of SL typically supported by tools (in which asser-
tions are built from separating conjunction and a restricted form of implication
in which A → B is only allowed if A is permission-free), then we can faithfully
encode this fragment into the logic of Chalice (Definition 4).

However, Chalice has its own semantics for this logic, which is implicitly
defined via the weakest-precondition semantics for the language. Therefore, in
order to provide a strong connection between standard separation logic and the
Chalice methodology we must also show that our total heap semantics can be
used to accurately reflect the semantics of Chalice. This is the focus of the next
section.

4 Verification Conditions

In this section, we precisely connect the semantics of our assertion language
with Chalice. Chalice does not provide a direct model for its assertion language.
It instead defines the semantics of assertions using the weakest pre-condition
semantics of the commands inhale and exhale. We show that this semantics
precisely corresponds with the semantics in SL+.

12

4.1 Chalice

Chalice is defined by a translation into Boogie2 [8], which generates verification
conditions on a many-sorted classical logic with first-order quantification. It has
sorts for mathematical maps, which are used by Chalice to encode both the heap
and the permission mask. We use ϕ to range over formulas in this logic, and
σ ⊧FO ϕ to mean ϕ holds in the standard semantics of first-order logic given the
interpretation of free variables σ, and ⊧FO ϕ means holds in all interpretations.

The definitions throughout this section generate expressions that have these
two specific free variables: H for the current heap, and P for the current permis-
sion masks. Thus, H[x, f] = 5 means in the current heap the variable x’s field
named f contains value 5. In the assertion logic, this corresponds to x.f = 5
where the heap access is implicit.

To enable us to relate the verification conditions in separation logic with
those in Chalice, we need to be able to relate formulas in one approach with the
other. We can provide a syntactic translation from the Chalice assertion logic
into the first-order logic.

Definition 12. We translate expressions that implicitly access the heap into
expressions that explicitly access the heap as follows:

TxU = x TnullU = null TE.fU =H[TEU, f]
and we translate formulas as follows:

Tacc(E.f, π)U = P[TEU, f] ≥ πTp ∗ qU = ∃P1,P2. TpU[P1/P] ∧ TqU[P2/P] ∧ (P1 ∗P2 = P)TE = E′U = TEU = TE′U
where [P1/P] means the replacement of P with P1, and P1 ∗P2 = P is a ternary
predicate, true if and only if ∀i.P1(i) +P2(i) ≤ 1 ∧P(i) = P1(i) +P2(i).

For example, the formula acc(x.f, π) ∗ x.f = 5 will be translated to

∃P1,P2. (P1[x.f] ≥ π) ∧ (H[x, f] = 5) ∧P = P1 ∗P2

which we can simplify to (P[x.f] ≥ π) ∧ (H[x, f] = 5), that is the current heap
contains 5 at x, f and the current permission mask has at least π permission on
that location.

By interpreting the heap variable with concrete heap, and the permission
mask variable with a concrete permission mask, we can show that the translated
formula is true iff the original SL+ formula was true.

Lemma 3. σ,H ↦H,P ↦Π ⊧FO TpU ⇐⇒ H,Π,σ ⊧SL+ p
where σ,H ↦ H,P ↦ Π is an interpretation that has all the mappings of σ and
additionally maps the current heap, H, and permission mask, P, to the heap, H,
and the permission mask, Π.

13

Chalice does not allow arbitrary formulas to be used as argument to inhale

and exhale: it restricts the formulas to be self-framing. Chalice does not use
the semantic check from earlier, but instead uses a syntactic formulation that
checks self-framing from left-to-right. Note that this means that syntactic self-
framing is not symmetric with respect to ∗. For instance, acc(x.f, π)∗x.f = 5 is
syntactically self-framing, but x.f = 5∗acc(x.f, π) is not. Somewhat surprisingly
this is required by the way the verification conditions are generated.

