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Abstract. The automation of verification techniques based on first-
order logic specifications has benefited greatly from verification infras-
tructures such as Boogie and Why. These offer an intermediate language
that can express diverse language features and verification techniques,
as well as back-end tools such as verification condition generators.
However, these infrastructures are not well suited for verification tech-
niques based on separation logic and other permission logics, because
they do not provide direct support for permissions and because existing
tools for these logics often prefer symbolic execution over verification con-
dition generation. Consequently, tool support for these logics is typically
developed independently for each technique, dramatically increasing the
burden of developing automatic tools for permission-based verification.
In this paper, we present a verification infrastructure whose intermediate
language supports an expressive permission model natively. We provide
tool support, including two back-end verifiers, one based on symbolic
execution, and one on verification condition generation; this facilitates
experimenting with the two prevailing techniques in automated verifi-
cation. Various existing verification techniques can be implemented via
this infrastructure, alleviating much of the burden of building permission-
based verifiers, and allowing the developers of higher-level techniques to
focus their efforts at the appropriate level of abstraction.

1 Introduction

Over the last 15 years, static program verification has made significant progress.
Among the theoretical and practical achievements which enabled this progress,
two have been particularly influential. First, the development of widely-used
common architectures for program verification tools, simplifying the develop-
ment of new verifiers. Second, the development of permission logics (of which
separation logic [28] is the most prominent example), simplifying the specifica-
tion and verification of heap-manipulating programs and concurrent programs.

Many modern program verifiers use an architecture in which a front-end
tool translates the program to be verified, together with its specification, into
a simpler intermediate language such as Boogie [18] or Why [8]. The interme-
diate language provides a medium in which diverse high-level language features



and verification problems can be encoded, while allowing for the development of
efficient common back-end tools such as verification condition generators. Devel-
oping a verifier for a new language or a new verification technique is, thus, often
reduced to developing an encoding into one of these intermediate languages.
For instance, Boogie is at the core of verifiers such as Chalice [22], Corral [15],
Dafny [19], Spec# [21], and VCC [6], while Why powers for instance Frama-C
and Krakatoa [7].

However, this infrastructure is generally not ideal for verifiers based on per-
mission logics, such as separation logic. Verification condition generators and
automatic theorem provers support first-order logic, but typically have no sup-
port for permission logics because of their higher-order nature. Therefore, most
verifiers based on these specialised logics implement their own reasoning en-
gines for each technique independently, which increases the burden of developing
general-purpose automatic tools for permission-based verification.

In this paper, we present a verification infrastructure whose intermediate
language Silver has a flexible notion of permissions built into its design. This
allows for simple encodings of permission-based verification techniques. Along
with the implementation of the language, we provide two back-end verifiers:
Silicon, based on symbolic execution, and Carbon, based on verification condition
generation (via an encoding into Boogie). Various existing approaches can be
implemented via this common tool infrastructure, alleviating much of the burden
of building permission-based verifiers, and allowing the developers of higher-
level techniques to focus their efforts at this level of abstraction. The presented
infrastructure enables research groups to build research prototypes more rapidly
and facilitates the experimental evaluation and comparison of their results.

Outline. The next section describes the intermediate language Silver, and ex-
plains how various important high-level features can be encoded into the lan-
guage. An example translation of a source program into Silver is presented in
Section 3. Section 4 describes the back-end verifiers Silicon and Carbon. Section 5
discusses related work, and Section 6 concludes and outlines future work.

2 The Silver Language

The Silver language is designed with two equally-important goals in mind: first,
to provide support for a variety of permission-based verification approaches and
second, to facilitate the development of a variety of back-end tools such as veri-
fiers based on symbolic execution and verification condition generation, as well
as inference tools based on, for instance, abstract interpretation.

While Silver includes some basic programming features such as methods,
loops, and conditionals, the emphasis of Silver is to provide a small core of
verification primitives that allow one to encode a wide variety of source-level
programming constructs and verification approaches. Permission-based verifi-
cation approaches such as separation logics and implicit dynamic frames [29]
control access to the program heap using some notion of permission. Permis-
sions simplify framing (that is, proving that an assertion is not affected by a



heap modification), as well as reasoning about concurrency. Fractional permis-
sions [4] allow for a permission to be split into parts and shared amongst several
program entities (e.g. threads), although such a partial permission only permits
reading from the corresponding heap location. The full permission is needed to
write a heap location. In particular, so long as a method holds some permission
to a memory location, no other method or thread can possibly be permitted to
write to the location and, thus, its value can be assumed to remain stable.

The essence of many verification problems in permission-based approaches
can be expressed generically in terms of when permission to certain heap lo-
cations is gained (along with information about the values of those locations),
and lost (incurring a corresponding loss of information). These concepts can be
expressed directly in Silver in the form of special inhale and exhale operations
(see Section 2.2), which can be seen as permission-aware analogues of the assume
and assert statements classically used to define verification conditions.

In this section, we describe the most important language constructs in Silver
and some examples of their usage to implement important source-level features.
For a more exhaustive description of the language, we provide a grammar in
Appendix A. A test suite of example programs is also available along with our
tools online, at www.pm.inf.ethz.ch/research/viper

2.1 Program Organisation

A Silver program consists of a sequence of global declarations, which can declare
fields, methods, predicates, functions, and custom domains (see Section 2.5).
Methods have no implicit receiver (“this” in many languages), but can have
any number of in and out parameters. Predicates [24] can be used both to ab-
stract over concrete assertions and to write recursive specifications of heap data
structures. Functions can be used both in program expressions and in assertions,
in a similar way to the use of pure methods in specification languages such as
JML [16] and Spec# [1]. Function bodies are expressions rather than statements;
in Silver this guarantees their evaluation to be side-effect free.

Verification of Silver programs is method-modular; method calls are verified
with respect to the specification of the callee method, but not its implementation.
The statements of the language do not introduce any concurrency explicitly.
Instead, concurrent programming features must be encoded appropriately by a
front-end tool; Section 3 shows this for a concrete example.

Program State. A Silver program state includes the current heap and the cur-
rent assignment of values to program variables. In addition to the current heap,
the meaning of “old” expressions can depend on the heap as it was in the pre-
state of the current method. Unlike in other intermediate verification languages
such as Boogie, the heap is a “built-in” notion: it need not (and cannot) be man-
ually defined and explicitly named in the Silver program. This design decision
simplifies the static analysis of Silver programs via abstract interpretation, and
also makes Silver programs easier to read and write.
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The program state also tracks the permissions held by the current method
invocation: to which heap locations permission is held, and how much. For de-
bugging purposes, the current permissions to a particular field location can be
queried by an expression perm(e.f), although it is rarely necessary to do this.
Instead, permissions are typically manipulated through statements that inhale
or exhale permissions (see Section 2.2). Verifiers for Silver will check at various
points that appropriate permissions are currently held. For example, when en-
countering an assignment x:=y.f (or indeed, any dereference of a heap location
y.T), the Silver semantics requires that y is non-null and that a non-zero amount
of permission is held to the heap location denoted by y.f. When modifying the
heap location, the full permission to the location is required, as is standard
when employing fractional permissions. These conditions are part of the Silver
semantics and, thus, need not be written manually in a Silver program.

2.2 Permissions

Silver provides a number of constructs for writing specifications which pre-
scribe a transfer of permissions. These constructs are based on implicit dynamic
frames [29,20]. The most fundamental construct is the accessibility predicate,
acc(ey.f, e2), which represents permission to a single field location: the field f of
the reference denoted by e;. The optional expression es specifies the amount of
permission; by default, the full (write) permission is used. Silver supports syntax
for fractional permissions [4], including basic arithmetic operators.

As an example, a method precondition acc(x.f) && x.f > 0 expresses that
the method requires the permission to the field location x.f and expects the
value of this heap location to be positive!. An expression that dereferences the
heap, such as x. f in the above example, will be checked to occur only in contexts
where some permission to the corresponding heap location is held; in a method
precondition, this can only be guaranteed if the permission is also required in
the precondition, as in our example.

Inhale and Exhale. Just as first-order verification languages are typically
based around assume and assert statements, verification in Silver centres around
their permission-aware analogues: inhale and exhale statements. Conceptually,
the operation inhale A acts just as an assume statement for all pure assertions
(that is, assertions that do not include accessibility predicates); any permissions
specified in A via accessibility predicates are added to the current program state.
Dually, an exhale statement causes all first-order assertions to be asserted to
be true, and all permissions to be removed from the current program state.
These basic operations can be used to define the verification semantics of
many higher-level constructs. For example, a method call to a method whose

! In separation logic, this precondition would typically be written x.£f — v & v > 0
using an extra logical variable v; encoding separation logic into Silver is simple, and
the formal relationship has been explored [25].