Definition 13. We define the footprint10 of a formula; an expression with the
H variable free in it, that has the type of a set of locations and field name pairs.

foot(E = E′) = {} foot(acc(E.f, π)) = {(TEU, f)}
foot(A ∗B) = foot(A) ∪ foot(B)

We define a boolean expression syn framedψ(E) to mean that all the fields men-
tioned in E are in the set ψ.

syn framedψ(E.f) = syn framedψ(E) ∧ TEU.f ∈ ψ
syn framedψ(x) = syn framedψ(null) = True

We lift this to formulas as

syn framedψ(E = E′) ⇐⇒ syn framedψ(E) ∧ syn framedψ(E′)
syn framedψ(acc(E.f, π)) ⇐⇒ syn framedψ(E.f)
syn framedψ(A ∗B) ⇐⇒ syn framedψ(A) ∧ syn framedψ∪foot(A)(B)

Note that when we check that B is framed in A ∗B, we can use the footprint of
A; these syntactic checks do not treat ∗ as associative and commutative.

A formula, A, is syntactically self-framing, if it is framed by the empty set,
syn framed∅(A).

We can now provide the definitions of the weakest pre-conditions of the com-
mands for inhale and exhale. In Figure 1, we present the weakest pre-conditions
of commands in Chalice from [9]. We write wpch(C,ϕ) for the weakest pre-
condition of the command C given the post-condition ϕ. Chalice models the
inhaling and exhaling of permission by mutating the permission mask variable.
To exhale an equality (or any formula not mentioning the permission mask) we
simply assert it must be true. This does not need to modify the permission mask.
To exhale p∗q, first we exhale p and then q. When an access predicate is exhaled,
first we check that the permission mask contains sufficient permission, and then
we remove the permission from the mask.

To inhale an equality, it is simply the same as assuming it. To inhale a p∗ q,
we first inhale p and then q. There are two cases for inhaling a permission:
(1) we don’t currently have any permission to that location; and (2) we do
currently have permission to that location. The first case proceeds by adding
the permission, and then havocing the contents of that location, that is, making
sure any previous value of the variable has been forgotten. The second case
simply adds the permission to the permission mask.

10 foot() corresponds to the required access set in [15].

14

wpch(exhale(E = E′), ϕ) = wpch(assert TE = E′U, ϕ)
wpch(exhale(p1 ∗ p2), ϕ) = wpch(exhale(p1);exhale(p2), ϕ)

wpch(exhale(acc(E.f, π), ϕ)
= wpch(assert(P[TEU, f]) ≥ π;P[TEU, f] ∶= P[TEU, f] − π,ϕ)

wpch(inhale(E = E′), ϕ) = wpch(assume TE = E′U, ϕ)
wpch(inhale(p1 ∗ p2), ϕ) = wpch(inhale(p1);inhale(p2), ϕ)

wpch(inhale(acc(E.f, π), ϕ)
= wpch(assume(P[TEU, f] = 0);P[TEU, f] ∶= π;havoc(H[TEU, f]), ϕ)
∧wpch(assume(0 < P[TEU, f] ≤ 1 − π);P[TEU, f]+=π; , ϕ)

where
wpch(P[o, f] ∶= x,ϕ) = ϕ[upd(P, (o, f), x)/P]
wpch(havoc(H[x, f]), ϕ) = ϕ[upd(H, (x, f), z)/H] fresh z
wpch(assume E,ϕ) = E → ϕ
wpch(assert E,ϕ) = E ∧ ϕ
wpch(C1;C2, ϕ) = wpch(C1,wpch(C2, ϕ))

where upd(a, b, c)[b] = c and upd(a, b, c)[d] = a[d] provided d ≠ b.

Fig. 1. Abridged weakest pre-condition semantics for Chalice [9]

4.2 Relationship

In the rest of this section, we show that the verification conditions (VCs) gen-
erated by Chalice are equivalent to those generated by SL+. We focus on the
inhale and exhale commands as these represent the semantics of the Chalice
assertion language. By showing the equivalence, we show that our model of SL+

is also a model for Chalice.
We write wpsl(C,A), to be the weakest pre-condition in SL+ of the formula

A with respect to the command C. We treat inhale and exhale as the multi-
plicative versions of assume and assert (see §2.1), and thus have the following
weakest pre-conditions:

wpsl(exhale(A),B) = A ∗B wpsl(inhale(A),B) = A −∗B

Our core result is to show that both inhale and exhale have equivalent VCs
in the two approaches.

Definition 14 (equiv(C)). We define the VCs of a command as equivalent in
both systems, equiv(C), iff for every self-framing SL+assertions, A, we have

⊧FO Twpsl(C,A)U ⇐⇒ wpch(C,TAU)
Our notion of equivalence of VCs only requires commands to have equiv-

alent weakest pre-conditions for self-framing post-conditions, thus we need to
show that each command preserves self-framing. If commands did not preserve
self-framing, then sequencing could not be proved by induction on the sub-
commands.