precondition is some assertion pre and postcondition is some assertion post,
can be desugared into the two operations:

exhale pre
inhale post

Fork and join operations of a front-end language can be encoded in Silver anal-
ogously to a method call: a fork of a new thread is an exhale of the appropriate
method’s precondition, and a join is an inhale of the appropriate postcondition
(of course, these need not occur immediately after one another in the program).
Similarly (modulo considerations of deadlock avoidance), acquiring a monitor
can be modelled as an inhale of the monitor invariant, and releasing can be mod-
elled by a corresponding exhale [20]. This illustrates the flexibility of working
at the level of inhale and exhale operations: details of the front-end language’s
runtime behaviour can be abstracted away; only the relevant proof obligations
and permission manipulations need be represented in the Silver program.

Just as with assume statements in other verification languages, inserting
arbitrary inhale statements into a Silver program can make it meaningless, from
a verification perspective. For example, inhale false causes any subsequent
proof obligations to be made trivial. It is the responsibility of the Silver writer
(or front-end translation) to employ inhale statements only where they are
justified, for instance, by a corresponding exhale somewhere else in the program.

For debugging purposes, Silver also provides an assert statement, which
acts as an exhale but does not remove any permissions.

2.3 Recursive Definitions

Silver provides two main features for using recursive definitions in specifications:
predicates (which can recursively define assertions), and functions (which can re-
cursively define expressions for use in both specifications and implementations).

Predicates, Fold and Unfold. In order to specify permission to an unbounded
number of heap locations, Silver assertions can include recursive predicates [24].
A predicate definition has a name, any number of parameters, and an assertion
as its body. For example, the following predicate definition requires permissions
to all locations of a linked list:

predicate list(l: Ref) {
acc(l.val) && acc(l.next) &&
(l.next # null = 1list(l.next))
}

In a static verification tool, such a definition could be expanded an unbounded
number of times, since the depth of recursion is not statically known, in general.
In order to avoid the problem of potentially infinite unrollings of recursive pred-
icate definitions, Silver takes the common approach that a predicate instance is
not treated as purely synonymous with the assertion defined by its body [30].



Instead, a predicate instance such as 1ist (1) can be explicitly exchanged for
its body: a statement unfold list(1l) first checks that the predicate instance
is indeed held, removes that instance from the current state, and inhales the
assertion from the predicate’s body. For instance, 1ist (1) needs to be unfolded
in order to gain permission to 1.next. A fold statement performs the inverse
operation, exchanging a predicate’s body for a predicate instance. The following
example illustrates the use of fold and unfold in the traversal of a linked list:

method sum(l: Ref) returns (s: Int)
requires list (1)
ensures list (1)
{
s := 0
unfold 1list (1)
if (1.next # null) { s := sum(l.next) }
s = s + l.val
fold 1list (1)
}

Predicate definitions are interpreted according to their least fix-points; a built-in
assumption in the verification of Silver is that a predicate instance never has an
“infinite unrolling”. This does not prevent predicates from describing cyclic data
structures; their definitions could detect the cycle and prevent further recursion.

Note that although the verifiers provided for Silver (see Section Section 4)
require explicit fold and unfold statements, these could potentially be inferred
by a front-end tool or other static analysis.

2.4 Functions

As a complementary feature to predicates, Silver also provides recursive func-
tions, to be used in specifications and implementations. A function definition
consists of a function name, parameters, a precondition, an optional postcondi-
tion, and an expression for the function’s body. The precondition must include
sufficient permissions to allow all heap dereferences performed in the function’s
body. For example, the following function computes whether all elements of a
linked-list data structure (as defined by the 1ist predicate above) are greater
than the specified parameter:

function all_larger(l: Ref, n: Int): Bool
requires list (1)
{ unfolding 1list(l) in
l.val > n && (1l.next # null = all_larger(l.next, n) }

The unfolding expression has no effect on the value of the nested expression
(after the “in”); its purpose is to temporarily unfold the specified predicate
instance before checking whether appropriate permissions are held for the nested
expression. In this example, this allows the nested expression to access 1.val
and 1.next. An invocation of a function is allowed to occur only in contexts in
which its precondition holds, for instance, in a method precondition such as:

list(l) && all_larger(1l,0)




Function definitions must guarantee termination in states in which their pre-
conditions hold. This termination check may depend on the finite-unrolling of
predicate instances; in the example above, the fact that a predicate instance is
unfolded around the recursive call is sufficient to pass termination checks?.