15

Lemma 4. Each command preserves semantic self-framing: If A and p are self-
framing, then so are wpsl(inhale p,A) and wpsl(exhale p,A).

The key to showing our semantics for SL+ correctly embodies Chalice is
to show that the VCs generated for the inhale and exhale commands are
equivalent. The exhale is straightforward.

Lemma 5. ∀p. equiv(exhale p)

Proof. By induction on p.

The proof of inhale is more involved. This depends on the inhaled formula
being syntactically self-framing. We must first prove a collection of lemmas to
enable the proof to proceed by induction. (1) We need to connect the weakest pre-
condition of an inhale with the footprint of a formula: that is, know that inhaling
a formula adds its footprint to the permission mask. (2) The Chalice’s VCs break
inhale p∗q into two inhales. This logically corresponds to currying/uncurrying
a wand formula in SL+, but this is only true if the first formula is framed in the
current world, so we need an analog of this for the VC world. Finally, (3) we
need to know that introducing additional havocs to locations outside the current
permission mask does not affect the weakest pre-condition assuming that the
post-condition is framed by the current permission mask.

Lemma 6.

1. wpch(assume(ψ < P);inhale p,A) is equivalent to
wpch(assume(ψ < P);inhale p ;assume(ψ ∪ foot(p) < P),A);

2. If syn framedψ(p1), then wpch(assume(ψ < P),Tp1−∗(p2−∗A)U) is equivalent
to wpch(assume(ψ < P),T(p1 ∗ p2) −∗AU); and

3. If syn framedψ(A), then wpch(assume(ψ < P);havoc(H[P]),TAU) is equiv-
alent to wpch(assume(ψ < P),TAU).

where ψ < P means ∀i ∈ ψ.P[i] ≠ 0, and havoc(H[P]) means havoc every field
in the heap with no permission in P.

Proof. 1. By induction on p.
2. Direct consequence of Proposition 2.3 and 2.2.
3. From definition of framing.

We want to show that if p is syntactically self-framing, then inhale p is equiv-
alent in both approaches. However, we need to prove a stronger fact that accounts
for the permissions we may have inhaled so far. In particular, as inhale p1 ∗ p2
is implemented by first inhaling p1 and then p2, when we consider inhaling p2 it
may not be self-framing. However, the context will have inhaled sufficient per-
missions that it is framed in that context. We prove that the VCs are equivalent
in a context in which the inhale is framed.

Lemma 7. If syn framedψ(p) and syn framedψ∪foot(p)(A), then

wpch(assume(ψ < P); inhale p,TAU)
⇐⇒ wpch(assume(ψ < P),Twpsl(inhale p,A)U)

16

Proof. By induction on p. The ∗ case uses Lemma 6.1 to rearrange the program
so that the inductive hypothesis can be used on q2, and Lemma 6.2. is used to
rearrange separation logic assertion:

wpch(assume(ψ < P); inhale q1 ∗ q2,TQU)
⇔ wpch(assume(ψ < P);inhale q1;assume(ψ ∪ foot(q1) < P);inhale q2,TQU)
⇔ wpch(assume(ψ < P);inhale q1;assume(ψ ∪ foot(q1) < P);Tq2 −∗QU)
⇔ wpch(assume(ψ < P);inhale q1,Tq2 −∗QU)
⇔ wpch(assume(ψ < P),Tq1 −∗ (q2 −∗Q)U)
⇔ wpch(assume(ψ < P),T(q1 ∗ q2) −∗QU)
⇔ wpch(assume(ψ < P),Twpsl(inhale q1 ∗ q2,Q)U)
The acc case uses Lemma 6.3 to show that their is no difference between hav-
ocing just the inhaled location, and havoc all locations that you do not have
permissions to. Assume that P[TEU.f] = 0,
wpch(assume(ψ < P);inhale acc(E.f, π),TQU)
⇔ wpch(assume(ψ < P);inhale acc(E.f, π);havoc(H[P]),TQU)
⇔ wpch(assume(ψ < P);P[TEU.f] ∶= π;havoc(H[TEU.f]);havoc(H[P]),TQU)
⇔ wpch(assume(ψ < P);havoc(H[P]);P[TEU.f] ∶= π,TQU)
⇔ wpch(assume(ψ < P),Tacc(E.f, π) −∗QU)
⇔ wpch(assume(ψ < P),Twpsl(inhale acc(E.f, π),Q)U)
Case where P[TEU.f] ≠ 0 follows similiarly.