Note that the constraints imposed by including the function in the example
assertion above could instead have been included in the definition of the 1ist
predicate, removing the direct need for a function definition. However, this would
make the list predicate no longer reusable in other contexts in which different
constraints on the list values (such as sortedness) might alternatively be required.
Furthermore, functions can be used also in implementations (their use is similar
to that of pure methods in specification languages such as JML [16]).

2.5 Types and Domains

Silver includes a very simple type system. The built-in primitive types are: Int,
Bool, Ref and Perm (for expressions denoting permission amounts). The type
Ref encompasses all references in the program; any more fine-grained notion of
typing (in particular, class types) must be encoded by front-end tools. Silver
also provides built-in support for polymorphic sequence and set types, written
Seq[T] and Set [T], respectively. Standard operations on sequences and sets are
pre-defined; support in the verifiers is achieved via an axiomatisation based on
that used in Dafny [17].

In addition to the built-in types, custom domain types can be defined, in-
cluding appropriate axioms and functions about the corresponding domain types.
Declarations of domain types may be polymorphic (via type parameters). They
are global to the program, and cannot refer to a program state. As an example of
a custom domain type, one can easily define generic (fixed-length) tuple types,
such as pairs:

domain Pair[X,Y] {
function pair(x: X, y: Y) : Pair[X,Y]
function first(p: Pair[X,Y]) : X
function second(p: Pair[X,Y]) : Y

axiom axl { (V x:X, y:Y e first(pair(x, y)) == x) }
axiom ax2 { (V x:X, y:Y e second(pair(x, y)) == y) }
}

Note that domain types are not ADTSs; built-in support for constructors and
induction may be added in future versions of Silver.

2.6 Paired Assertions

When encoding a high-level verification approach into an intermediate language,
it is often appropriate to allow some properties to be used without checking them;
these properties need to be justified elsewhere, for instance, by a soundness proof

2 At present, this is the only termination measure supported in Silver, but we plan to
extend this to more general termination measures in the near future.



for a verification technique. Other intermediate languages express such properties
via assume statements and designated specification constructs such as free pre
and postconditions [18].

Silver provides a uniform way of adding externally-justified properties to any
assertion (such as method preconditions, loop invariants, and predicate defini-
tions) via paired assertions of the form [A;,As]. Inhaling such as assertion
means the same as inhaling A, while exhaling means exhaling As. For instance,
Boogie’s free precondition is expressed in Silver as a regular precondition with
a paired assertion whose second component is simply true.

One application of paired assertions is to provide the verifier (which does
not understand induction natively) with the extra flexibility that an instance of
inductive reasoning would provide. For example, the following paired assertion
allows the verifier to use the more direct form of a quantified assertion when
inhaling, but to prove instead the appropriate premise of a proof by (strong)
induction when exhaling:

[V x: Int e x >0 = P(x) ,
V x: Int e (V y: Int e y>0 && y<x = P(y)) && x > 0 = P(x)
]

2.7 Wildcard and Abstract Read Permissions

Fractional permissions allow one to distinguish between read and write access
to heap locations, but can lead to specification overhead, due to having to se-
lect appropriate concrete fractions when writing specifications. For most read
accesses, it is sufficient to check that some positive amount of permission is
held, but the exact amount is irrelevant. For this purpose, Silver allows a syn-
tax acc(e.f,wildcard), which represents some positive permission amount.
When exhaling this assertion, provided some positive amount of permission is
held, the amount given away is always strictly smaller, and need not be specified
concretely.

A drawback of wildcard permissions is that once it has been given away, it
is not possible to re-gain the same permission amount, for instance, to reobtain a
full permission. That is, giving away a wildcard permission to a location make
the location immutable. In scenarios in which a read permission needs to be
given away, but later re-obtained, the need to specify concrete fractions can still
be avoided through the use of abstract read permissions [11]. This idea allows
programs to introduce a name for some fresh permission amount which, during
a following sequence of exhales will always be guaranteed to be smaller than
the amounts currently held. By giving a name to the amount, it can be tracked
precisely in specifications. By guaranteeing that the exhaled amount is strictly
smaller than the amounts held, some amount of permissions also always remains
after the exhales, which simplifies framing.

In Silver, the statement fresh k; (for some variable k of type Perm) assigns
an arbitrary, positive permission amount to k. This amount is constrained further
during block statements of the form constraining (k) { ... } . Executing the



body of the block (usually consisting of one or more exhale statements) adds
extra constraints on the (under-specified) value of k, to reflect it being chosen
to be “small enough”. A methodology for soundly exploiting this functionality
for method calls and fork/join concurrency is described in detail in [11].

3 Using Silver: An Example

Figure 1 presents the famous Owicki-Gries example, in which two concurrently-
running threads compete for a lock, each wishing to increment the same shared
counter. The Owicki-Gries specification approach is to employ two extra ghost
variables (represented as extra fields g1 and g2 in the example code), represent-
ing each thread’s contribution to the value stored in count. The permission to
access these ghost fields is split between the monitor invariant (which can be
obtained only by acquiring the monitor), and the respective threads. Since the
monitor invariant maintains a constraint about the count variable, while the
individual threads can talk about their own ghost variables, the combined effect
of the threads can be reasoned about in the OwickiGries method.

class 0G {
var count : int;
ghost var g0, gl : int;

monitor-invariant :=
acc(count) && acc(g0d, 1/2) && acc(gl, 1/2) && count == g0 + gl

method OwickiGries () {
var x := new 0G{ count := 0, g0 := 0, gl := 0 }
share x // create monitor

fork worker0 := x.Worker (true)
fork workerl := x.Worker(false)
join workerO; join workerl

acquire x
assert x.count ==

}

method Worker (b: bool)
requires (b ? acc(g0, 1/2) : acc(gl, 1/2))

ensures b = acc(g0, 1/2) && g0 == o0ld(g0) + 1

ensures !b = acc(gl, 1/2) && gl == old(gl) + 1
{

acquire this

count := count + 1

if (b) { g0 := g0 + 1 }

else {gl :=g1 + 11}

release this
}

Fig. 1. Owicki Gries example, at source level (based on syntax of Chalice language).
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field count: Int;

field gO: Int;

method OwickiGr
var x : Ref;
x.count := 0;

exhale acc(x.
&& x

var old_gO0
exhale acc(x.

var old_gil
exhale acc(x.

field gl: Int
ies O {
x := new(x*); // inhale permission to all fields

x.g0 = 0; x.gl = 0;

count) && acc(x.g0,1/2) && acc(x.gl,1/2)
.count == x.g0 + x.gl // create monitor

Int := x.g0; // save old(z.g0)

g0,1/2) // fork Worker(z,true)

Int := x.g1 // save old(z.g1)

gl,1/2) // fork Worker(z, false)

// join threads

inhale acc(x.g0,1/2) && x.g0 == o0ld_g0 + 1

inhale acc(x.gl,1/2) && x.gl == old_gl + 1

inhale acc(x.count) && acc(x.g0,1/2) && acc(x.gl,1/2)
&& x.count == x.g0 + x.gl // acquire monitor

assert x.count == 2

}

method Worker (this:Ref, b:Bool)

requires b ?
ensures b =
ensures !'b =

inhale acc(th

acc(this.g0, 1/2) : acc(this.gl, 1/2)
acc(this.g0, 1/2) && this.g0 == old(this.g0) + 1
acc(this.gl, 1/2) && this.gl == old(this.gl) + 1

is.count) && acc(this.g0, 1/2) && acc(this.gl, 1/2)

&% this.count == this.g0 + this.gl // acquire monitor

this.count :=
if (b){ this
else { this

exhale acc(th

this.count + 1
.g0 := this.g0 + 1 }
.gl := this.gl + 1 }

is.count) && acc(this.g0,1/2) && acc(this.gl,1/2)

&% this.count == this.g0 + this.gl // release monitor

Fig. 2. Owicki Gries example from Figure 1, encoded in Silver.

Figure 2 shows

a possible encoding of the program of Figure 1 into Silver.

Note that the concurrency constructs no longer occur explicitly in the program;
instead, they have been replaced with appropriate inhale and exhale state-
ments, capturing the same effect from a verification perspective. For example,
acquiring a monitor is replaced by an inhale of the corresponding monitor in-
variant, while forking a thread is replaced by an exhale of its precondition. Note
that the specifications of Worker have been simplified at call-site (based on the
known value of the boolean parameter); such simplifications may or may not
be performed by a front-end tool, and are performed in the Silver AST when
they can be resolved statically. Note also that the encoding of old expressions
from the source program requires recording the values of the corresponding ex-
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pressions at the pre-states of the forked threads: exactly which expressions need
their values saving can be computed based on the (simplified) specifications of
Worker.