Corollary 2. If p is syntactically self-framing, then equiv(inhale p).

Proof. As we only consider self-framing post-conditions follows trivially from
previous lemma.

Remark 1. Without the syntactic self-framing requirement on inhales, it would
be unsound to break inhale A∗B into inhale A;inhale B. In particular, in the
Chalice semantics, the behaviour of inhale(A ∗B) and inhale(B ∗A) are dif-
ferent. For instance, consider inhale(x.f = 3∗acc(x.f)) and inhale(acc(x.f)∗
x.f = 3).

wpch(inhale(x.f = 3 ∗ acc(x.f)),Tx.f = 3U) ⇐⇒ x.f ≠ 3
wpch(inhale(acc(x.f) ∗ x.f = 3),Tx.f = 3U) ⇐⇒ true

The translation given by Smans et al. [15] does not suffer this problem as it
does the analogue of inhale in a single step. However, it checks self-framing in
a similar way, and thus would also rule out the first inhale.

In this section, we have shown that the encoding of inhale and exhale into
Boogie2 is equivalent to the separation logic weakest pre-condition semantics.
As a consequence, we have shown two things: (1) our model accurately reflects
the semantics of Chalice’s assertion language, and (2) a fragment of separation
logic can be directly encoded into Chalice precisely preserving its semantics.

17

5 Related Work

In this paper, we have provided a version of separation logic [5, 11], which allows
arbitrary expressions over the heap. We have modified the standard presenta-
tion of an object-oriented heap for separation logic [12] to separate the notion
of access from value. Most previous separation logics have combined these two
concepts. One notable exception is the separation logic for reasoning about Cmi-
nor [1]. This logic also separates the ability to access memory, the mask, from
the actual contents of the heap. The choice in this work was to enable a reuse of
a existing operational semantics for Cminor, rather than producing a new opera-
tional semantics involving partial states. In the Cminor separation logic, they do
not consider the definition of magic wand, or weakest pre-condition semantics,
which is crucial for the connection with Chalice [9].

Smans’ original presentation of IDF was implemented in a tool, VeriCool [15,
14]. The results in this paper, should also apply to the verification conditions gen-
erated by VeriCool. In recent work, Smans et al. [16] describe an IDF approach
as a separation logic. However, they do not present a model of the assertions,
just the VCs of their analog of inhale and exhale. Hence, it does not provide the
strong connection between the VCs and the model of separation logic that we
have provided.

There have been many other approaches based on dynamic frames [6, 7] to
enable automated verification with standard verification tool chains, for instance,
Dafny [13] and Region Logic [2]. Like Chalice, both also encoded into Boogie2.
The connection between these logics and separation logic is less clear. They ex-
plicitly talk about the footprint of an assertion, rather than implicitly. However,
our new separation logic might facilitate greater comparison.

6 Extensions and Applications

In this section we highlight the potential impact of our connection between
separation logic and the implicit dynamic frames of Chalice, by explaining several
ways in which ideas from one world can be transferred to the other.

Supporting Extra Connectives Our extended separation logic supports many
more connectives than have previously existed in implicit dynamic frames log-
ics. For example, the support for a “magic wand” in the logic (or indeed an
unrestricted logical implication) is a novel contribution, which paves the way for
investigating how to extend Chalice to support this much-richer assertion lan-
guage. While a formal semantics for the magic wand does not immediately tell
us how to implement inhaling and exhaling such assertions correctly, it provides
us with a means of formally evaluating such a proposal. Furthermore, our direct
semantics for the assertion logic of Chalice provides a means of judging whether
a particular implementation is faithful to the intended logical semantics.

18

Evaluating the Chalice Implementation Various design decisions in the
Chalice methodology can be evaluated using our formal semantics. For example,
Chalice deals with potential interference from other threads by “havocing” heap
locations whenever permission to the location is newly granted. An alternative
design would be to “havoc” such locations whenever all permission to them
was given up in an exhale, instead. This would provide different weakest pre-
conditions for Chalice commands, and it would be interesting to investigate what
differences this design decision makes from a theoretical perspective. Our results
provide the necessary basis for such investigations.