As discussed in Section 2, the Silver representation of the program can ab-
stract over the concrete constructs used in the source program, and concentrate
on their verification semantics. The Silver file shown verifies in both of our ver-
ifiers (Carbon and Silicon), which are described in the next section.

4 The Viper Infrastructure

The Viper verification infrastructure is built around Silver, as depicted in Fig-
ure 3. The Silver AST is constructed by a front-end. Currently, Viper includes
three front-ends: a parser for textual Silver files, as well as two proof-of-concept
translations: one for Chalice [22] and one for a small subset of Scala. Verification
of Silver programs is performed by a back-end. Viper includes two stable back-
ends: Silicon, a verifier based on symbolic execution (SE), and Carbon, a verifier
based on verification condition generation (VCG). Both use the theorem prover
73 [23] to discharge proof obligations; Silicon uses Z3 directly, while Carbon
encodes Silver programs into Boogie programs.

—————

] ,—I Scala2silver !
/0 }

front-ends [ChaliceZSiIver [ Silver

Parser

—_——— -

verified by

back-ends

queries

(Microsoft)

Fig. 3. The Viper infrastructure built around Silver. Rounded boxes denote tools; tools
depicted as solid boxes are considered reasonably stable, whereas dashed boxes are in
an experimental stage and not described in this paper.

All of our tools are implemented in Scala and can thus be used under Win-
dows, Mac OS and Linux (Boogie and Z3 can also be compiled for these systems).
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4.1 Verification Condition Generation vs. Symbolic Execution

One of the key differences between VCG and SE is that VCG encodes all relevant
information about the method to be verified into a verification condition and lets
the theorem prover reason about it, whereas SE for permission logics [2] reasons
about heap properties directly in the verifier and queries the theorem prover
only for non-heap-related properties such as arithmetic. Experiments previously
conducted by us [13] have shown that SE tends to be faster than VCG, but they
also showed that the performance gain comes at the cost of occasional incom-
pletenesses in the verification. Having an SE-based and a VCG-based verifier
for the same language (and using the same theorem prover) facilitates experi-
menting with the two prevailing techniques in automated verification, and helps
us to develop a deeper understanding of which problems are more amenable to
which technique. We have observed, for example, that VCG makes it easier to
support elements of regular first-order logic such as quantifiers and (potentially
heap-dependent) functions, whereas SE facilitates experimenting with variations
and extensions of the notion of permissions used in the verifiers.

The next two subsections give a brief overview of how certain key problems
are handled by Carbon using VCG and by Silicon using SE.

4.2 Verification Condition Generation with Carbon

In Carbon, each method and its specification are encoded as a single implication
of the form PRE = WP (BoDY,Po0sT), stating that the given method precon-
dition implies the weakest precondition of the method body w.r.t. the given
method postcondition. This (often very large) implication is then given to the
theorem prover.

Carbon’s encoding of Silver programs into Boogie tracks information about
heap values and currently-held permissions in two map-typed variables in the
Boogie program. The heap H maps receiver-field pairs to values, whereas the
permission mask M maps them to permission amounts. Intuitively, the locations
to which M currently stores a positive permission amount are those that may
be read from H at the current program point. For details of this encoding, see
[20,10].

Silver’s inhale and exhale operations manipulate the heap and permission
mask. The inhale operation adds permissions to the mask and assumes prop-
erties of heap values; exhale asserts properties of heap values, checks that the
required permissions are available, removes them, and assigns arbitrary values to
all heap locations to which no permission is subsequently held. This last havoc
step reflects that other methods may, at this point, have write permission to
these locations and could modify their values.

4.3 Symbolic Execution with Silicon

As in similar tools for permission-logics [2,12], the symbolic state in Silicon
consists of a symbolic heap and a set of path conditions. The symbolic heap
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contains information about heap locations and permissions, whereas the path
conditions (first-order facts) describe constraints about the values of variables
and heap locations. Only the path conditions, but not the symbolic heap, are
given to a theorem prover when a (non-heap-related) property must be checked.

The symbolic heap is a set of heap chunks, representing (only) those heap
locations to which permission is currently held; all other heap locations are not
a part of the symbolic heap. Each heap chunk maps a heap location to a value
and a (positive) permission amount. Both the value and the permission amount
are either statically-known constants or symbolic values. Properties of the latter
are described via constraints in the path conditions.

Silver’s inhale and exhale operations directly manipulate the symbolic
heap. The inhale operation adds heap chunks with fresh symbolic values, and
path conditions about the appropriate symbolic values. exhale checks properties
of symbolic values (by asking the prover whether they are implied by the path
conditions), and (for accessibility predicates) also checks that an appropriate
heap chunk is present, and then removes it.

When using fractional permissions, one heap location may occur in several
heap chunks. To determine the total amount of permission available for a heap
location, Silicon sometimes needs to apply heap compression. That is, for each
pair of heap chunks for the same field name, it asks the prover whether, from the
set of path conditions, it can deduce that the two receiver objects are aliases.
If so, the two heap chunks are merged into one, with the sum of the permission
amounts, and an additional path condition is added stating that the values are
the same.

5 Related Work

Two intermediate languages and verification condition generators that are widely
used for the development of program verifiers are Boogie [18] and Why [8].
These verification condition generators have no direct support for permissions.
Permission-related operations can be encoded, as is indeed achieved by both
Chalice [20] and our verifier, Carbon. However, having direct support for permission-
based reasoning greatly simplifies the development of front-ends and also enables
the use of Smallfoot-style symbolic execution [2].

While Silver is similar to Boogie in some respects, several design decisions
have been taken differently in order to facilitate specification inference via ab-
stract interpretation. For instance, Silver has a built-in heap, heaps cannot be
stored in variables, and heaps are indexed by references and constant field names.
In particular, it is not possible to quantify over field names.

Recent work on decision procedures for separation logic [26,27] provides the
potential to simplify the encoding of proof obligations for permission logics
into SMT solvers. However, these decision procedures currently target restricted
forms of separation logic, and do not support fractional permissions or user-
defined predicates and functions.
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coreStar [3] is an intermediate language and verifier for separation logic that
includes a symbolic execution engine. Front-ends implemented on top of coreStar
must define an encoding of the program to be verified into coreStar’s language
and also have to provide proof rules and abstraction rules to customize the behav-
ior of the verifier and the inference. In comparison, our verification infrastructure
is sufficiently expressive to capture a wide variety of languages and verification
techniques, and does not require front-end developers to provide their own proof
and abstraction rules. Furthermore, having a fixed language and rule set allows
our verifiers to be more specialised.

Other automatic verifiers for separation logic, such as Smallfoot [2] and Veri
Fast [12] do not share a common infrastructure (other than the SMT solver).
Each of them implements their own verification engine based on symbolic exe-
cution.

6 Conclusions and Future Work

Viper is a verification infrastructure for building modular program verifiers based
on permission logics. Its intermediate language Silver provides a flexible per-
mission model, and supports user-defined predicates and functions. Viper in-
cludes the back-end verifiers Carbon (using verification condition generation)
and Silicon (using symbolic execution). Supporting both verification condition
generation and symbolic execution enables experiments with the two prevalent
techniques for automatic verification. We additionally provide a parser for Sil-
ver, and two front-end translation tools for Chalice and a subset of Scala. The
development of these translators helped us to fine-tune the design of the Silver
language and to practically evaluate the developed infrastructure.

At the time of writing, several components of Viper are available online at
www.pm.inf.ethz.ch/research/viper. An official release is planned for the
early summer of this year. By that time, we plan to provide IDE support and
a verification debugger; both components are currently under development. Our
future work will focus on further increasing the expressiveness of the Silver lan-
guage, as well as developing an inference component for Silver specifications
based on our abstract interpreter, Sample.
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A The Silver syntax

This section describes the syntax of Silver in BNF. The grammar does not model
the binding strength of operators. The special repetition operator ** is used to
denote a comma-separated list. Semicolons are optional after declarations and
statements and not mentioned here for clarity.

// Declarations
sil-program ::=
(
domain
field
function
predicate
method
)*

domain ::=
"domain" domain-name "{"
domain-function™
axiom*

n}n

domain-name ::=
ident |
ident "[" ident '™ "]" //e.g. SeqlT]

domain-function ::=
["unique"] "function" ident function-signature

function-signature ::=
formal-args ":" type

axiom ::=
"axiom" ident u{u exp u}n

field ::=
"field" ident ":" type

function ::=
"function" ident function-signature
precondition”
postcondition™
ll{ll exp H}Il

precondition ::=
"requires" exp

17



postcondition ::=
"ensures" exp

invariant ::=
"invariant" exp

predicate ::=
"predicate" ident formal-args "{" exp "}"

method ::=
"method" ident formal-args [formal-returns]
precondition® postcondition”
block

formal-args ::=
u(n formal—arg s* n)n

formal-arg ::=
ident ":" type

formal-returns ::=
"returns" formal -args

// Statements
block ::=
u{n Stmt ||}||

stmt ::=
"var" ident ":" type [":=" expl] // local variable
// declaration with an
// optional initial
value
ident ":=" exp | // local variable assignment
field-access ":=" exp | // field assignment
ident ":=" "new(*)" | // object creation
// (all fields)
ident ":=" "new(" idemnt ™ ")" | // obj. creation