Separation logics typically feature recursive (abstract) predicates in their as-
sertion language. The Chalice tool also includes an experimental implementation
of recursive predicates (without arguments), along with the use of “functions”
in specifications to describe properties of the state in a way which could sup-
port information hiding. In the course of investigating how to extend our results
to handle predicates in the assertion logics, we discovered that the current ap-
proach to handling predicates/functions in Chalice is actually unsound in the
presence of functions and the decision to havoc on inhales rather than exhales.
We, and the Chalice authors, are now working on a redesign of Chalice predi-
cates based on our findings. As above, the formal semantics and connections we
have provided give us excellent tools for evaluating such a redesign.

Implementing Separation Logic One exciting outcome of the results we
have presented is that a certain fragment of separation logic specifications can
be directly represented in implicit dynamic frames and automatically verified
using the Chalice tool. This is a consequence of three results:

1. We have shown that our total heap semantics for separation logic coincides
with its prior partial heaps semantics.

2. We have shown that we can replace all “points-to” predicates with logical
primitives from implicit dynamic frames, preserving semantics.

3. We have shown that the Chalice weakest-pre-condition calculation agrees
with the weakest pre-conditions used in separation logic verification.

The critical aspect which is missing is the treatment of predicates - once we can
extend our correspondence results to handle recursively-defined predicates in the
logics (which are used in virtually all separation logic verification examples), then
it will be possible to exploit our work to use Chalice to implement separation
logic verification. This will open up many interesting practical areas of work,
in comparing the performance and encodings of verification problems between
Chalice and separation logic based tools.

Old Expressions We have also observed that the use of a total heap seman-
tics seems to make it easy to support certain extra specification features in a
separation logic assertion language. In particular, the use of “old” expressions
in method contracts (allowing post-conditions to explicitly mention values of
variables and heap locations in the pre-state of the method call) is awkward to

19

support in a partial heaps semantics, since it expresses relationships between
partial heap fragments which may not have obviously-related domains. As a
consequence, separation logic based tools typically do not support this feature.
However, with our total heap semantics it seems rather easy to evaluate old ex-
pressions by simply replacing our total heap with a copy of the pre-heap. While
the details remain to be worked out, this seems to suggest that both separa-
tion logic and implicit dynamic frames can be made more expressive using the
connections proved in our work.

Acknowledgements

We thank Mike Dodds, David Naumann, Ioannis Kassios, Peter Müller and
Sophia Drossopoulou for feedback on drafts of this paper.

References

1. A. W. Appel and S. Blazy. Separation logic for small-step Cminor. In TPHOLs,
pages 5–21, 2007.

2. A. Banerjee, D. Naumann, and S. Rosenberg. Regional logic for local reasoning
about global invariants. In ECOOP, pages 387–411, 2008.

3. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL, pages 259–270, 2005.

4. J. Boyland. Checking interference with fractional permissions. In SAS, 2003.
5. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data

structures. In POPL, pages 14–26. ACM Press, 2001.
6. I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing

without restrictions. In FM, pages 268–283, 2006.
7. I. T. Kassios. A Theory of Object Oriented Refinement. PhD thesis, 2006.
8. K. R. M. Leino. This is Boogie 2. Available from http://research.microsoft.com/en-

us/um/people/leino/papers.html.
9. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In

ESOP, pages 378–393, 2009.
10. P. W. O’Hearn. Resources, concurrency and local reasoning. TCS, 2007.
11. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that

alter data structures. In CSL, pages 1–19, London, UK, 2001. Springer-Verlag.
12. M. Parkinson. Local Reasoning for Java. PhD thesis, University of Cambridge,

November 2005.
13. K. Rustan and M. Leino. Dafny: An automatic program verifier for functional

correctness. In LPAR, 2010.
14. J. Smans. Specification and Automatic Verification of Frame Properties for Java-

like Programs (Specificatie en automatische verificatie van frame eigenschappen
voor Java-achtige programma's). PhD thesis, FWO-Vlaanderen, May 2009.

15. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In ECOOP, volume 5653, pages 148–172, July 2009.

16. J. Smans, B. Jacobs, and F. Piessens. Heap-dependent expressions in separation
logic. In FMOODS/FORTE, pages 170–185, 2010.