// (specified fields)

"assert" exp |
"assume" exp |
"inhale" exp |
"exhale" exp |
"fold" acc-exp |
"unfold" acc-exp |

"goto" ident | // goto statement
ident ":" | // a goto label

if-statement |
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while-statement |
call-statement |
fresh-block

if-statement ::=

|lifll n (II exp |l)|l
statement -block

(”elsif" u(u exp u)u
statement -block

)* // any number of elseif branches
["else"

statement -block
] // optional else branch

while-statement ::=

"while" n(n exp u)u
invariant®
statement -block

call-statement ::= // method call [with return target]

[ident ** :=] ident "(" exp’™ ")"

fresh-statement ::=

"fresh" ident ™

constraining-block ::=

"constraining" "(" ident ' ")"
block

// Expressions

binop ::=
==t | n=n | // equality operators
W==>" | " | "gg" |"<==>" | // boolean operators
negn | ng=mn | " | ny=n | // ordering

// (integers and
permissions)
R B T // arithmetic operators
// (integers and
permissions)
// also intx*permission

NN NG // arithmetic division
// and modulo
"N/ // permission division

// (of two integers)

"union" | "intersection" | "setminus" //set operators
| // sequence concatenation

"in" | // set/multiset/sequence membership
"subset" // subset relation
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unop ::=
e // boolean negation

R B // integer and permission
exp ::=
"true" | "false" // boolean literal
integer | // integer literal
"null" | // null literal
"result" | // result literal in
// function postconditions
ident | // local variable read
lv(u exp Il)ll I
unop exp | // unary expression
exp binop exp | // binary expression
exp "?" exp ":" exp | // conditional expression
"old" "(" exp ")" // old expression
"none" | // no permission literal
"write" | // full permission literal
"epsilon" | // epsilon permission literal
"wildcard" | // wildcard permission
exp "/" exp | // concrete fractional
// permission

"perm" "(" loc-access ")" | // current permission

// of given location
acc-exp | // accessibility predicate
ident "(" exp’ ")" | // [domain] function

// application

field-access | // field read
predicate-access | // predicate access
"[" exp "," exp "I" | // inhale exhale expression
"unfolding" acc-exp in exp | // unfolding expression
// quantification
"forall" formal-arg'™ "::" trigger '™ exp |
"exists" formal-arg™ "::" trigger '™ exp |

seq-constructor —-exp |
set-constructor -exp |

seq-op-exp |
set-op-exp
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seq-constructor-exp ::=

"Seq" "[" type "I" "()" | // the empty sequence
"Seq" "(" exp’* ")" | // explicit sequence
"[" exp ".." exp ")" // half-open range of numbers

set-constructor -exp ::=
"Set" "[" type "1" "(" exp’™ ")" | // explicit set
"Multiset" "[" type "I" "(" exp’™ ")" // explicit
// multiset

set-op-exp ::=

"M exp "M // set/multiset cardinality
seq-op-exp ::=

exp "[" exp "I" | // sequence lookup

exp "[" ".." exp "1" | // take n first elements

exp "[" exp ".." "]" | // drop n last elements

exp "[" exp ".." exp "I" | // take and drop

exp "[" exp ":=" exp "I" | // update sequence at

"™ exp "I // length of a sequence
trigger ::=

"{" exp™ "}" // a trigger for a quantification
acc-exp ::=

"acc" "(" loc-access ["," exp ]1")" //access

// default is write
loc-access ::=
field-access | predicate-access

field-access ::=
exp "." ident | // field access

predicate-access ::=

ident " (" exp’* ")" // predicate access

// Types

type ::=
"Int" | "Bool" | "Perm" | "Ref" | // primitive types
"Seq" "[" type "1" // sequence type
"Set" "[" type "1" // set type
"Multiset" "[" type "]" // multiset type

ident [ n [n type a* n] n ]
// [instance of a generic] domain type

// Identifiers
ident ::= // regular expression for an identifier
"[a-zA-Z$_1[a-zA-Z0-9%_’1=x"
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