20

A Some proofs (not in published version)

A.1 Theorem 1: Correctness of Total-Heaps Semantics

For all SL-assertions a, environments σ, total heaps H, and permissions maps
Π:

H,Π,σ ⊧SL+ a ⇐⇒ (H↾Π), σ ⊧SL a
Proof. By induction on the structure of a.

a ≡ x.f π↦ v:

H,Π,σ ⊧SL+ a
⇔ Π[σ(x), f] ≥ π and H[σ(x), f] = v
⇔ (x, f) ∈ dom(H↾Π) and (H↾Π)[σ(x), f] = v
⇔ (H↾Π), σ ⊧SL a

a ≡ e1 = e2:
H,Π,σ ⊧SL+ a

⇔ σ(e1) = σ(e2)
⇔ (H↾Π), σ ⊧SL a

a ≡ a1 ∗ a2:
H,Π,σ ⊧SL+ a

⇔ ∃Π1,Π2. Π =Π1 ∗Π2 and
H,Π1, σ ⊧SL+ a1 and H,Π2, σ ⊧SL+ a2

⇔ ∃Π1,Π2. Π =Π1 ∗Π2 and
(H↾Π1), σ ⊧SL a1 and (H↾Π2), σ ⊧SL a2

⇔ (H↾Π), σ ⊧SL a

a ≡ a1 −∗ a2:
H,Π,σ ⊧SL+ a

⇔ ∀Π1 ⊥Π,∀H1
Π≡ H. H1,Π1, σ ⊧SL+ a1 ⇒H1,Π ∗Π1, σ ⊧SL+ a2

⇔ ∀Π1 ⊥Π,∀H1
Π≡ H. (H1↾Π1), σ ⊧SL a1 ⇒ (H1↾(Π ∗Π1)), σ ⊧SL a2

⇔ ∀Π1 ⊥Π,∀H1
Π≡ H. (H1↾Π1), σ ⊧SL a1 ⇒ (H↾Π ∗H1↾Π1), σ ⊧SL a2

⇔ ∀H3 ⊥ (H↾Π). H3, σ ⊧SL a1 ⇒ (H↾Π) ∗H3, σ ⊧SL a2
⇔ (H↾Π), σ ⊧SL a

A.2 Lemma 5

Proof. p ≡ E: Twpsl(exhale E,Q)U
⇐⇒ TE ∗QU
⇐⇒ TE ∧QU
⇐⇒ TEUH ∧ TQU
⇐⇒ wpch(assert E,TQU)
⇐⇒ wpch(exhale E,TQU)

21

p ≡ acc(x.f, π):

Twpsl(exhale acc(x.f, π),Q)U
⇐⇒ Tacc(x.f, π) ∗QU
⇐⇒ ∃Π1,Π2.Π1 = [x, f ↦ π] ∧ TQU[Π2/Π] ∧Π1 ∗Π2 =Π
⇐⇒ ∃Π1,Π2.Π1 = [x, f ↦ π] ∧ TQUH,Π2 ∧Π2 =Π −Π1 ∧Π1 ⊆Π
⇐⇒ ∃Π2.TQUH,Π2 ∧Π2 =Π − [x, f ↦ π] ∧ [x, f ↦ π] ⊆Π
⇐⇒ TQUH,Π − [x, f ↦ π] ∧ [x, f ↦ π] ⊆Π
⇐⇒ wpch(assert Π[x, f] ≥ π,TQUH,Π − [x, f ↦ π])
⇐⇒ wpch(assert Π[x, f] ≥ π;Π[x, f] ∶=Π[x, f] − π,TQU)
⇐⇒ wpsl(exhale acc(x.f, π),TQU)

p ≡ p1 ∗ p2:

Twpsl(exhale p1 ∗ p2,Q)U
⇐⇒ Tp1 ∗ p2 ∗QU (by definition of wp)
⇐⇒ Twpsl(exhale p1, p2 ∗Q)U (by definition of wp)
⇐⇒ Twpsl(exhale p1,wpsl(exhale p2,Q))U (by definition of wp)
⇐⇒ wpch(exhale p1,Twpsl(exhale p2,Q)U) (by IH)
⇐⇒ wpch(exhale p1;exhale p2,TQU) (by IH)
⇐⇒ wpch(exhale p1 ∗ p2,TQU) (by definition of wp)

22

